Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Cell Mol Med ; 28(6): e18050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400579

RESUMO

Current treatment options available for prostate cancer (PCa) patients have many adverse side effects and hence, new alternative therapies need to be explored. Anticancer potential of various phytochemicals derived from Calotropis procera has been studied in many cancers but no study has investigated the effect of leaf extract of C. procera on PCa cells. Hence, we investigated the effect of C. procera leaf extract (CPE) on cellular properties of androgen-independent PC-3 and androgen-sensitive 22Rv1 cells. A hydroalcoholic extract of C. procera was prepared and MTT assay was performed to study the effect of CPE on viability of PCa cells. The effect of CPE on cell division ability, migration capability and reactive oxygen species (ROS) production was studied using colony formation assay, wound-healing assay and 2',7'-dichlorodihydrofluorescein diacetate assay, respectively. Caspase activity assay and LDH assay were performed to study the involvement of apoptosis and necrosis in CPE-mediated cell death. Protein levels of cell cycle, antioxidant, autophagy and apoptosis markers were measured by western blot. The composition of CPE was identified using untargeted LC-MS analysis. Results showed that CPE decreased the viability of both the PCa cells, PC-3 and 22Rv1, in a dose- and time-dependent manner. Also, CPE significantly inhibited the colony-forming ability, migration and endogenous ROS production in both the cell lines. Furthermore, CPE significantly decreased NF-κB protein levels and increased the protein levels of the cell cycle inhibitor p27. A significant increase in expression of autophagy markers was observed in CPE-treated PC-3 cells while autophagy markers were downregulated in 22Rv1 cells after CPE exposure. Hence, it can be concluded that CPE inhibits PCa cell viability possibly by regulating the autophagy pathway and/or altering the ROS levels. Thus, CPE can be explored as a possible alternative therapeutic agent for PCa.


Assuntos
Calotropis , Porcelana Dentária , Ligas Metalo-Cerâmicas , Neoplasias da Próstata , Titânio , Masculino , Humanos , Linhagem Celular Tumoral , Calotropis/química , Calotropis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Androgênios/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Autofagia , Proliferação de Células
2.
Curr Top Med Chem ; 23(23): 2197-2213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282633

RESUMO

Calotropis procera (Aiton) Dryand (Apocynaceae), popularly known as milkweed, has been traditionally used to treat diseases particularly associated with gastric disorders, skin disease and inflammatory processes. The present study aimed to review the current scientific evidence regarding the pharmacological effects of C. procera extracted phytochemicals and possible research opportunities as complementary and alternative medicine. Scientific publications were searched in various electronic databases (PubMed, Scopus, Web of Science, Google Scholar, Springer, Wiley, and Mendeley) using the following search terms: Calotropis procera, medicinal plants, toxicity, phytochemical characterization, and biological effects. Collected data showed that cardenolides, steroid glycoside and flavonoids are the main classes of phytochemicals identified in C. procera latex and leaves. In addition, lignans, terpenes, coumarins, and phenolic acids have been reported. These metabolites have been correlated with their biological activities, including mainly antioxidant, anti-inflammatory, antitumoral, hypoglycemic, gastric protective, anti-microbial, insecticide, anti-fungal, anti-parasitic, among others. However, some of the studies were carried out with only a single dose or with a high dose not achievable under physiological conditions. Therefore, the validity of C. procera biological activity may be questionable. Not less important to highlight are the risks associated with its use and the possibility of accumulation of heavy metals that can be toxic. Furthermore, there are no clinical trials with C. procera to date. In conclusion, the need of bioassayguided isolation of bioactive compounds, bioavailability and efficacy, as well as pharmacological and toxicity studies, are needed using in vivo models and clinical trials in order to support the traditionally claimed health benefits.


Assuntos
Apocynaceae , Calotropis , Calotropis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Látex/química , Látex/farmacologia
3.
Anticancer Agents Med Chem ; 22(18): 3163-3171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692152

RESUMO

BACKGROUND: Calotropis procera is a laticiferous plant (Apocynaceae) found in tropical regions all over the world. The ultrastructural characteristics of laticifers, their restricted distribution among different taxonomic groups, and in some species in each clade, as peptidases from latex, make them very attractive for biological analysis. OBJECTIVE: The study aims to investigate the effects of LP-PII-IAA (laticifer protein (LP) sub-fraction II (PII) of C. procera presenting an iodoacetamide-inhibited cysteine proteinase activity) on irinotecan-induced intestinal mucositis, a serious adverse effect of this medicine for the treatment of cancer. METHODS: LP-PII-IAA is composed of closely related isoforms (90%) of peptidases derived from catalysis and an osmotin protein (5%). Animals receiving co-administration of LP-PII-IAA presented a significant decrease in mortality, absence of diarrhea, histological preservation, and normalization of intestinal functions. RESULTS: Clinical homeostasis was accompanied by a reduction in MPO activity and declined levels of IL-1ß, IL-6 and KC, while the IL-10 level increased in LP-PII-IAA-treated animals. COX-2 and NF-kB immunostaining was reduced and the levels of oxidative markers (GSH, MDA) were normalized in animals that received LP-PII-IAA. CONCLUSION: We suggest that peptidases from the latex of Calotropis procera were instrumental in the suppression of the adverse clinical and physiological effects of irinotecan.


Assuntos
Calotropis , Cisteína Proteases , Animais , Calotropis/química , Ciclo-Oxigenase 2 , Interleucina-10 , Interleucina-6 , Iodoacetamida , Irinotecano/farmacologia , Látex/química , Látex/farmacologia , NF-kappa B , Proteínas de Plantas/farmacologia , Proteínas de Plantas/uso terapêutico
4.
J Ethnopharmacol ; 296: 115503, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35753608

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Preparations derived from the plant Calotropis procera, have been used for medicinal purpose though the plant is known for its toxic effects. The aerial parts of the plant contain latex in plenty and have been found effective in treating disorders of gastrointestinal system and cancer. AIM OF THE STUDY: This study evaluated the efficacy of C. procera dried latex extract prepared in methanol (MeDL) against inflammation and oxidative stress in experimental model of colorectal carcinoma (CRC). MATERIALS AND METHODS: Two subcutaneous injections of chemical carcinogen, 1,2-dimethylhydrazine (DMH; 150 mg/kg) were given at an interval of one week to induce CRC in rats. The MeDL (50 and 150 mg/kg) and aspirin (60 mg/kg) were given daily and their effect was evaluated on markers of oxidative stress and inflammation after completion of 8 weeks following second injection of carcinogen. A comparison was made with normal and experimental control groups. The colon tissue levels of glutathione (GSH), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), nitrite and myeloperoxidase (MPO) were determined. Enzyme-linked immunosorbent assay was performed to determine the levels of prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-α) and immunohistochemical analysis was performed for IL-1ß. RESULTS: Induction of cancerous changes in the colon resulted in altered oxidative homeostasis as evident from a reduction in GSH level and SOD activity and rise in TBARS level when compared with normal rats. Elevated levels of nitrite, MPO, TNF-α, PGE2 and immunoreactivity of IL-1ß were also observed in these rats. The levels of these markers were normalized when the rats were treated with MeDL or anti-inflammatory drug, aspirin. CONCLUSION: This study demonstrates that suppression of oxidative stress and inflammation contributes to the beneficial effect of MeDL in rat model of colon carcinogenesis.


Assuntos
Calotropis , Neoplasias Colorretais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aspirina/farmacologia , Calotropis/química , Carcinógenos , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/tratamento farmacológico , Dinoprostona , Glutationa , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Látex/farmacologia , Metanol/uso terapêutico , Nitritos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Superóxido Dismutase , Substâncias Reativas com Ácido Tiobarbitúrico , Fator de Necrose Tumoral alfa
5.
J Ethnopharmacol ; 283: 114668, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34587514

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant, Calotropis procera, has been used for treating various gastrointestinal disorders and cancer. Some of these medicinal properties have been attributed to the latex produced by the plant. AIM OF THE STUDY: To evaluate the efficacy of methanol extract of air-dried latex (MeDL) of C. procera in the rat model of colorectal cancer (CRC). MATERIALS AND METHODS: CRC was induced in the rats by 1,2-dimethylhydrazine (DMH) and the effect of MeDL was evaluated at two doses (50 and 150 mg/kg). MeDL and reference drug aspirin (60 mg/kg) were administered orally starting from 1 h before injecting DMH till 8 weeks after the second dose of DMH. The study also included experimental and normal control groups. Microscopic analysis was carried out to determine the count for aberrant crypt foci (ACF) and histology score whereas enzyme-linked immunosorbent assay and immunohistochemical analyses were performed for markers of carcinogenesis and angiogenesis. Other parameters that were evaluated include deoxyribonucleic acid (DNA) fragmentation, laddering, Bcl2 and Bax immunoreactivity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity. RESULTS: Subcutaneous injection of DMH induced pre-neoplastic changes in the colon of rats with the appearance of ACF with multiple crypts (1-3, 4-6 or >6). In the experimental control group, total ACF count was 3.49 ± 0.23/cm of the colon length and the median histology score was 2.0 for architectural abnormalities, 2.0 for dilatation of crypts and 1.5 for hyperplasia/dysplasia against 1.0 for all the characteristics in normal rats. Oral administration of MeDL similar to aspirin, led to a reduction in ACF count and histology score of CRC concomitant with a decrease in the levels of markers of carcinogenesis - ß-catenin and proliferating cell nuclear antigen (PCNA); markers of angiogenesis - matrix metallopeptidase-9 (MMP-9) and vascular endothelial growth factor (VEGF), and an increase in apoptotic DNA fragmentation. CONCLUSION: MeDL confers protection in the rat model of CRC and the study suggests its therapeutic potential in this condition.


Assuntos
Calotropis/química , Neoplasias Colorretais/tratamento farmacológico , Látex/química , Extratos Vegetais/farmacologia , 1,2-Dimetilidrazina/toxicidade , Animais , Biomarcadores Tumorais/sangue , Neoplasias Colorretais/induzido quimicamente , Fragmentação do DNA , Masculino , Neovascularização Patológica/metabolismo , Ratos , Ratos Wistar
6.
PLoS One ; 16(8): e0254392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34343190

RESUMO

Conventional chemotherapeutic agents for colorectal cancer (CRC) cause systemic side effects and eventually become less efficacious owing to the development of drug resistance in cancer cells. Therefore, new therapeutic regimens have focused on the use of natural products. The anticancer activity of several parts of Calotropis gigantea has been reported; however, the effects of its stem bark extract on inhibition of cancer cell proliferation have not yet been examined. In this study, the anticancer activity of C. gigantea stem bark extract, both alone and in combination with 5-fluorouracil (5-FU), was evaluated. A crude ethanolic extract was prepared from dry, powdered C. gigantea barks using 95% ethanol. This was then partitioned to obtain dichloromethane (CGDCM), ethyl acetate, and water fractions. Quantitative analysis of the constituent secondary metabolites and calotropin was performed. These fractions exhibited cytotoxicity in HCT116 and HT-29 cells, with CGDCM showing the highest potency in both the cell lines. A combination of CGDCM and 5-FU significantly enhanced the cytotoxic effect. Moreover, the resistance of normal fibroblast, HFF-1, cells to this combination demonstrated its safety in normal cells. The combination significantly enhanced apoptosis through the mitochondria-dependent pathway. Additionally, the combination reduced adenosine triphosphate production and increased the production of reactive oxygen species, demonstrating the mechanisms involved in the induction of apoptosis. Our results suggest that CGDCM is a promising anti-cancer agent and may enhance apoptosis induction by 5-FU in the treatment of CRC, while minimizing toxicity toward healthy cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Calotropis/química , Neoplasias do Colo/metabolismo , Casca de Planta/química , Extratos Vegetais/farmacologia , Caules de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Humanos , Extratos Vegetais/química
7.
Res Vet Sci ; 138: 79-89, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34119813

RESUMO

Our goal was to evaluate phytochemical characterization and the antitumor potential of Calotropis procera. The phytochemical constitution of the crude extract (CE) revealed the presence of flavonoids, glycosides and cardenolide. The MTT assay was used to evaluate the cytotoxicity of CE, methanolic (MF) and ethyl acetate fractions (EAF) of C. procera in canine osteosarcoma cells (OST), canine mammary tumor (CMT), and canine skin fibroblasts (non-tumor cell). Doxorubicin was also used as a positive control. Results showed that CE, MF and EAF promoted a decrease in the viability of OST and CMT cells and did not alter the fibroblasts viability. C. procera also decreased the number of cells, corroborating to the decrease in proliferation and the cell cycle arrest in the G0/G1 phase. It was also evaluated the cell morphology by light and fluorescence microscopy, being demonstrated a reduction in cytoplasmic and cell rounding characteristic of programmed cell death. Moreover, flow cytometry data demonstrated that CE treatment promoted increase of caspase-3 and p53, showing that the cell death was activated in OST cells. In addition, there was a decrease in CD31, VEGF, osteopontin and TGF-ß after CE treatment, suggesting that CE exerts its antitumor effect by reducing angiogenesis and tumor progression in OST cells. Moreover, CMT cells showed a reduction in PCNA after treatment with MF and CE. Analyzing the data together, C. procera, especially CE, showed an antitumor potential in both OST and CMT cells, encouraging us to continue investigating its use in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Calotropis/química , Doenças do Cão/tratamento farmacológico , Neoplasias Mamárias Animais/tratamento farmacológico , Osteossarcoma/veterinária , Extratos Vegetais/farmacologia , Animais , Antineoplásicos/química , Cães , Osteossarcoma/tratamento farmacológico , Extratos Vegetais/química
8.
J Ethnopharmacol ; 278: 114261, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34111540

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pain remains real and still a major problem in clinical medicine which requires new agents with improved efficacy for more therapeutic benefits. Plant sources can serve as a basis for the search for some novel drugs hence the analgesic effects of the hydroethanolic extract of Calotropis procera (CPE) which is widespread in Ghana and other tropical areas and used in folkloric medicine for painful and inflammatory conditions was evaluated. MATERIALS AND METHODS: The analgesic properties of orally administered CPE at doses of 30, 100, and 300 mg/kg were evaluated in thermal (tail immersion), chemical (acetic acid-writhing, formalin-induced paw licking, glutamate-induced nociception) and mechanical (Randall-Selitto) tests for analgesia. The involvement of tumour necrosis factor-alpha (TNF-α), interleukin 1ß (IL 1ß), bradykinin, and prostaglandin E2 (PGE2) on the analgesic effects of CPE were also evaluated in hypernociception assays measuring mechanical pain thresholds. RESULTS: The latency of tail withdrawal in the tail immersion test was significantly increased (p = 0.0001) while writhing induced by acetic acid was significantly reduced (p < 0.0001) on treatment with CPE (30-300 mg/kg). The extract also significantly inhibited both phase 1 and phase 2 nociceptive states induced by formalin comparable to morphine (p < 0.0001). Furthermore, the extract significantly attenuated hyper-nociception induced by TNF-α (p < 0.0001), interleukin 1ß (p = 0.0102), bradykinin (p < 0.0001), and prostaglandin E2 (p < 0.0001). Additionally, glutamate-induced paw licking was reduced significantly (p < 0.05). The antinociceptive effects exhibited by CPE (100 mg/kg) in the formalin test was reversed by systemic administration of naloxone (2 mg/kg) and theophylline (5 mg/kg) but not glibenclamide (8 mg/kg), granisetron (2 mg/kg), atropine (3 mg/kg), yohimbine (3 mg/kg, p.o.) nor nifedipine (10 mg/kg). CONCLUSION: Overall, the hydroethanolic leaf extract of Calotropis procera possesses analgesic properties that is mediated possibly through the glutaminergic, opioidergic, and adenosinergic pathways.


Assuntos
Analgésicos/farmacologia , Calotropis/química , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia , Adenosina/metabolismo , Analgésicos/administração & dosagem , Analgésicos/isolamento & purificação , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/isolamento & purificação , Analgésicos Opioides/farmacologia , Animais , Relação Dose-Resposta a Droga , Gana , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor/fisiopatologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Folhas de Planta
9.
J Ethnopharmacol ; 277: 114237, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34051335

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a global health problem with the greatest burden in sub-Saharan Africa (sSA). The resistance to available antimalarial agents necessitate for the development of new and safe drugs for which medicinal plants provides credible alternative sources for discovering new and cheap therapeutic agents. Calotropis procera is used in several folk or traditional medicines for the treatment of various diseases across different regions of the world. In Nigeria traditional medicine, C. procera latex is used either alone or in combination with other herbs to cure common diseases including malaria. In Malaka district (Indonesia), Calotropis gigantea (a member of Apocyanceae), is one of the most used herbs to treat malaria patient via the massage method. AIM OF THE STUDY: This study aimed to evaluate the anti-plasmodial activity of phosphate buffer extract of Calotropis procera latex in mice infected with Plasmodium berghei. MATERIALS AND METHODS: The plant's anti-plasmodial agent was extracted using 0.2 M-phosphate buffer (pH 7.0), followed by precipitation using acetone. 90 (ninety) mice were divided into three main groups of 30 (thirty) mice each, used for the curative, suppressive and prophylactic tests, respectively. The 30 (thirty) mice in each of the main groups were sub-divided into five groups of 6 (six) mice. The mice in the group 1, 2 and 3 (test groups) were made to receive graded doses of 25 mg/kg, 50 mg/kg and 75 mg/kg of the extract of C. procera latex intraperitoneally; group 4 (negative control group) received 0.2 ml of normal saline; while group 5 (positive control group) were administered with 5 mg/kg chloroquine. The phytochemical constituents of the plant and its intraperitoneal median lethal dose (LD50) were also undertaken. RESULTS: The freeze-dried acetone extract exhibited acute toxicity with median lethal dose (LD50) of 745 mg/kg body weight in mice. The highest percentage parasite suppression (61.85%), percentage parasite cure (50.26%), and percentage parasite prophylaxis (65.47%), were obtained for the groups treated with 75 mg/kg bodyweight/day of the extract. The least percentage parasite suppression (44.74%), percentage parasite cure (35.21%), and percentage parasite prophylaxis (45.21%), were obtained for the groups treated with 25 mg/kg body weight of the extract. Also, a dose-dependent percentage parasite suppression (53.03%), percentage parasite cure (39.70%), and percentage parasite prophylaxis (49.82%) were obtained for the groups treated with 50 mg/kg body weight. This is comparable to the groups treated with standard chloroquine. The extract also produced a significant elevation in body weight of the animals for suppressive and curative tests. However, there were observable significant decreases in body weight of the animals in the case of prophylactic test. CONCLUSION: This study showed that the phosphate buffer extract of C. procera latex possess anti-plasmodial activity. The results of this study can be used as a basis for further phytochemical investigations in the search for new and locally affordable antimalarial agents.


Assuntos
Calotropis/química , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Látex/isolamento & purificação , Látex/farmacologia , Dose Letal Mediana , Malária/parasitologia , Masculino , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia
10.
Bioorg Chem ; 109: 104740, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626453

RESUMO

Six new non-classical cardenolides (1-6), and seventeen known ones (7-23) were isolated from Calotropis gigantea. All cardenolides showed inhibitory effect on hypoxia inducible factor-1 (HIF-1) transcriptional activity with IC50 of 8.85 nM-16.69 µM except 5 and 7. The novel 19-dihydrocalotoxin (1) exhibited a comparable HIF-1 inhibitory activity (IC50 of 139.57 nM) to digoxin (IC50 of 145.77 nM), a well-studied HIF-1 inhibitor, and 11, 12, 14, 16 and 19 presented 1.4-15.4 folds stronger HIF-1 inhibition than digoxin. 1 and 11 showed a dose-dependent inhibition on HIF-1α protein, which led to their HIF-1 suppressing effects. Compared with LO2 and H9c2 normal cell lines, both 1 and 11 showed selective cytotoxicity against various cancer cell lines including HCT116, HeLa, HepG2, A549, MCF-7, A2780 and MDA-MB-231. Moreover, a comprehensive structure-activity relationship was concluded for these non-classical cardenolides as HIF-1 inhibitors, which may shed some light on the rational design and development of cardenolide-based anticancer drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Calotropis/química , Cardenolídeos/farmacologia , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Cardenolídeos/química , Cardenolídeos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
11.
Int J Biol Macromol ; 171: 37-43, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33418044

RESUMO

BACKGROUND: Anti-inflammatory properties have been attributed to latex proteins of the medicinal plant Calotropis procera. PURPOSE: A mixture of cysteine peptidases (LPp2) from C. procera latex was investigated for control of inflammatory mediators and inflammation in a mouse model of Salmonella infection. METHODS: LPp2 peptidase activity was confirmed by the BANA assay. Cytotoxicity assays were conducted with immortalized macrophages. Peritoneal macrophages (pMØ) from Swiss mice were stimulated with lipopolysaccharide (LPS) in 96-well plates and then cultured with nontoxic concentrations of LPp2. Swiss mice intravenously received LPp2 (10 mg/kg) and then were challenged intraperitoneally with virulent Salmonella enterica Ser. Typhimurium. RESULTS: LPp2 was not toxic at dosages lower than 62.2 µg/mL. LPp2 treatments of pMØ stimulated with LPS impaired mRNA expression of pro-inflammatory cytokines IL-1ß, TNF-α, IL-6 and IL-10. LPp2 increased the intracellular bacterial killing in infected pMØ. Mice given LPp2 had a lower number of leukocytes in the peritoneal cavity in comparison to control groups 6 h after infection. The bacterial burden and histological damage were widespread in target organs of mice receiving LPp2. CONCLUSION: We conclude that LPp2 contains peptidases with strong anti-inflammatory properties, which may render mice more susceptible to early disseminated infection caused by Salmonella.


Assuntos
Anti-Inflamatórios/farmacologia , Calotropis/química , Peptídeo Hidrolases/farmacologia , Proteínas de Plantas/farmacologia , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Regulação da Expressão Gênica , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Látex/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos , Peptídeo Hidrolases/isolamento & purificação , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Proteínas de Plantas/isolamento & purificação , Plantas Medicinais , Cultura Primária de Células , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
12.
Molecules ; 25(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182287

RESUMO

Plants are considered green resources for thousands of bioactive compounds. Essential oils (EOs) are an important class of secondary compounds with various biological activities, including allelopathic and antimicrobial activities. Herein, the present study aimed to compare the chemical profiles of the EOs of the widely distributed medicinal plant Calotropis procera collected from Saudi Arabia and Egypt. In addition, this study also aimed to assess their allelopathic and antimicrobial activities. The EOs from Egyptian and Saudi ecospecies were extracted by hydrodistillation and analyzed via GC-MS. The correlation between the analyzed EOs and those published from Egypt, India, and Nigeria was assessed by principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). The allelopathic activity of the extracted EOs was tested against two weeds (Bidens pilosa and Dactyloctenium aegyptium). Moreover, the EOs were tested for antimicrobial activity against seven bacterial and two fungal strains. Ninety compounds were identified from both ecospecies, where 76 compounds were recorded in Saudi ecospecies and 33 in the Egyptian one. Terpenes were recorded as the main components along with hydrocarbons, aromatics, and carotenoids. The sesquiterpenes (54.07%) were the most abundant component of EO of the Saudi sample, while the diterpenes (44.82%) represented the mains of the Egyptian one. Hinesol (13.50%), trans-chrysanthenyl acetate (12.33%), 1,4-trans-1,7-cis-acorenone (7.62%), phytol (8.73%), and myristicin (6.13%) were found as the major constituents of EO of the Saudi sample, while phytol (38.02%), n-docosane (6.86%), linoleic acid (6.36%), n-pentacosane (6.31%), and bicyclogermacrene (4.37%) represented the main compounds of the Egyptian one. It was evident that the EOs of both ecospecies had potent phytotoxic activity against the two tested weeds, while the EO of the Egyptian ecospecies was more effective, particularly on the weed D. aegyptium. Moreover, the EOs showed substantial antibacterial and antifungal activities. The present study revealed that the EOs of Egyptian and Saudi ecospecies were different in quality and quantity, which could be attributed to the variant environmental and climatic conditions. The EOs of both ecospecies showed significant allelopathic and antimicrobial activity; therefore, these EOs could be considered as potential green eco-friendly resources for weed and microbe control, considering that this plant is widely grown in arid habitats.


Assuntos
Alelopatia , Anti-Infecciosos/química , Bidens/efeitos dos fármacos , Calotropis/química , Óleos Voláteis/química , Poaceae/efeitos dos fármacos , Antioxidantes/química , Análise por Conglomerados , Ecossistema , Egito , Cromatografia Gasosa-Espectrometria de Massas , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Plantas Daninhas/efeitos dos fármacos , Análise de Componente Principal , Arábia Saudita , Terpenos/química , Compostos Orgânicos Voláteis/química
13.
J Nat Prod ; 83(7): 2269-2280, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32649211

RESUMO

Triple-negative breast cancers (TNBC) are aggressive and heterogeneous cancers that lack targeted therapies. We implemented a screening program to identify new leads for subgroups of TNBC using diverse cell lines with different molecular drivers. Through this program, we identified an extract from Calotropis gigantea that caused selective cytotoxicity in BT-549 cells as compared to four other TNBC cell lines. Bioassay-guided fractionation of the BT-549 selective extract yielded nine cardenolides responsible for the selective activity. These included eight known cardenolides and a new cardenolide glycoside. Structure-activity relationships among the cardenolides demonstrated a correlation between their relative potencies toward BT-549 cells and Na+/K+ ATPase inhibition. Calotropin, the compound with the highest degree of selectivity for BT-549 cells, increased intracellular Ca2+ in sensitive cells to a greater extent than in the resistant MDA-MB-231 cells. Further studies identified a second TNBC cell line, Hs578T, that is also highly sensitive to the cardenolides, and mechanistic studies were conducted to identify commonalities among the sensitive cell lines. Experiments showed that both cardenolide-sensitive cell lines expressed higher mRNA levels of the Na+/Ca2+ exchanger NCX1 than resistant TNBC cells. This suggests that NCX1 could be a biomarker to identify TNBC patients that might benefit from the clinical administration of a cardiac glycoside for anticancer indications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Calotropis/química , Cardenolídeos/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/metabolismo , Cálcio/metabolismo , Cardenolídeos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Estrutura Molecular , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo
14.
Inflamm Res ; 69(9): 951-966, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488316

RESUMO

OBJECTIVE AND DESIGN: Oral mucositis (OM) is an intense inflammatory reaction progressing to tissue damage and ulceration. The medicinal uses of Calotropis procera are supported by anti-inflammatory capacity. PII-IAA, a highly homogenous cocktail of laticifer proteins (LP) prepared from the latex of C. procera, with recognized pharmacological properties was tested to treat OM. MATERIALS AND SUBJECTS: Male Golden Sirius hamsters were used in all treatments. TREATMENT: The latex protein samples were injected i.p. (5 mg/Kg) 24 h before mucositis induction (mechanical trauma) and 24 h later. METHODS: Histology, cytokine measurements [ELISA], and macroscopic evaluation [scores] were performed. RESULTS: PII-IAA eliminated OM, accompanied by total disappearance of myeloperoxidase activity and release of IL-1b, as well as reduced TNF-a. Oxidative stress was relieved by PII-IAA treatment, as revealed by MDA and GSH measurements. PII-IAA also reduced the expression of adhesion molecules (ICAM-1) and Iba-1, two important markers of inflammation, indicating modulatory effects. Histological analyses of the cheek epithelium revealed greater deposition of type I collagen fibers in animals given PII-IAA compared with the control group. This performance was only reached when LPPII was treated with iodoacetamide (IAA), an irreversible inhibitor of proteolytic activity of cysteine proteases. The endogenous proteolytic activity of LPPII induced adverse effects in animals. Candidate proteins involved in the phytomodulatory activity are proposed. CONCLUSIONS: Therapy was successful in treating OM with the laticifer protein fraction, containing peptidases and osmotin, from Calotropis procera. The effective candidate from the latex proteins for therapeutic use is PII-IAA.


Assuntos
Anti-Inflamatórios/uso terapêutico , Calotropis/química , Látex/química , Proteínas de Plantas/uso terapêutico , Estomatite/tratamento farmacológico , Animais , Fluoruracila/toxicidade , Masculino , Mesocricetus , Estomatite/patologia
15.
J Nat Prod ; 83(2): 385-391, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31967821

RESUMO

Phytochemical analysis of the roots of Calotropis gigantea led to the isolation of six new cardenolide glycosides, calosides A-F (1-6), and five known cardenolides (7-11). The structures of 1-6 were elucidated based on NMR and ECD spectroscopic data interpretation. Caloside D (4) is the first naturally occurring example of a cardenolide containing a C-8/C-19 oxygen bridge. In turn, calosides E (5) and F (6) represent the first naturally occurring 3-epi-cannogenol diglycosides having potent cytotoxicity against the PANC-1 cell line (IC50, 0.081 and 0.070 µM, respectively) and HeLa (IC50, both 0.17 µM) cells, under normoglycemic conditions.


Assuntos
Antineoplásicos Fitogênicos/química , Calotropis/química , Cardenolídeos/química , Glicosídeos/análise , Antineoplásicos Fitogênicos/farmacologia , Cardenolídeos/isolamento & purificação , Linhagem Celular Tumoral , Glicosídeos/química , Células HeLa , Humanos , Estrutura Molecular , Raízes de Plantas/química
16.
Rev. bras. parasitol. vet ; 29(2): e001320, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1138069

RESUMO

Abstract This study aimed to evaluate the anthelmintic and ultrastructural effects of Calotropis procera latex on Haemonchus contortus. C. procera latex was twice centrifuged at 10,000×g and dialyzed to obtain a fraction rich in proteins, named LP (latex protein), and at 3,000 rpm to obtain a fraction rich in secondary metabolites, named LNP (latex non-protein). Specimens of H. contortus exposed to LNP, LP and PBS in the Adult Worm Motility Test (AWMT) were submitted to scanning (SEM) and transmission (TEM) electron microscopy to verify changes in their ultrastructure. Phytochemical tests in the LNP indicated the presence of phenols, steroids, alkaloids and cardenolides. High-Performance Liquid Chromatography (HPLC) characterized the presence of the compounds gallic acid and quercetin in the LNP. The protein content in the LP was 43.1 ± 1.1 mg/mL and 7.7 ± 0.3 mg/mL in LNP. In AWMT, LNP and LP inhibited the motility of 100% of the nematodes, with LNP being more effective than LP and ivermectin more effective than both (p <0.05). Cuticle changes were observed by SEM and TEM in nematodes treated with LP and LNP. Calotropis procera latex has anthelmintic effects against H. contortus, causing damage to its cuticle and other alterations in its ultrastructure.


Resumo Este estudo objetivou avaliar os efeitos anti-helmínticos e ultraestruturais do látex de Calotropis procera sobre Haemonchus contortus. Látex de C. procera foi centrifugado duas vezes à a 10.000xg e dialisado para obter uma fração rica em proteínas, denominada proteínas do látex (LP). E centrifugado e centrifugado a 3.000 rpm, para obter uma fração rica em metabólitos secundários, denominada LNP (látex não proteico). Espécimes de H. contortus expostos à LNP, LP e PBS no Teste de Motilidade dos Nematoides Adultos (TMNA) foram submetidos a microscopia eletrônica de varredura (MEV) e de transmissão (MET), para verificar alterações em sua ultraestrutura. Testes fitoquímicos em LNP indicaram a presença de fenóis, esteroides, alcaloides e cardenolídeos. A presença dos compostos ácido gálico e quercetina em LNP foi caracterizada por Cromatografia Líquida de Alta Eficiência (CLAE). O conteúdo de proteínas em LP foi de 43,1 ± 1,1 mg/mL e de 7,7 ± 0,3 mg/mL em LNP. No TMNA, LNP e LP inibiram a motilidade de 100% dos nematoides, sendo LNP mais eficaz que LP, e a ivermectina mais eficaz que ambos (p <0,05). Alterações na cutícula de nematoides tratados com LP e LNP foram observadas por MEV e MET. O látex de C. procera apresenta efeito anti-helmíntico sobre H. contortus, causando danos à sua cutícula e outras alterações em sua ultraestrutura.


Assuntos
Animais , Calotropis/química , Haemonchus/efeitos dos fármacos , Haemonchus/ultraestrutura , Látex/química , Anti-Helmínticos/farmacologia , Fenóis/química , Fitosteróis/química , Saponinas/química , Doenças dos Ovinos/parasitologia , Taninos/química , Triterpenos/química , Técnicas In Vitro , Brasil , Resistência a Medicamentos , Ovinos/parasitologia , Microscopia Eletrônica de Varredura , Cardenolídeos/química , Cromatografia Líquida de Alta Pressão , Alcaloides/química , Hemoncose/veterinária , Haemonchus/isolamento & purificação , Haemonchus/fisiologia , Látex/isolamento & purificação , Antocianinas/química
17.
Mem. Inst. Oswaldo Cruz ; 115: e200458, 2020. graf
Artigo em Inglês | LILACS, SES-SP | ID: biblio-1135229

RESUMO

BACKGROUND Calotropis procera latex protein fraction (LP) was previously shown to protect animals from septic shock. Further investigations showed that LP modulate nitric oxide and cytokines levels. OBJECTIVES To evaluate whether the protective effects of LP, against lethal bacterial infection, is observed in its subfractions (LPPII and LPPIII). METHODS Subfractions (5 and 10 mg/kg) were tested by i.p. administration, 24 h before challenging with lethal injection (i.p.) of Salmonella Typhimurium. LPPIII (5 mg/kg) which showed higher survival rate was assayed to evaluate bacterial clearance, histopathology, leukocyte recruitment, plasma coagulation time, cytokines and NO levels. FINDINGS LPPIII protected 70% of animals of death. The animals given LPPIII exhibited reduced bacterial load in blood and peritoneal fluid after 24 h compared to the control. LPPIII promoted macrophage infiltration in spleen and liver. LPPIII restored the coagulation time of infected animals, increased IL-10 and reduced NO in blood. MAIN CONCLUSIONS LPPIII recruited macrophages to the target organs of bacterial infection. This addressed inflammatory stimulus seems to reduce bacterial colonisation in spleen and liver, down regulate bacterial spread and contribute to avoid septic shock.


Assuntos
Animais , Proteínas de Plantas/uso terapêutico , Infecções por Salmonella/tratamento farmacológico , Extratos Vegetais/farmacologia , Calotropis/química , Homeostase/efeitos dos fármacos , Inflamação/tratamento farmacológico , Látex/química , Antibacterianos/uso terapêutico , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Regulação para Baixo , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia
18.
BMC Complement Altern Med ; 19(1): 134, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215445

RESUMO

BACKGROUND: Calotropis gigantea (CG) is a tall and waxy flower that is used as a traditional remedy for fever, indigestion, rheumatism, leprosy, and leukoderma. However, the precise mechanisms of its anticancer effects have not yet been examined in human non-small cell lung cancer (NSCLC) cells. In this study, we investigated whether CG extract exerted an apoptotic effect in A549 and NCI-H1299 NSCLC cells. METHODS: The ethanol extract of CG was prepared, and its apoptotic effects on A549 and NCI-H1299 NSCLC cells were assessed by using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining, cell cycle analysis, real-time polymerase chain reaction (RT-PCR), western blotting, JC-1 staining, and ROS detection assay. RESULTS: The CG extract induced apoptosis through the stimulation of intrinsic and extrinsic signaling pathways in A549 and NCI-H1299 lung cancer cells. Cell cycle arrest was induced by the CG extract in both cell lines. Reactive oxygen species (ROS), which can induce cell death, were also generated in the CG-treated A549 and NCI-H1299 cells. CONCLUSIONS: These data confirmed that CG caused apoptosis through the activation of extrinsic and intrinsic pathways, cell cycle arrest, and ROS generation in A549 and NCI-H1299 lung cancer cells. Thus, CG can be suggested as a potential agent for lung cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Calotropis/química , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia
19.
J Cell Biochem ; 120(8): 12843-12858, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861186

RESUMO

Hemostasis is a tightly regulated process which maintains a fluid state of blood within the vasculature and provides thrombotic response upon tissue injury. Various scientific studies have implicated the role of plant latex proteases in hemostasis using in vitro experiments. However, in vivo models substantiate their role in hemostasis. Therefore, in the present study, the effect of plant latex thrombin-like proteases (PTLPs) on hemostasis was investigated systematically using mice tail bleeding as a preclinical model. In this direction, latex protease fractions (LPFs), which showed potent thrombin-like activity, were selected as they act directly on fibrinogen to form clot and quickly stop bleeding. Thrombin-like activity was exhibited mainly by cysteine proteases. Calotropis gigantea, Carica papaya, Jatropha curcas, Oxystelma esculentum, Tabernaemontana divaricata, and Vallaris solanacea LPFs and papain from C. papaya latex significantly reduced bleeding on a topical application in normal and aspirin administered mice. In addition, PTLPs accelerated the clotting of factor VIII deficient plasma, while, papain brought back the clotting time to normal levels acting like a bypassing agent. Further, papain failed to show activity in the presence of specific cysteine protease inhibitor iodoacetic acid; confirming protease role in all the activities exhibited. At the tested dose, PTLPs except C. gigantea did not show toxicity. Further, structural and sequence comparison between PTLPs and human thrombin revealed structural and sequence dissimilarity indicating their unique nature. The findings of the present study may open up a new avenue for considering PTLPs including papain in the treatment of bleeding wounds.


Assuntos
Aspirina/efeitos adversos , Cisteína Endopeptidases/administração & dosagem , Fator VIII/metabolismo , Hemorragia/tratamento farmacológico , Látex/química , Animais , Asclepias/química , Calotropis/química , Carica , Cisteína Endopeptidases/farmacologia , Modelos Animais de Doenças , Hemorragia/induzido quimicamente , Hemorragia/metabolismo , Homeostase , Humanos , Jatropha/química , Camundongos , Papaína/administração & dosagem , Papaína/farmacologia , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/farmacologia , Tabernaemontana/química
20.
Am J Chin Med ; 46(8): 1861-1877, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30518234

RESUMO

Calotropis gigantea (L.) R. Br (Apocynaceae) (commonly known as milkweed or crown flower) is a large shrub native to temperate regions of Asia, including China, Bangladesh and India and has a long history of use in traditional medicines. In this study, we investigated the neuromodulatory effects of the ethanol extracts of C. gigantea leaves (CGE) during synaptogenesis in the late stage of neuronal development and during early stage neuritogenesis in cultured rat hippocampal neurons. Maximum neuritogenic activity was achieved at a CGE concentration of 7.5 µ g/ml. At this concentration, CGE facilitated the early development of cytoarchitecture, as evidenced by increases in morphometric parameters, such as, the numbers, lengths, and number of branches of initial neurites, axon and dendrites. During the synaptogenic stage (DIV 14), immunocytochemistry (ICC) showed that CGE upregulated synaptic vesicle 2 (SV2, a marker of axon terminals) and postsynaptic density-95 (PSD-95, a postsynaptic marker) and their colocalization. CGE upregulated nerve growth factor (NGF) and activated extracellular signal-regulated kinase 1/2 (Erk1/2), which is blocked by a TrkA-specific inhibitor suggesting the neuritogenic and synaptogenic potential of CGE was due to the activation of NGF-TrkA-Erk1/2 signaling. Moreover, UPLC of CGE did not detect stigmasterol, an active component of C. gigantea. However, the chloroform-methanol and ethyl acetate subfractions of CGE exhibited initial neuritogenic activity, suggesting that multiple active components were responsible for the neurotrophic-mimetic properties of CGE. Our data prove the neuromodulatory ability of CGE and provide a means of identifying new active phytochemicals with potential nootropic, preventative or therapeutic effects on the human brain.


Assuntos
Calotropis/química , Hipocampo/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Fator de Crescimento Neural/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Extratos Vegetais/farmacologia , Receptor trkA/metabolismo , Sinapses/fisiologia , Regulação para Cima/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA