Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
mBio ; 12(5): e0257921, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634942

RESUMO

A variety of effector proteins contribute to host defense in Caenorhabditis elegans. However, beyond lytic enzymes and antimicrobial peptides and proteins, little is known about the exact function of these infection-related effectors. This study set out to identify pathogen-dependent cytokine-like molecules, focusing on C-type lectin domain-containing proteins (CLECs). In total, 38 CLECs that are differentially regulated in response to bacterial infections have been previously identified by microarray and transcriptome sequencing (RNA-seq) analyses in C. elegans. We successfully cloned 18 of these 38 CLECs and chose to focus on CLEC-47 because, among these 18 cloned CLECs, it was the smallest protein and was recombinantly expressed at the highest levels in prokaryotic cells examined by SDS-PAGE. Quantitative real-time PCR (qRT-PCR/qPCR) showed that the expression of clec-47 was induced by a variety of Gram-positive bacterial pathogens, including Enterococcus faecium, Staphylococcus aureus, and Cutibacterium acnes, but was suppressed by the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. By expressing CLEC-47 in HEK 293 cells, we showed that CLEC-47 is released into the culture media, which the Golgi apparatus inhibitors (brefeldin A [BFA] and GolgiStop) could block. Purified recombinant CLEC-47 (maltose binding protein [MBP]-CLEC-47-His) did not display antimicrobial activity against ESKAPE pathogen isolates but bound directly to murine macrophage J774A.1 cells. Recombinant CLEC-47 attracted and recruited J774A.1 cells in a chemotaxis assay. In addition, qPCR studies and enzyme-linked immunosorbent assays (ELISAs) showed that CLEC-47 activates J774A.1 cells in a dose- and time-dependent manner to express the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6, and Macrophage Inflammatory Protein 2 (MIP-2). Moreover, C. elegans, fed with CLEC-47-expressing Escherichia coli, demonstrated enhanced expression of several antimicrobial proteins (CNC-1, CNC-2, CPR-1, and CPR-2) as well as the detoxification protein MTL-1. These data suggest that CLEC-47 functions as a novel cytokine-like signaling molecule and exemplify how the study of infection-related effectors in C. elegans can help elucidate the evolution of immune responses. IMPORTANCE A variety of effector proteins contribute to host defense in the nematode Caenorhabditis elegans. However, little is known about the exact function of these infection-related effectors beyond lytic enzymes and antimicrobial peptides and proteins. This study set out to identify pathogen-dependent cytokine-like molecules, and we focus on the C-type lectin domain-containing proteins (CLECs). Our data suggest that CLEC-47 functions as a novel cytokine-like signaling molecule and exemplify how the study of infection-related effectors in nematodes can help elucidate the evolution of immune responses.


Assuntos
Infecções Bacterianas/imunologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/química , Caenorhabditis elegans/imunologia , Citocinas/imunologia , Imunidade Inata , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Linhagem Celular , Citocinas/classificação , Citocinas/genética , Células HEK293 , Humanos , Camundongos , Domínios Proteicos
2.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717840

RESUMO

The muscle excess 3 (MEX-3) protein was first identified in Caenorhabditis elegans (C. elegans), and its respective homologues were also observed in vertebrates, including humans. It is a RNA-binding protein (RBP) with an additional ubiquitin E3 ligase function, which further acts as a post-transcriptional repressor through unknown mechanisms. In humans, MEX-3 proteins post-transcriptionally regulate a number of biological processes, including tumor immunological relevant ones. These have been shown to be involved in various diseases, including tumor diseases of distinct origins. This review provides information on the expression and function of the human MEX-3 family in healthy tissues, as well after malignant transformation. Indeed, the MEX-3 expression was shown to be deregulated in several cancers and to affect tumor biological functions, including apoptosis regulation, antigen processing, and presentation, thereby, contributing to the immune evasion of tumor cells. Furthermore, current research suggests MEX-3 proteins as putative markers for prognosis and as novel targets for the anti-cancer treatment.


Assuntos
Carcinogênese , Família Multigênica/imunologia , Proteínas de Neoplasias , Neoplasias , Animais , Apresentação de Antígeno/genética , Apoptose/genética , Apoptose/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Evasão Tumoral/genética
3.
Nat Commun ; 11(1): 2099, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350248

RESUMO

Besides pro-inflammatory roles, the ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate IL-17 signaling in neurons, and the extent it can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans neurons. We identify the paracaspase MALT-1 as a critical output of the pathway. MALT1 mediates signaling from many immune receptors in mammals, but was not previously implicated in IL-17 signaling or nervous system function. C. elegans MALT-1 forms a complex with homologs of Act1 and IRAK and appears to function both as a scaffold and a protease. MALT-1 is expressed broadly in the C. elegans nervous system, and neuronal IL-17-MALT-1 signaling regulates multiple phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural circuit function downstream of IL-17 to remodel physiology and behavior.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/fisiologia , Imunidade , Interleucina-17/metabolismo , Longevidade , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Neurônios/metabolismo , Animais , Comportamento Animal , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Imunidade/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Longevidade/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transgenes
4.
Virulence ; 10(1): 1013-1025, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31771413

RESUMO

Calcium signaling can elicit different pathways involved in an extreme variety of biological processes. Calcium levels must be tightly regulated in a spatial and temporal manner in order to be efficiently and properly utilized in the host physiology. The Ca2+-ATPase, encoded by pmr-1 gene, was first identified in yeast and localized to the Golgi and it appears to be involved in calcium homeostasis. PMR-1 function is evolutionary conserved from yeast to human, where mutations in the orthologous gene ATP2C1 cause Hailey-Hailey disease. In this work, we used the Caenorhabditis elegans model system to gain insight into the downstream response elicited by the loss of pmr-1 gene. We found that pmr-1 knocked down animals not only showed defects in the oligosaccharide structure of glycoproteins at the cell surface but also were characterized by reduced susceptibility to bacterial infection. Although increased resistance to the infection might be related to lack of regular recognition of C. elegans surface glycoproteins by microbial agents, we provide genetic evidence that pmr-1 interfered nematodes mounted a stronger innate immune response to Gram-positive bacterial infection. Thus, our observations indicate pmr-1 as a candidate gene implicated in mediating the worm's innate immune response.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , ATPases Transportadoras de Cálcio/genética , Imunidade Inata , Infecções Estafilocócicas/microbiologia , Animais , Caenorhabditis elegans/imunologia , Técnicas de Silenciamento de Genes , Glicosilação , Mutação , Oligossacarídeos/química , Staphylococcus aureus/patogenicidade , Estresse Fisiológico
5.
Elife ; 82019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31532389

RESUMO

Iron is essential for survival of most organisms. All organisms have thus developed mechanisms to sense, acquire and sequester iron. In C. elegans, iron uptake and sequestration are regulated by HIF-1. We previously showed that hif-1 mutants are developmentally delayed when grown under iron limitation. Here we identify nhr-14, encoding a nuclear receptor, in a screen conducted for mutations that rescue the developmental delay of hif-1 mutants under iron limitation. nhr-14 loss upregulates the intestinal metal transporter SMF-3 to increase iron uptake in hif-1 mutants. nhr-14 mutants display increased expression of innate immune genes and DAF-16/FoxO-Class II genes, and enhanced resistance to Pseudomonas aeruginosa. These responses are dependent on the transcription factor PQM-1, which localizes to intestinal cell nuclei in nhr-14 mutants. Our data reveal how C. elegans utilizes nuclear receptors to regulate innate immunity and iron availability, and show iron sequestration as a component of the innate immune response.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunidade Inata , Ferro/metabolismo , Pseudomonas aeruginosa/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transporte Biológico , Resistência à Doença , Infecções por Pseudomonas/imunologia , Oligoelementos/metabolismo
6.
Elife ; 82019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642431

RESUMO

Animals respond to mitochondrial stress with the induction of mitochondrial unfolded protein response (UPRmt). A cascade of events occur upon UPRmt activation, ultimately triggering a transcriptional response governed by two transcription factors: DVE-1 and ATFS-1. Here we identify SUMO-specific peptidase ULP-4 as a positive regulator of C. elegans UPRmt to control SUMOylation status of DVE-1 and ATFS-1. SUMOylation affects these two axes in the transcriptional program of UPRmt with distinct mechanisms: change of DVE-1 subcellular localization vs. change of ATFS-1 stability and activity. Our findings reveal a post-translational modification that promotes immune response and lifespan extension during mitochondrial stress.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/fisiologia , Cisteína Endopeptidases/metabolismo , Imunidade Inata , Longevidade/fisiologia , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cisteína Endopeptidases/genética , Lisina/metabolismo , Modelos Biológicos , Estabilidade Proteica , Transdução de Sinais , Sumoilação , Transcrição Gênica
7.
Cell Microbiol ; 21(1): e12971, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30370624

RESUMO

Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped with more sophisticated innate defence mechanisms than are protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defence processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in protist biology, that are modulated by L. pneumophila, including TLR2 signalling, NF-κB, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects haemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although coevolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of coevolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.


Assuntos
Amoeba/metabolismo , Amoeba/microbiologia , Evasão da Resposta Imune , Imunidade Inata , Legionella pneumophila/fisiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Drosophila/imunologia , Drosophila/microbiologia , Lepidópteros/imunologia , Lepidópteros/microbiologia
8.
Immunity ; 48(5): 963-978.e3, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768179

RESUMO

Regulated antimicrobial peptide expression in the intestinal epithelium is key to defense against infection and to microbiota homeostasis. Understanding the mechanisms that regulate such expression is necessary for understanding immune homeostasis and inflammatory disease and for developing safe and effective therapies. We used Caenorhabditis elegans in a preclinical approach to discover mechanisms of antimicrobial gene expression control in the intestinal epithelium. We found an unexpected role for the cholinergic nervous system. Infection-induced acetylcholine release from neurons stimulated muscarinic signaling in the epithelium, driving downstream induction of Wnt expression in the same tissue. Wnt induction activated the epithelial canonical Wnt pathway, resulting in the expression of C-type lectin and lysozyme genes that enhanced host defense. Furthermore, the muscarinic and Wnt pathways are linked by conserved transcription factors. These results reveal a tight connection between the nervous system and the intestinal epithelium, with important implications for host defense, immune homeostasis, and cancer.


Assuntos
Acetilcolina/imunologia , Caenorhabditis elegans/imunologia , Mucosa Intestinal/imunologia , Via de Sinalização Wnt/imunologia , Acetilcolina/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Expressão Gênica/imunologia , Homeostase/genética , Homeostase/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neurônios/imunologia , Neurônios/metabolismo , Via de Sinalização Wnt/genética
9.
Pathog Dis ; 76(1)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361158

RESUMO

Paracoccidioidomycosis is a systemic fungal infection affecting mainly Latin American countries that is caused by Paracoccidioides brasiliensis and Paracoccidioides lutzii. During the study of fungal pathogenesis, in vivo studies are crucial to understand the overall mechanisms involving the infection as well as to search for new therapeutic treatments and diagnosis. Caenorhabditis elegans is described as an infection model for different fungi species and a well-characterized organism to study the innate immune response. This study evaluates C. elegans as an infection model for Paracoccidioides spp. It was observed that both species do not cause infection in C. elegans, as occurs with Candida albicans, and one possible explanation is that the irregular size and shape of Paracoccidioides spp. difficult the ingestion of these fungi by the nematode. Besides this difficulty in the infection, we could observe that the simple exposition of C. elegans to Paracoccidioides species was able to trigger a distinct pattern of expression of antimicrobial peptide genes. The expression of cnc-4, nlpl-27 and nlp-31 was superior after the exposure to P. brasiliensis in comparison to P. lutzii (P < 0.05), and these findings demonstrate important differences regarding innate immune response activation caused by the two species of the Paracoccidioides genus.


Assuntos
Caenorhabditis elegans/microbiologia , Modelos Animais de Doenças , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/patologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Caenorhabditis elegans/imunologia , Candida albicans , Perfilação da Expressão Gênica , Imunidade Inata , Paracoccidioides/imunologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-28932706

RESUMO

The enterobacterium, Klebsiella pneumoniae invades the intestinal epithelium of humans by interfering with multiple host cell response. To uncover a system-level overview of host response during infection, we analyzed the global dynamics of protein profiling in Caenorhabditis elegans using quantitative proteomics approach. Comparison of protein samples of nematodes exposed to K. pneumoniae for 12, 24, and 36 h by 2DE revealed several changes in host proteome. A total of 266 host-encoded proteins were identified by 2DE MALDI-MS/MS and LC-MS/MS and the interacting partners of the identified proteins were predicted by STRING 10.0 analysis. In order to understand the interacting partners of regulatory proteins with similar or close pI ranges, a liquid IEF was performed and the isolated fractions containing proteins were identified by LC-MS/MS. Functional bioinformatics analysis on identified proteins deciphered that they were mostly related to the metabolism, dauer formation, apoptosis, endocytosis, signal transduction, translation, developmental, and reproduction process. Gene enrichment analysis suggested that the metabolic process as the most overrepresented pathway regulated against K. pneumoniae infection. The dauer-like formation in infected C. elegans along with intestinal atrophy and ROS during the physiological analysis indicated that the regulation of metabolic pathway is probably through the involvement of mTOR. Immunoblot analysis supported the above notion that the K. pneumoniae infection induced protein mis-folding in host by involving PI3Kinase/AKT-1/mTOR mediated pathway. Furthermore, the susceptibility of pdi-2, akt-1, and mTOR C. elegans mutants confirmed the role and involvement of PI3K/AKT/mTOR pathway in mediating protein mis-folding which appear to be translating the vulnerability of host defense toward K. pneumoniae infection.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Klebsiella pneumoniae/patogenicidade , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Endocitose , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/fisiologia , Intestinos/microbiologia , Intestinos/patologia , Infecções por Klebsiella/veterinária , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Domínios e Motivos de Interação entre Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteômica , Deficiências na Proteostase , Transdução de Sinais , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
11.
Innate Immun ; 23(8): 656-666, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28958206

RESUMO

The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lisossomos/metabolismo , Sistema Nervoso/imunologia , Neurônios/metabolismo , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Animais , Anti-Infecciosos/metabolismo , Autofagia , Proteínas de Caenorhabditis elegans/genética , Domínio Catalítico/genética , Células Cultivadas , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Interações Hospedeiro-Patógeno , Imunidade Inata , Transdução de Sinais
12.
Artigo em Inglês | MEDLINE | ID: mdl-28652232

RESUMO

Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans-F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F. tularensis, and we developed a robust F. tularensis-mediated C. elegans killing assay with a Z' factor consistently of >0.5, which was then utilized to screen a library of FDA-approved compounds that included 1,760 small molecules. In addition to clinically used antibiotics, five FDA-approved drugs were also identified as potential hits, including the anti-inflammatory drug diflunisal that showed anti-F. tularensis activity in vitro Moreover, the nonsteroidal anti-inflammatory drug (NSAID) diflunisal, at 4× MIC, blocked the replication of an F. tularensis live vaccine strain (LVS) in primary human macrophages and nonphagocytic cells. Diflunisal was nontoxic to human erythrocytes and HepG2 human liver cells at concentrations of ≥32 µg/ml. Finally, diflunisal exhibited synergetic activity with the antibiotic ciprofloxacin in both a checkerboard assay and a macrophage infection assay. In conclusion, the liquid C. elegans-F. tularensis LVS assay described here allows screening for anti-F. tularensis compounds and suggests that diflunisal could potentially be repurposed for the management of tularemia.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Francisella tularensis/efeitos dos fármacos , Animais , Vacinas Bacterianas/imunologia , Caenorhabditis elegans/imunologia , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Eritrócitos/microbiologia , Francisella tularensis/imunologia , Células Hep G2 , Humanos , Fígado/microbiologia , Macrófagos/microbiologia , Vacinas Atenuadas/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Free Radic Biol Med ; 108: 174-182, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28347729

RESUMO

Selenoprotein T (SELENOT) is an endoplasmatic reticulum (ER)-associated redoxin that contains the amino acid selenocysteine (Sec, U) within a CXXU motif within a thioredoxin-like fold. Its precise function in multicellular organisms is not completely understood although it has been shown in mammals to be involved in Ca2+ homeostasis, antioxidant and neuroendocrine functions. Here, we use the model organism C. elegans to address SELENOT function in a whole organism throughout its life cycle. C. elegans possess two genes encoding SELENOT protein orthologues (SELT-1.1 and SELT-1.2), which lack Sec and contain the CXXC redox motif instead. Our results show that a Sec→Cys replacement and a gene duplication were two major evolutionary events that occurred in the nematode lineage. We find that worm SELT-1.1 localizes to the ER and is expressed in different cell types, including the nervous system. In contrast, SELT-1.2 exclusively localizes in the cytoplasm of the AWB neurons. We find that selt-1.1 and selt-1.2 single mutants as well as the double mutant are viable, but the selt-1.1 mutant is compromised under rotenone-induced oxidative stress. We demonstrate that selt-1.1, but not selt-1.2, is required for avoidance to the bacterial pathogens Serratia marcescens and Pseudomonas aeruginosa. Aversion to the noxious signal 2-nonanone is also significantly impaired in selt-1.1, but not in selt-1.2 mutant animals. Our results suggest that selt-1.1 would be a redox transducer required for nociception and optimal organismal fitness. The results highlight C. elegans as a valuable model organism to study SELENOT-dependent processes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Selenoproteínas/metabolismo , Infecções por Serratia/imunologia , Serratia marcescens/imunologia , Animais , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Cisteína/genética , Duplicação Gênica , Imunidade Inata , Cetonas/administração & dosagem , Estágios do Ciclo de Vida , Mutação/genética , Nociceptividade , Estresse Oxidativo , Transporte Proteico , Selenoproteínas/genética
14.
J Biol Chem ; 291(45): 23516-23531, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27662904

RESUMO

Protein kinase D (PKD) isoforms are protein kinase C effectors in signaling pathways regulated by diacylglycerol. Important physiological processes (including secretion, immune responses, motility, and transcription) are placed under diacylglycerol control by the distinctive substrate specificity and subcellular distribution of PKDs. Potentially, broadly co-expressed PKD polypeptides may interact to generate homo- or heteromultimeric regulatory complexes. However, the frequency, molecular basis, regulatory significance, and physiological relevance of stable PKD-PKD interactions are largely unknown. Here, we demonstrate that mammalian PKDs 1-3 and the prototypical Caenorhabditis elegans PKD, DKF-2A, are exclusively (homo- or hetero-) dimers in cell extracts and intact cells. We discovered and characterized a novel, highly conserved N-terminal domain, comprising 92 amino acids, which mediates dimerization of PKD1, PKD2, and PKD3 monomers. A similar domain directs DKF-2A homodimerization. Dimerization occurred independently of properties of the regulatory and kinase domains of PKDs. Disruption of PKD dimerization abrogates secretion of PAUF, a protein carried in small trans-Golgi network-derived vesicles. In addition, disruption of DKF-2A homodimerization in C. elegans intestine impaired and degraded the immune defense of the intact animal against an ingested bacterial pathogen. Finally, dimerization was indispensable for the strong, dominant negative effect of catalytically inactive PKDs. Overall, the structural integrity and function of the novel dimerization domain are essential for PKD-mediated regulation of a key aspect of cell physiology, secretion, and innate immunity in vivo.


Assuntos
Proteína Quinase C/química , Multimerização Proteica , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/imunologia , Sequência Conservada , Células HEK293 , Humanos , Imunidade Inata , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/imunologia , Proteína Quinase C/imunologia , Alinhamento de Sequência
15.
Cell Rep ; 16(9): 2399-414, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27545884

RESUMO

Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunction protects neurons in a cell-non-autonomous fashion. Specifically, mitochondrial complex I dysfunction induced by rotenone activates the p38MAPK/CREB/ATF-7-dependent innate immune response pathway in intestinal cells of C. elegans. Activation of p38MAPK in the gut is neuroprotective. Enhancing the p38MAPK-mediated immune pathway in intestinal cells alone suppresses rotenone-induced dopaminergic neuron loss, while downregulating it in the intestine exacerbates neurodegeneration. The p38MAPK/ATF-7 immune pathway modulates autophagy and requires autophagy and the PTEN-induced putative kinase PINK-1 for conferring neuroprotection. Thus, mitochondrial damage induces the clearance of mitochondria by the immune pathway, protecting the organism from the toxic effects of mitochondrial dysfunction. We propose that mitochondria are subject to constant surveillance by innate immune mechanisms.


Assuntos
Fatores Ativadores da Transcrição/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Neurônios Dopaminérgicos/imunologia , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fatores Ativadores da Transcrição/imunologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/patologia , Regulação da Expressão Gênica , Imunidade Inata , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Degeneração Neural/induzido quimicamente , Degeneração Neural/genética , Degeneração Neural/imunologia , Rotenona/toxicidade , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
16.
J Proteomics ; 145: 81-90, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27072109

RESUMO

UNLABELLED: Caenorhabditis elegans is emerging as one of the handy model for proteome related studies due to its simplest system biology. The present study, deals with changes in protein expression in C. elegans infected with Proteus mirabilis. Proteins were separated using two-dimensional differential gel electrophoresis (2D-DIGE) and identified using MALDI-TOF. Twelve distinctly regulated proteins identified in the infected worms, included heat shock proteins involved stress pathway (HSP-1 and HSP-6), proteins involved in immune response pathway (DAF-21), enzymes involved in normal cellular process (Eukaryotic translation Elongation Factor, actin family member, S-adenosyl homocysteine hydrolase ortholog, glutamate dehydrogenase and Vacuolar H ATPase family member) and few least characterized proteins (H28O16.1 and H08J11.2). The regulation of selected players at the transcriptional level during Proteus mirabilis infection was analyzed using qPCR. Physiological experiments revealed the ability of P. mirabilis to kill daf-21 mutant C. elegans significantly compared with the wild type. This is the first report studying proteome changes in C. elegans and exploring the involvement of MAP Kinase pathway during P. mirabilis infection. BIOLOGICAL SIGNIFICANCE: This is the first report studying proteome changes in C. elegans during P. mirabilis infection. The present study explores the role and contribution of MAP Kinase pathway and its regulator protein DAF-21 involvement in the immunity against opportunistic pathogen P. mirabilis infection. Manipulation of this DAF-21 protein in host, may pave the way for new drug development or disease control strategy during opportunistic pathogen infections.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Proteínas de Choque Térmico HSP90/imunologia , Proteômica/métodos , Infecções por Proteus , Proteus mirabilis/patogenicidade , Animais , Caenorhabditis elegans/imunologia , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/análise , Sistema de Sinalização das MAP Quinases/imunologia , Proteoma/análise , Proteoma/imunologia
17.
Cytokine Growth Factor Rev ; 29: 17-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068414

RESUMO

The human serine/threonine kinase ULK1 is the human homolog of the Caenorhabditis elegans Unc-51 kinase and of the Saccharomyces cerevisiae autophagy-related protein kinase Atg1. As Unc-51 and Atg1, ULK1 regulates both axon growth and autophagy, respectively, in mammalian cells. However, a novel immunoregulatory role of ULK1 has been recently described. This kinase was shown to be required for regulation of both type I interferon (IFN) production and induction of type I IFN signaling. Optimal regulation of IFN production is crucial for generation of effective IFN-immune responses, and defects in such networks can be detrimental for the host leading to uncontrolled pathogen infection, tumor growth, or autoimmune diseases. Thus, ULK1 plays a central role in IFN-dependent immunity. Here we review the diverse roles of ULK1, with special focus on its importance to type I IFN signaling, and highlight important future study questions.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/imunologia , Autofagia/imunologia , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Transdução de Sinais/imunologia , Animais , Doenças Autoimunes/imunologia , Proteínas Relacionadas à Autofagia/imunologia , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Humanos , Infecções/imunologia , Neoplasias/imunologia , Proteínas Quinases/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Saccharomyces cerevisiae/imunologia , Proteínas de Saccharomyces cerevisiae/imunologia
18.
Eur J Immunol ; 45(9): 2553-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046550

RESUMO

Orally administrated iron is suspected to increase susceptibility to enteric infections among children in infection endemic regions. Here we investigated the effect of dietary iron on the pathology and local immune responses in intestinal infection models. Mice were held on iron-deficient, normal iron, or high iron diets and after 2 weeks they were orally challenged with the pathogen Citrobacter rodentium. Microbiome analysis by pyrosequencing revealed profound iron- and infection-induced shifts in microbiota composition. Fecal levels of the innate defensive molecules and markers of inflammation lipocalin-2 and calprotectin were not influenced by dietary iron intervention alone, but were markedly lower in mice on the iron-deficient diet after infection. Next, mice on the iron-deficient diet tended to gain more weight and to have a lower grade of colon pathology. Furthermore, survival of the nematode Caenorhabditis elegans infected with Salmonella enterica serovar Typhimurium was prolonged after iron deprivation. Together, these data show that iron limitation restricts disease pathology upon bacterial infection. However, our data also showed decreased intestinal inflammatory responses of mice fed on high iron diets. Thus additionally, our study indicates that the effects of iron on processes at the intestinal host-pathogen interface may highly depend on host iron status, immune status, and gut microbiota composition.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Infecções por Enterobacteriaceae/patologia , Mucosa Intestinal/patologia , Intestinos/patologia , Ferro da Dieta/administração & dosagem , Salmonelose Animal/metabolismo , Proteínas de Fase Aguda/biossíntese , Proteínas de Fase Aguda/imunologia , Animais , Peso Corporal/imunologia , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Citrobacter rodentium/imunologia , Dieta/métodos , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Fezes/microbiologia , Feminino , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Ferro da Dieta/efeitos adversos , Complexo Antígeno L1 Leucocitário/biossíntese , Complexo Antígeno L1 Leucocitário/imunologia , Lipocalina-2 , Lipocalinas/biossíntese , Lipocalinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/imunologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonelose Animal/mortalidade , Salmonella typhimurium/imunologia , Análise de Sobrevida
19.
Curr Opin Microbiol ; 23: 94-101, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461579

RESUMO

Epithelial cells line the surfaces of the body, and are on the front lines of defense against microbial infection. Like many other metazoans, the nematode Caenorhabditis elegans lacks known professional immune cells and relies heavily on defense mediated by epithelial cells. New results indicate that epithelial defense in C. elegans can be triggered through detection of pathogen-induced perturbation of core physiology within host cells and through autophagic defense against intracellular and extracellular pathogens. Recent studies have also illuminated a diverse array of pathogenic attack strategies used against C. elegans. These findings are providing insight into the underpinnings of host/pathogen interactions in a simple animal host that can inform studies of infectious diseases in humans.


Assuntos
Caenorhabditis elegans/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Animais , Autofagia , Caenorhabditis elegans/imunologia , Mecanismos de Defesa
20.
Immunol Cell Biol ; 93(1): 35-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25331550

RESUMO

The evolutionarily conserved catabolic process of autophagy involves the degradation of cytoplasmic components through lysosomal enzymes. Basal levels of autophagy maintain cellular homeostasis and under stress conditions high levels of autophagy are induced. It is often under such stress conditions that high levels of autophagy and cell death have been observed, leading to the idea that autophagy may act as an executioner of cell death. However the notion of autophagy as a cell death mechanism has been controversial and remains mechanistically undefined. There is now growing evidence that in specific contexts autophagy can indeed facilitate cell death. The pro-death role of autophagy is however complicated due to the extensive cross-talk between different signalling pathways. This review summarises the examples of where autophagy acts as a means of cell death and discusses the association of autophagy with the different cell death pathways.


Assuntos
Apoptose/genética , Autofagia/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Fagossomos/genética , Enzimas de Conjugação de Ubiquitina/genética , Animais , Apoptose/imunologia , Autofagia/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Dictyostelium/genética , Dictyostelium/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Lisossomos/genética , Lisossomos/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Fagossomos/imunologia , Transdução de Sinais , Estresse Fisiológico , Enzimas de Conjugação de Ubiquitina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA