Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445681

RESUMO

Parthenogenetic embryos have been widely studied as an effective tool related to paternal and maternal imprinting genes and reproductive problems for a long time. In this study, we established a parthenogenetic epiblast-like stem cell line through culturing parthenogenetic diploid blastocysts in a chemically defined medium containing activin A and bFGF named paAFSCs. The paAFSCs expressed pluripotent marker genes and germ-layer-related genes, as well as being alkaline-phosphatase-positive, which is similar to epiblast stem cells (EpiSCs). We previously showed that advanced embryonic stem cells (ASCs) represent hypermethylated naive pluripotent embryonic stem cells (ESCs). Here, we converted paAFSCs to ASCs by replacing bFGF with bone morphogenetic protein 4 (BMP4), CHIR99021, and leukemia inhibitory factor (LIF) in a culture medium, and we obtained parthenogenetic advanced stem cells (paASCs). The paASCs showed similar morphology with ESCs and also displayed a stronger developmental potential than paAFSCs in vivo by producing chimaeras. Our study demonstrates that maternal genes could support parthenogenetic EpiSCs derived from blastocysts and also have the potential to convert primed state paAFSCs to naive state paASCs.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Partenogênese/fisiologia , Ativinas/metabolismo , Animais , Blastocisto/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Técnicas de Cultura Embrionária/métodos , Feminino , Fatores de Crescimento de Fibroblastos/farmacologia , Camadas Germinativas/metabolismo , Camadas Germinativas/fisiologia , Fator Inibidor de Leucemia/farmacologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos ICR , Células-Tronco Embrionárias Murinas/citologia , Partenogênese/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
2.
Nat Genet ; 52(8): 819-827, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514123

RESUMO

Mammalian cells stably maintain high levels of DNA methylation despite expressing both positive (DNMT3A/B) and negative (TET1-3) regulators. Here, we analyzed the independent and combined effects of these regulators on the DNA methylation landscape using a panel of knockout human embryonic stem cell (ESC) lines. The greatest impact on global methylation levels was observed in DNMT3-deficient cells, including reproducible focal demethylation at thousands of normally methylated loci. Demethylation depends on TET expression and occurs only when both DNMT3s are absent. Dynamic loci are enriched for hydroxymethylcytosine and overlap with subsets of putative somatic enhancers that are methylated in ESCs and can be activated upon differentiation. We observe similar dynamics in mouse ESCs that were less frequent in epiblast stem cells (EpiSCs) and scarce in somatic tissues, suggesting a conserved pluripotency-linked mechanism. Taken together, our data reveal tightly regulated competition between DNMT3s and TETs at thousands of somatic regulatory sequences within pluripotent cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Oxigenases de Função Mista/genética , Células-Tronco Pluripotentes/fisiologia , Proteínas Proto-Oncogênicas/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , DNA Metiltransferase 3A , Células-Tronco Embrionárias/fisiologia , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camadas Germinativas/fisiologia , Humanos , Camundongos , Camundongos Knockout
3.
Development ; 146(24)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31740534

RESUMO

Embryonic stem cells (ESCs) exist in at least two states that transcriptionally resemble different stages of embryonic development. Naïve ESCs resemble peri-implantation stages and primed ESCs the pre-gastrulation epiblast. In mouse, primed ESCs give rise to definitive endoderm in response to the pathways downstream of Nodal and Wnt signalling. However, when these pathways are activated in naïve ESCs, they differentiate to a cell type resembling early primitive endoderm (PrE), the blastocyst-stage progenitor of the extra-embryonic endoderm. Here, we apply this context dependency to human ESCs, showing that activation of Nodal and Wnt signalling drives the differentiation of naïve pluripotent cells toward extra-embryonic PrE, or hypoblast, and these can be expanded as an in vitro model for naïve extra-embryonic endoderm (nEnd). Consistent with observations made in mouse, human PrE differentiation is dependent on FGF signalling in vitro, and we show that, by inhibiting FGF receptor signalling, we can simplify naïve pluripotent culture conditions, such that the inhibitor requirements closer resemble those used in mouse. The expandable nEnd cultures reported here represent stable extra-embryonic endoderm, or human hypoblast, cell lines.This article has an associated 'The people behind the papers' interview.


Assuntos
Endoderma/embriologia , Fator Inibidor de Leucemia/fisiologia , Ligantes da Sinalização Nodal/fisiologia , Células-Tronco Pluripotentes/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Endoderma/citologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/fisiologia , Humanos , Fator Inibidor de Leucemia/metabolismo , Camundongos , Ligantes da Sinalização Nodal/metabolismo , Transdução de Sinais/fisiologia
4.
Stem Cell Reports ; 12(2): 305-318, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30713040

RESUMO

Although pluripotent stem cells can generate various types of differentiated cells, it is unclear why lineage-committed stem/progenitor cells derived from pluripotent stem cells are decelerated and why the differentiation-resistant propensity of embryonic stem cell (ESC)/induced pluripotent stem cell (iPSC)-derived cells is predominant compared with the in vivo equivalents derived from embryonic/adult tissues. In this study, we demonstrated that iPSCs reprogrammed and maintained with three chemical inhibitors of the fibroblast growth factor 4-mitogen-activated protein kinase cascade and GSK3ß (3i) could be differentiated into all three germ layers more efficiently than the iPSCs reprogrammed without the 3i chemicals, even though they were maintained with 3i chemicals once they were reprogrammed. Although the iPSCs reprogrammed with 3i had increased numbers of Zscan4-positive cells, the Zscan4-positive cells among iPSCs that were reprogrammed without 3i did not have an accelerated differentiation ability. These observations suggest that 3i exposure during the reprogramming period determines the accelerated differentiation/maturation potentials of iPSCs that are stably maintained at the distinct state.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Fator 4 de Crescimento de Fibroblastos/metabolismo , Camadas Germinativas/metabolismo , Camadas Germinativas/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos
5.
PLoS One ; 13(12): e0208110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540809

RESUMO

The propensity for differentiation varies substantially across human pluripotent stem cell (hPSC) lines, greatly restricting the use of hPSCs for cell replacement therapy or disease modeling. Here, we investigate the underlying mechanisms and demonstrate that activation of the retinoblastoma (Rb) pathway in a transient manner is important for differentiation. In prior work, we demonstrated that pre-treating hPSCs with dimethylsulfoxide (DMSO) before directed differentiation enhanced differentiation potential across all three germ layers. Here, we show that exposure to DMSO improves the efficiency of hPSC differentiation through Rb and by repressing downstream E2F-target genes. While transient inactivation of the Rb family members (including Rb, p107, and p130) suppresses DMSO's capacity to enhance differentiation across all germ layers, transient expression of a constitutively active (non-phosphorylatable) form of Rb increases the differentiation efficiency similar to DMSO. Inhibition of downstream targets of Rb, such as E2F signaling, also promotes differentiation of hPSCs. More generally, we demonstrate that the duration of Rb activation plays an important role in regulating differentiation capacity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aminopiridinas/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/genética , Linhagem Celular , Fatores de Transcrição E2F/antagonistas & inibidores , Fatores de Transcrição E2F/metabolismo , Técnicas de Silenciamento de Genes , Camadas Germinativas/citologia , Camadas Germinativas/efeitos dos fármacos , Camadas Germinativas/fisiologia , Humanos , Hidroxiquinolinas/farmacologia , Células-Tronco Pluripotentes/fisiologia , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Proteína p130 Retinoblastoma-Like/genética , Proteína p130 Retinoblastoma-Like/metabolismo , Transdução de Sinais/genética , Fatores de Tempo
6.
Cell Death Dis ; 9(11): 1090, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356076

RESUMO

Somatic cell nuclear transfer (SCNT) or the forced expression of transcription factors can be used to generate autologous pluripotent stem cells (PSCs). Although transcriptomic and epigenomic comparisons of isogenic human NT-embryonic stem cells (NT-ESCs) and induced PSCs (iPSCs) in the undifferentiated state have been reported, their functional similarities and differentiation potentials have not been fully elucidated. Our study showed that NT-ESCs and iPSCs derived from the same donors generally displayed similar in vitro commitment capacity toward three germ layer lineages as well as proliferative activity and clonogenic capacity. However, the maturation capacity of NT-ESC-derived hematopoietic progenitors was significantly greater than the corresponding capacity of isogenic iPSC-derived progenitors. Additionally, donor-dependent variations in hematopoietic specification and commitment capacity were observed. Transcriptome and methylome analyses in undifferentiated NT-ESCs and iPSCs revealed a set of genes that may influence variations in hematopoietic commitment and maturation between PSC lines derived using different reprogramming methods. Here, we suggest that genetically identical iPSCs and NT-ESCs could be functionally unequal due to differential transcription and methylation levels acquired during reprogramming. Our proof-of-concept study indicates that reprogramming mechanisms and genetic background could contribute to diverse functionalities between PSCs.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Pluripotentes/fisiologia , Células Epiteliais Alveolares/fisiologia , Linhagem Celular , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Metilação de DNA/fisiologia , Camadas Germinativas/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Técnicas de Transferência Nuclear , Transcrição Gênica/fisiologia , Transcriptoma
7.
PLoS One ; 13(5): e0196817, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734353

RESUMO

Recent studies have suggested a role for the Cyclin Dependent Kinase-2 Associated Protein 1 (CDK2AP1) in stem cell differentiation and self-renewal. In studies with mouse embryonic stem cells (mESCs) derived from generated mice embryos with targeted deletion of the Cdk2ap1 gene, CDK2AP1 was shown to be required for epigenetic silencing of Oct4 during differentiation, with deletion resulting in persistent self-renewal and reduced differentiation potential. Differentiation capacity was restored in these cells following the introduction of a non-phosphorylatible form of the retinoblastoma protein (pRb) or exogenous Cdk2ap1. In this study, we investigated the role of CDK2AP1 in human embryonic stem cells (hESCs). Using a shRNA to reduce its expression in hESCs, we found that CDK2AP1 knockdown resulted in a significant reduction in the expression of the pluripotency genes, OCT4 and NANOG. We also found that CDK2AP1 knockdown increased the number of embryoid bodies (EBs) formed when differentiation was induced. In addition, the generated EBs had significantly higher expression of markers of all three germ layers, indicating that CDK2AP1 knockdown enhanced differentiation. CDK2AP1 knockdown also resulted in reduced proliferation and reduced the percentage of cells in the S phase and increased cells in the G2/M phase of the cell cycle. Further investigation revealed that a higher level of p53 protein was present in the CDK2AP1 knockdown hESCs. In hESCs in which p53 and CDK2AP1 were simultaneously downregulated, OCT4 and NANOG expression was not affected and percentage of cells in the S phase of the cell cycle was not reduced. Taken together, our results indicate that the knockdown of CDK2AP1 in hESCs results in increased p53 and enhances differentiation and favors it over a self-renewal fate.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Proteínas Supressoras de Tumor/genética , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Corpos Embrioides/fisiologia , Técnicas de Silenciamento de Genes/métodos , Camadas Germinativas/fisiologia , Humanos , Camundongos , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , RNA Interferente Pequeno/genética , Proteína do Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética
8.
Cell Biol Int ; 42(4): 488-494, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29271529

RESUMO

Due to high infertility ratio nowadays, it is essential to explore efficient ways of enhancing mammalian reproductivity, in particular female reproductivity. Using female Oct4-GFP embryonic stem cells, we mimic the in vivo development procedure to induce ES cells into epiblast cell-like cells (EpiLCs) and then primordial germ cell-like cells (PGCLCs). GFP positive PGCLCs that showed typical PGC markers and epigenetic modification were efficiently obtained. Further transplantation of the GFP positive PGCLC and native ovary cell mixture into ovary of infertile mice revealed that both MVH and GFP positive cells could be developed in ovary, but no later developmental stage germ cells were observed. This study suggested that Oct4-GFP ES cells may be only suitable for tracing early germ cell development.


Assuntos
Células-Tronco Embrionárias/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Feminino , Células Germinativas , Camadas Germinativas/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Circ Res ; 120(1): 166-178, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28057792

RESUMO

Evidence has accumulated that adult hematopoietic tissues and other organs contain a population of dormant stem cells (SCs) that are more primitive than other, already restricted, monopotent tissue-committed SCs (TCSCs). These observations raise several questions, such as the developmental origin of these cells, their true pluripotent or multipotent nature, which surface markers they express, how they can be efficiently isolated from adult tissues, and what role they play in the adult organism. The phenotype of these cells and expression of some genes characteristic of embryonic SCs, epiblast SCs, and primordial germ cells suggests their early-embryonic deposition in developing tissues as precursors of adult SCs. In this review, we will critically discuss all these questions and the concept that small dormant SCs related to migratory primordial germ cells, described as very small embryonic-like SCs, are deposited during embryogenesis in bone marrow and other organs as a backup population for adult tissue-committed SCs and are involved in several processes related to tissue or organ rejuvenation, aging, and cancerogenesis. The most recent results on successful ex vivo expansion of human very small embryonic-like SC in chemically defined media free from feeder-layer cells open up new and exciting possibilities for their application in regenerative medicine.


Assuntos
Células-Tronco Adultas/fisiologia , Células-Tronco Embrionárias/fisiologia , Miócitos Cardíacos/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/transplante , Camadas Germinativas/fisiologia , Camadas Germinativas/transplante , Humanos , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/fisiologia , Células-Tronco Pluripotentes/transplante
10.
EMBO Rep ; 16(7): 791-802, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26077710

RESUMO

Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3ß and MEK (so-called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we demonstrate that DAZL, an RNA-binding protein known to play a key role in germ-cell development, marks a subpopulation of ESCs that is actively transitioning toward naïve pluripotency. Moreover, DAZL plays an essential role in the active reprogramming of cytosine methylation. We demonstrate that DAZL associates with mRNA of Tet1, a catalyst of 5-hydroxylation of methyl-cytosine, and enhances Tet1 mRNA translation. Overexpression of DAZL in heterogeneous ESC cultures results in elevated TET1 protein levels as well as increased global hydroxymethylation. Conversely, null mutation of Dazl severely stunts 2i-mediated TET1 induction and hydroxymethylation. Our results provide insight into the regulation of the acquisition of naïve pluripotency and demonstrate that DAZL enhances TET1-mediated cytosine hydroxymethylation in ESCs that are actively reprogramming to a pluripotent ground state.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/fisiologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Reprogramação Celular , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Camadas Germinativas/fisiologia , Camundongos , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Transcriptoma
11.
PLoS Biol ; 12(6): e1001890, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24960041

RESUMO

During early development, modulations in the expression of Nodal, a TGFß family member, determine the specification of embryonic and extra-embryonic cell identities. Nodal has been extensively studied in the mouse, but aspects of its early expression remain unaccounted for. We identified a conserved hotspot for the binding of pluripotency factors at the Nodal locus and called this sequence "highly bound element" (HBE). Luciferase-based assays, the analysis of fluorescent HBE reporter transgenes, and a conditional mutation of HBE allowed us to establish that HBE behaves as an enhancer, is activated ahead of other Nodal enhancers in the epiblast, and is essential to Nodal expression in embryonic stem cells (ESCs) and in the mouse embryo. We also showed that HBE enhancer activity is critically dependent on its interaction with the pluripotency factor Oct4 and on Activin/Nodal signaling. Use of an in vitro model of epiblast maturation, relying on the differentiation of ESCs into epiblast stem cells (EpiSCs), revealed that this process entails a shift in the regulation of Nodal expression from an HBE-driven phase to an ASE-driven phase, ASE being another autoregulatory Nodal enhancer. Deletion of HBE in ESCs or in EpiSCs allowed us to show that HBE, although not necessary for Nodal expression in EpiSCs, is required in differentiating ESCs to activate the differentiation-promoting ASE and therefore controls this regulatory shift. Our findings clarify how early Nodal expression is regulated and suggest how this regulation can promote the specification of extra-embryonic precusors without inducing premature differentiation of epiblast cells. More generally, they open new perspectives on how pluripotency factors achieve their function.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/fisiologia , Proteína Nodal/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Camadas Germinativas/citologia , Proteínas de Homeodomínio/metabolismo , Subunidades beta de Inibinas/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
13.
Aging (Albany NY) ; 3(5): 494-508, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21566262

RESUMO

Aging-associated diseases are often caused by progressive loss or dysfunction of cells that ultimately affect the overall function of tissues and organs. Successful treatment of these diseases could benefit from cell-based therapy that would regenerate lost cells or otherwise restore tissue function. Human embryonic stem cells (hESCs) promise to be an important therapeutic candidate in treating aging-associated diseases due to their unique capacity for self-renewal and pluripotency. To date, there are numerous hESC lines that have been developed and characterized. We will discuss how hESC lines are derived, their molecular and cellular properties, and how their ability to differentiate into all three embryonic germ layers is determined. We will also outline the methods currently employed to direct their differentiation into populations of tissue-specific, functional cells. Finally, we will highlight the general challenges that must be overcome and the strategies being developed to generate highly-purified hESC-derived cell populations that can safely be used for clinical applications.


Assuntos
Envelhecimento , Doença , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Transplante de Células-Tronco , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Camadas Germinativas/fisiologia , Humanos , Teratoma
14.
C R Biol ; 334(4): 300-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21513899

RESUMO

Cell therapy for tissue regeneration requires cells with high self-renewal potential and with the capacity to differentiate into multiple differentiated cell lineages, like embryonic stem cells (ESCs) and adult somatic cells induced to pluripotency (iPSCs) by genetic manipulation. Here we report that normal adult mammalian bone marrow contains cells, with the cell surface antigen CD34, that naturally express genes characteristic of ESCs and required to generate iPSCs. In addition, these CD34+ cells spontaneously express, without genetic manipulation, genes characteristic of the three embryonic germ layers: ectoderm, mesoderm and endoderm. In addition to the neural lineage genes we previously reported in these CD34+ cells, we found that they express genes of the mesodermal cardiac muscle lineage and of the endodermal pancreatic lineage as well as intestinal lineage genes. Thus, these normal cells in the adult spontaneously exhibit characteristics of embryonic-like stem cells.


Assuntos
Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camadas Germinativas/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Western Blotting , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem da Célula , Ectoderma/citologia , Endoderma/citologia , Humanos , Imuno-Histoquímica , Intestinos/citologia , Mesoderma/citologia , Camundongos , Miocárdio/citologia , Pâncreas/citologia , Pâncreas/embriologia , Células-Tronco Pluripotentes/fisiologia
15.
Mol Cells ; 29(6): 533-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20526817

RESUMO

Pluripotent very small embryonic/epiblast derived stem cells (VSELs) as we hypothesize are deposited at begin of gastrulation in developing tissues and play an important role as backup population of pluripotent stem cells (PSCs) for tissue committed stem cells (TCSCs). We envision that during steady state conditions these cells may be involved in tissue rejuvenation and in processes of regeneration/repair after organ injuries. Molecular analysis of adult bone marrow (BM)-derived purified VSELs revealed that they i) express pluripotent stem cells markers e.g., Oct4, Nanog, Klf-4, SSEA-1 ii) share several markers characteristic for epiblast as well as migratory primordial germ cells (PGCs), and iii) possess a unique pattern of genomic imprinting (e.g., erasure of differently methylated regions at Igf2-H19 and Rasgrf1 loci and hypermethylation at KCNQ1 and Igf2R loci). This supports that VSELs are related to epiblast-derived migrating PGC-like cells and, despite their pluripotent stem cell character, changes in the epigenetic signature of imprinted genes keep these cells quiescent in adult tissues and prevent them from teratoma formation. In contrast epigenetic changes/mutations that lead to activation of imprinted genes could potentially lead to tumor formation by these cells. Mounting evidence accumulates that perturbation of expression of imprinted genes is a common phenomenon observed in developing tumors.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Embrionárias/fisiologia , Camadas Germinativas/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Biomarcadores/metabolismo , Movimento Celular/fisiologia , Separação Celular , Metilação de DNA/genética , Impressão Genômica/genética , Camundongos , Regeneração
16.
Reprod Fertil Dev ; 22(4): 625-33, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20353722

RESUMO

The aim of the present study was to characterise bovine epiblast-derived outgrowth colonies (OCs) with respect to the embryonic origin of their cellular components. Epiblasts were isolated mechanically from bovine Day 12 embryos. Epiblasts were cultured on feeder layers of SNL cells (neomycin-resistant leukaemia inhibitory factor (LIF)-producing STO cells) in Dulbecco's modified Eagle's medium (DMEM)/F12 medium supplemented with 15% fetal calf serum, 5% KnockOut Serum Replacement, LIF, basic fibroblast growth factor, non-essential amino acids (NEAA) and nucleosides. Samples were fixed on Days 4, 6 and 8 of culture and processed for immunocytochemistry and transmission electron microscopy. Epiblasts formed OCs consisting of a central core of epiblast-like cells with a basal plate of flattened cells extending outwards from the core. The cells of the core showed nuclear octamer-binding transcription factor 4 (OCT4) staining, indicating an epiblast origin, and some also stained positive for cytoplasmic vimentin. Adjacent cells were linked by tight junctions towards the surface of the colony and rested on a basal lamina. The cells of the basal plate predominantly stained for alpha1-fetoprotein (AFP), indicative of a possible hypoblast origin. Only a few cells scattered within the basal plate exhibited cytokeratin 8 staining, indicating a trophectoderm nature. The intensity of OCT4 and vimentin staining within the core had decreased by Day 8 of culture. In conclusion, OCs derived from bovine Day 12 epiblasts display a central core of OCT4-stained cells of a potential epiblast origin surrounded by a basal plate of mainly AFP-stained cells of a potential hypoblast nature.


Assuntos
Bovinos/fisiologia , Embrião de Mamíferos/fisiologia , Camadas Germinativas/fisiologia , Animais , Bovinos/embriologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/fisiologia , Feminino , Camadas Germinativas/ultraestrutura , Imuno-Histoquímica/veterinária , Microscopia Eletrônica de Transmissão/veterinária , Fator 3 de Transcrição de Octâmero/fisiologia , alfa-Fetoproteínas/fisiologia
17.
J Reprod Dev ; 55(3): 283-92, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19305126

RESUMO

The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células-Tronco Embrionárias/fisiologia , Camadas Germinativas/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Hepatócitos/imunologia , Hepatócitos/fisiologia , Hepatócitos/transplante , Tolerância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Neurônios/imunologia , Neurônios/fisiologia , Neurônios/transplante , Partenogênese/fisiologia , Gravidez
18.
Cell Stem Cell ; 3(4): 391-401, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18940731

RESUMO

Embryonic stem cells (ESCs) are apparently homogeneous self-renewing cells, but we observed heterogeneous expression of Stella in ESCs, which is a marker of pluripotency and germ cells. Here we show that, whereas Stella-positive ESCs were like the inner cell mass (ICM), Stella-negative cells were like the epiblast cells. These states were interchangeable, which reflects the metastability and plasticity of ESCs. The established equilibrium was skewed reversibly in the absence of signals from feeder cells, which caused a marked shift toward an epiblast-like state, while trichostatin A, an inhibitor of histone deactelylase, restored Stella-positive population. The two populations also showed different histone modifications and striking functional differences, as judged by their potential for differentiation. The Stella-negative ESCs were more like the postimplantation epiblast-derived stem cells (EpiSCs), albeit the stella locus was repressed by DNA methylation in the latter, which signifies a robust epigenetic boundary between ESCs and EpiSCs.


Assuntos
Camadas Germinativas/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Repressoras/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Separação Celular , Células Cultivadas , Proteínas Cromossômicas não Histona , Metilação de DNA/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Inibidores de Histona Desacetilases , Homeostase , Ácidos Hidroxâmicos/farmacologia , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacos , Proteínas Repressoras/genética
19.
Cell Stem Cell ; 2(5): 461-71, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18462696

RESUMO

The Notch signaling pathway plays important roles in cell-fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell-fate choices in human embryonic stem cells (hESCs). Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hESC lines. We report here that activation of Notch signaling is required for undifferentiated hESCs to form the progeny of all three embryonic germ layers, but not trophoblast cells. In addition, transient Notch signaling pathway activation enhanced generation of hematopoietic cells from committed hESCs. These new insights into the roles of Notch in hESC-fate determination may help to efficiently direct hESC differentiation into therapeutically relevant cell types.


Assuntos
Diferenciação Celular , Linhagem da Célula/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Camadas Germinativas/citologia , Camadas Germinativas/fisiologia , Receptores Notch/fisiologia , Trofoblastos/citologia , Trofoblastos/fisiologia , Adulto , Células Cultivadas , Dipeptídeos/administração & dosagem , Feminino , Vetores Genéticos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lentivirus , Gravidez , Receptores Notch/antagonistas & inibidores , Transdução de Sinais , Transformação Genética
20.
Differentiation ; 75(5): 350-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17286597

RESUMO

In previous studies, progenitor embryoid body-derived (EBD) cells have been derived from human embryonic germ cells. These cells express lineage markers of three primary germ layers, although their potential to produce true fetal cells of various types has yet to be tested. To this end, we have transplanted EBD cells into the fetal sheep liver. We show that these cells respond appropriately to environmental cues and give rise to hepatocytes and well-structured bile ducts. These results suggest that EBD cells are relatively uncommitted early progenitors capable of effective incorporation and differentiation in vivo. The ability to generate functional liver cells makes EBD cells potentially useful for cell therapy.


Assuntos
Diferenciação Celular , Embrião de Mamíferos/citologia , Camadas Germinativas/citologia , Hepatócitos/citologia , Hepatócitos/fisiologia , Células-Tronco/fisiologia , Animais , Ductos Biliares/citologia , Linhagem da Célula , Células Cultivadas , Feminino , Feto/citologia , Camadas Germinativas/fisiologia , Humanos , Gravidez , Ovinos , Transplante de Células-Tronco , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA