Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716194

RESUMO

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Assuntos
Aderência Bacteriana , Campylobacter jejuni , Lectinas , Inibidores de Proteases , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/fisiologia , Campylobacter jejuni/metabolismo , Humanos , Células CACO-2 , Aderência Bacteriana/efeitos dos fármacos , Lectinas/metabolismo , Lectinas/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Fungos/efeitos dos fármacos , Mucinas/metabolismo , Células Epiteliais/microbiologia , Fibronectinas/metabolismo
2.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948248

RESUMO

The bacterial proteins of the Dsb family catalyze the formation of disulfide bridges between cysteine residues that stabilize protein structures and ensure their proper functioning. Here, we report the detailed analysis of the Dsb pathway of Campylobacter jejuni. The oxidizing Dsb system of this pathogen is unique because it consists of two monomeric DsbAs (DsbA1 and DsbA2) and one dimeric bifunctional protein (C8J_1298). Previously, we showed that DsbA1 and C8J_1298 are redundant. Here, we unraveled the interaction between the two monomeric DsbAs by in vitro and in vivo experiments and by solving their structures and found that both monomeric DsbAs are dispensable proteins. Their structures confirmed that they are homologs of EcDsbL. The slight differences seen in the surface charge of the proteins do not affect the interaction with their redox partner. Comparative proteomics showed that several respiratory proteins, as well as periplasmic transport proteins, are targets of the Dsb system. Some of these, both donors and electron acceptors, are essential elements of the C. jejuni respiratory process under oxygen-limiting conditions in the host intestine. The data presented provide detailed information on the function of the C. jejuni Dsb system, identifying it as a potential target for novel antibacterial molecules.


Assuntos
Oxirredutases/metabolismo , Proteínas Periplásmicas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Sequência de Aminoácidos , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/patogenicidade , Campylobacter jejuni/fisiologia , Dissulfetos/metabolismo , Oxirredução , Oxirredutases/genética , Periplasma/metabolismo , Proteínas Periplásmicas/genética , Homologia de Sequência de Aminoácidos
3.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830039

RESUMO

Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.


Assuntos
Peptídeos Antimicrobianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Infecções por Campylobacter , Campylobacter jejuni/fisiologia , Óleos Voláteis/uso terapêutico , Animais , Peptídeos Antimicrobianos/química , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/transmissão , Humanos , Óleos Voláteis/química , Aves Domésticas/microbiologia
4.
Biomolecules ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34680046

RESUMO

The heat-shock response, a universal protective mechanism consisting of a transcriptional reprogramming of the cellular transcriptome, results in the accumulation of proteins which counteract the deleterious effects of heat-stress on cellular polypeptides. To quickly respond to thermal stress and trigger the heat-shock response, bacteria rely on different mechanisms to detect temperature variations, which can involve nearly all classes of biological molecules. In Campylobacter jejuni the response to heat-shock is transcriptionally controlled by a regulatory circuit involving two repressors, HspR and HrcA. In the present work we show that the heat-shock repressor HrcA acts as an intrinsic protein thermometer. We report that a temperature upshift up to 42 °C negatively affects HrcA DNA-binding activity to a target promoter, a condition required for de-repression of regulated genes. Furthermore, we show that this impairment of HrcA binding at 42 °C is irreversible in vitro, as DNA-binding was still not restored by reversing the incubation temperature to 37 °C. On the other hand, we demonstrate that the DNA-binding activity of HspR, which controls, in combination with HrcA, the transcription of chaperones' genes, is unaffected by heat-stress up to 45 °C, portraying this master repressor as a rather stable protein. Additionally, we show that HrcA binding activity is enhanced by the chaperonin GroE, upon direct protein-protein interaction. In conclusion, the results presented in this work establish HrcA as a novel example of intrinsic heat-sensing transcriptional regulator, whose DNA-binding activity is positively modulated by the GroE chaperonin.


Assuntos
Campylobacter jejuni/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Campylobacter jejuni/genética , Proteínas de Ligação a DNA/química , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Choque Térmico/química , Resposta ao Choque Térmico/fisiologia , Óperon/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética
5.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067190

RESUMO

Current approaches used for dose-response modeling of low-dose exposures of pathogens rely on assumptions and extrapolations. These models are important for quantitative microbial risk assessment of food. A mechanistic framework has been advocated as an alternative approach for evaluating dose-response relationships. The objectives of this study were to investigate the invasion behavior of Campylobacter jejuni, which could arise as a foodborne illness even if there are low counts of pathogens, into Caco-2 cells as a model of intestinal cells and to develop a mathematical model for invading cell counts to reveal a part of the infection dose-response mechanism. Monolayer-cultured Caco-2 cells and various concentrations of C. jejuni in culture were cocultured for up to 12 h. The numbers of C. jejuni bacteria invading Caco-2 cells were determined after coculture for different time periods. There appeared to be a maximum limit to the invading bacterial counts, which showed an asymptotic exponential increase. The invading bacterial counts were higher with higher exposure concentrations (maximum, 5.0 log CFU/cm2) than with lower exposure concentrations (minimum, 0.6 log CFU/cm2). In contrast, the ratio of invading bacteria (number of invading bacteria divided by the total number of bacteria exposed) showed a similar trend regardless of the exposure concentration. Invasion of C. jejuni into intestinal cells was successfully demonstrated and described by the developed differential equation model with Bayesian inference. The model accuracy showed that the 99% prediction band covered more than 97% of the observed values. These findings provide important information on mechanistic pathogen dose-response relationships and an alternative approach for dose-response modeling.IMPORTANCE One of the infection processes of C. jejuni, the invasion behavior of the bacteria in intestinal epithelial cells, was revealed, and a mathematical model for prediction of the cell-invading pathogen counts was developed for the purpose of providing part of a dose-response model for C. jejuni based on the infection mechanism. The developed predictive model showed a high accuracy of more than 97% and successfully described the C. jejuni invading counts. The bacterial invasion predictive model of this study will be essential for the development of a dose-response model for C. jejuni based on the infection mechanism.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/fisiologia , Enteropatias/microbiologia , Intestino Delgado/microbiologia , Teorema de Bayes , Células CACO-2 , Células Epiteliais/microbiologia , Humanos
6.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33046508

RESUMO

Campylobacter jejuni is a zoonotic pathogen and is one of the leading causes of human gastroenteritis worldwide. C. jejuni IA3902 (representative of the sheep abortion clone) is genetically similar to C. jejuni W7 (representative of strain type NCTC 11168); however, there are significant differences in the ability of luxS mutants of these strains to colonize chickens. LuxS is essential for the activated methyl cycle and generates homocysteine for conversion to l-methionine. Comparative genomics identified differential distribution of the genes metA and metB, which function to convert homoserine for downstream production of l-methionine, between IA3902 and W7, which could enable a secondary pathway for l-methionine biosynthesis in a W7 ΔluxS but not in an IA3902 ΔluxS strain. To test the hypothesis that the genes metA and metB contribute to l-methionine production and chicken colonization by Campylobacter, we constructed two mutants for phenotypic comparison, the W7 ΔmetAB ΔluxS and IA3902 ΔluxS::metAB mutants. Quantitative reverse transcription-PCR and tandem mass spectrometry protein analysis were used to validate MetAB transcription and translation as present in the IA3902 ΔluxS::metAB mutant and absent in the W7 ΔmetAB ΔluxS mutant. Time-resolved fluorescence resonance energy transfer fluorescence assays demonstrated that l-methionine and S-adenosyl methionine concentrations decreased in the W7 ΔmetAB ΔluxS mutant and increased in the IA3902 ΔluxS::metAB mutant. Assessment of chicken colonization revealed that the IA3902 ΔluxS::metAB strain partially rescued the colonization defect of the IA3902 ΔluxS strain, while the W7 ΔmetAB ΔluxS strain showed significantly decreased colonization compared to that of the wild-type and the W7 ΔluxS strain. These results indicate that the ability to maintain l-methionine production in vivo, conferred by metA and metB in the absence of luxS, is critical for normal chicken colonization by C. jejuni.


Assuntos
Proteínas de Bactérias/genética , Campylobacter jejuni/fisiologia , Galinhas , Metionina/metabolismo , Doenças das Aves Domésticas/microbiologia , Proteínas Repressoras/genética , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Mutação , Proteínas Repressoras/metabolismo
7.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210050

RESUMO

The Gram-negative Campylobacter jejuni is a major cause of foodborne gastroenteritis in humans worldwide. The cytotoxic effects of Campylobacter have been mainly ascribed to the actions of the cytolethal distending toxin (CDT): it is mandatory to put in evidence risk factors for sequela development, such as reactive arthritis (ReA) and Guillain-Barré syndrome (GBS). Several researches are directed to managing symptom severity and the possible onset of sequelae. We found for the first time that rapamycin (RM) is able to largely inhibit the action of C. jejuni lysate CDT in U937 cells, and to partially avoid the activation of specific sub-lethal effects. In fact, we observed that the ability of this drug to redirect lysosomal compartment, stimulate ER-remodeling (highlighted by ER-lysosome and ER-mitochondria contacts), protect mitochondria network, and downregulate CD317/tetherin, is an important component of membrane microdomains. In particular, lysosomes are involved in the process of the reduction of intoxication, until the final step of lysosome exocytosis. Our results indicate that rapamycin confers protection against C. jejuni bacterial lysate insults to myeloid cells.


Assuntos
Antígeno 2 do Estroma da Médula Óssea/metabolismo , Campylobacter jejuni/fisiologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Exocitose , Lisossomos/metabolismo , Biomarcadores , Morte Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático , Exocitose/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proibitinas , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Células U937/metabolismo , Células U937/microbiologia
8.
BMC Vet Res ; 16(1): 34, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013961

RESUMO

BACKGROUND: Campylobacter spp. are a major cause of bacterial food-borne diarrhoeal disease. This mainly arises through contamination of meat products during processing. For infection, Campylobacter spp. must adhere to epithelial cells of the mucus layer, survive conditions of the gastrointestinal tract, and colonise the intestine of the host. Addition of probiotic bacteria might promote competitive adhesion to epithelial cells, consequently reducing Campylobacter jejuni colonisation. Effect of Lactobacillus spp. (PCS20, PCS22, PCS25, LGG, PCK9) on C. jejuni adhesion, invasion and translocation in pig (PSI cl.1) and chicken (B1OXI) small-intestine cell lines, as well as pig enterocytes (CLAB) was investigated. RESULTS: Overall, in competitive adhesion assays with PSI cl.1 and CLAB cell monolayers, the addition of Lactobacillus spp. reduced C. jejuni adherence to the cell surface, and negatively affected the C. jejuni invasion. Interestingly, Lactobacillus spp. significantly impaired C. jejuni adhesion in three-dimensional functional PSI cl.1 and B1OXI cell models. Also, C. jejuni did not translocate across PSI cl.1 and B1OXI cell monolayers when co-incubated with probiotics. Among selected probiotics, Lactobacillus rhamnosus LGG was the strain that reduced adhesion efficacy of C. jejuni most significantly under co-culture conditions. CONCLUSION: The addition of Lactobacillus spp. to feed additives in livestock nutrition might be an effective novel strategy that targets Campylobacter adhesion to epithelial cells, and thus prevents colonisation, reduces the transmission, and finally lowers the incidence of human campylobacteriosis.


Assuntos
Aderência Bacteriana , Translocação Bacteriana , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/fisiologia , Lactobacillus/fisiologia , Animais , Infecções por Campylobacter/fisiopatologia , Campylobacter jejuni/crescimento & desenvolvimento , Linhagem Celular , Galinhas , Células Epiteliais/microbiologia , Probióticos , Suínos
9.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31932316

RESUMO

Campylobacter jejuni causes acute gastroenteritis worldwide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous transcriptome sequencing (RNA-Seq) experiment showed that transcripts from an operon encoding a high-affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when the bacterium was grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNA-Seq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni Our results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, in nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. The mutant strain was highly attenuated for colonization of newly hatched chicks, with levels of bacteria at several orders of magnitude below wild-type levels. Mutant and wild type grew similarly in complex media, but the pstS::kan mutant exhibited a significant growth defect in minimal medium supplemented with l-lactate, postulated as a carbon source in vivo Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival.IMPORTANCECampylobacter jejuni causes millions of human gastrointestinal infections annually, with poultry a major source of infection. Due to the emergence of multidrug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB are highly expressed by C. jejuni in chickens and humans. In this study, we address the role of PstSCAB on chicken colonization and other C. jejuni phenotypes. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses, and during growth on lactate, a potential growth substrate in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms for controlling bacterial burden in both chicken and human.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Galinhas/microbiologia , Ácido Láctico/metabolismo , Proteínas de Transporte de Fosfato/genética , Doenças das Aves Domésticas/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Metabolômica/métodos , Mutação , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Estresse Fisiológico
10.
Sci Rep ; 9(1): 17903, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784645

RESUMO

The present study was undertaken to assess the antimicrobial activity of Lactobacillus spp. (L. salivarius, L. johnsonii, L. reuteri, L. crispatus, and L. gasseri) against Campylobacter jejuni as well as their immunomodulatory capabilities. The results demonstrated that lactobacilli exhibit differential antagonistic effects against C. jejuni and vary in their ability to elicit innate responses in chicken macrophages. All lactobacilli exerted inhibitory effects on C. jejuni growth, abrogated the production of the quorum sensing molecule autoinducer-2 (AI-2) by C. jejuni and inhibited the invasion of C. jejuni in human intestinal epithelial cells. Additionally, all lactobacilli, except L. reuteri, significantly reduced the expression of virulence-related genes in C. jejuni, including genes responsible for motility (flaA, flaB, and flhA), invasion (ciaB), and AI-2 production (luxS). All lactobacilli enhanced C. jejuni phagocytosis by macrophages and increased the expression of interferon (IFN)-γ, interleukin (IL)-1ß, IL-12p40, IL-10, and chemokine (CXCLi2) in macrophages. Furthermore, L. salivarius, L. reuteri, L. crispatus, and a mixture of all lactobacilli significantly increased expression of the co-stimulatory molecules CD40, CD80, and CD86 in macrophages. In conclusion, these findings demonstrate that lactobacilli possess anti-Campylobacter and immunomodulatory activities. Further studies are needed to assess their protective efficacy against intestinal colonization by C. jejuni in broiler chickens.


Assuntos
Antibiose , Campylobacter jejuni/fisiologia , Citocinas/genética , Lactobacillus/fisiologia , Macrófagos/imunologia , Fagocitose , Animais , Células CACO-2 , Campylobacter jejuni/patogenicidade , Galinhas , Citocinas/metabolismo , Humanos , Lactobacillus/patogenicidade , Macrófagos/microbiologia , Percepção de Quorum
11.
Exp Parasitol ; 199: 104-110, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30902623

RESUMO

Association of the water- and foodborne pathogen Campylobacter jejuni with free-living Acanthamoeba spp. trophozoites enhances C. jejuni survival and resistance to biocides and starvation. When facing less than optimal environmental conditions, however, the Acanthamoeba spp. host can temporarily transform from trophozoite to cyst and back to trophozoite, calling the survival of the internalized symbiont and resulting public health risk into question. Studies investigating internalized C. jejuni survival after A. castellanii trophozoite transformation have neither been able to detect its presence inside the Acanthamoeba cyst after encystation nor to confirm its presence upon excystation of trophozoites through culture-based techniques. The purpose of this study was to detect C. jejuni and Mycobacterium avium recovered from A. polyphaga trophozoites after co-culture and induction of trophozoite encystation using three different encystation methods (Neff's medium, McMillen's medium and refrigeration), as well as after cyst excystation. Internalized M. avium was used as a positive control, since studies have consistently detected the organism after co-culture and after host excystation. Concentrations of C. jejuni in A. polyphaga trophozoites were 4.5 × 105 CFU/ml, but it was not detected by PCR or culture post-encystation. This supports the hypothesis that C. jejuni may be digested during encystation of the amoebae. M. avium was recovered at a mean concentration of 1.9 × 104 from co-cultured trophozoites and 4.4 × 101 CFU/ml after excystation. The results also suggest that M. avium recovery post-excystation was statistically significantly different based on which encystation method was used, ranging from 1.3 × 101 for Neff's medium to 5.4 × 101 CFU/ml for refrigeration. No M. avium was recovered from A. polyphaga cysts when trophozoites were encysted by McMillen's medium. Since C. jejuni internalized in cysts would be more likely to survive harsh environmental conditions and disinfection, a better understanding of potential symbioses between free-living amoebae and campylobacters in drinking water distribution systems and food processing environments is needed to protect public health. Future co-culture experiments examining survival of internalized C. jejuni should carefully consider the encystation media used, and include molecular detection tools to falsify the hypothesis that C. jejuni may be present in a viable but not culturable state.


Assuntos
Acanthamoeba/microbiologia , Campylobacter jejuni/fisiologia , Mycobacterium avium/fisiologia , Acanthamoeba/genética , Acanthamoeba/crescimento & desenvolvimento , Carga Bacteriana , Técnicas de Cocultura , Meios de Cultura/química , DNA de Protozoário/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico , Refrigeração , Simbiose , Trofozoítos
12.
Can J Microbiol ; 65(2): 126-134, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30339767

RESUMO

Campylobacter jejuni is a zoonotic pathogen transmitted through the "farm to fork" route. Outbreaks are generally associated with the consumption of chicken meat; however, dairy cows, birds, wild and domestic food animals, and pets are other important sources. Currently, there are not enough data comparing the virulence of strains isolated from these reservoirs. In this study, we compared C. jejuni strains isolated from broiler chickens and dairy cattle by determining their ability to adhere to and invade in vitro human colonic epithelial cells in the T84 cell line with their motility, formation of biofilms, and presence of eight virulence genes. A Wilcoxon Rank Sum test was performed to establish the relationship between presence of the studied genes and cellular invasion and adhesion, as well as differences between the animal species of origin of the isolate. A Spearman correlation was performed to assess the relationship between invasion and motility, along with invasion and biofilm generation. The virB11 gene was positively associated with the adherence capacity of the strains (mean difference = 0.21, p = 0.006), and strains isolated from chickens showed a significant difference for adherence compared with strains isolated from cattle (p = 0.0001). Our results indicate that strains of C. jejuni have a difference in their adherence capacity depending on the animal reservoir from which they came, with chicken isolates displaying higher virulence than dairy cattle isolates.


Assuntos
Aderência Bacteriana , Biofilmes , Campylobacter jejuni/fisiologia , Animais , Aderência Bacteriana/genética , Campylobacter jejuni/genética , Campylobacter jejuni/isolamento & purificação , Bovinos , Células Cultivadas , Galinhas , Células Epiteliais/microbiologia , Humanos , Virulência/genética
13.
J Microbiol Methods ; 149: 67-72, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29729311

RESUMO

Campylobacter jejuni is the most prevalent foodborne bacterial infection agent. This pathogen seems also involved in inflammatory bowel diseases in which pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), play a major role. C. jejuni pathogenicity has been extensively studied using in vitro cell culture methods, and more precisely "healthy" cells. In fact, no information is available regarding the behavior of C. jejuni in contact with TNFα-stimulated cells. Therefore, this research was designed to investigate the effect of TNFα on C. jejuni interaction with human intestinal epithelial cells (HT29 and HT29-MTX). To ensure IL-8 production induced by TNFα, human rtTNFα was added to HT29 and HT29-MTX before adhesion and invasion assays. About 108 CFU bacteria of C. jejuni strains cells were added to measure their adherence and invasion abilities using TNFα-stimulated cells versus non stimulated cells. Exposure to TNFα results in IL-8 overproduction by intestinal epithelial cells. In addition, the effect of TNFα pre-treatment on C. jejuni adhesion and internalization into eukaryotic cells is strain-dependent. Indeed, the adhesion/invasion process is affected in <50% of the strains tested when TNFα is added to the intestinal cells. Interestingly, TNFα affects more strains in their ability to adhere to and invade the mucus-secreting HT29-MTX cells. Among the 10 strains tested, the aero-tolerant C. jejuni Bf strain is one of the most virulent. These results suggest that the TNFα signalling pathway could participate in the internalization of C. jejuni in human intestinal cells and can help in understanding the pathogenicity of this microorganism in contact with TNFα-stimulated cells.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Intestinos/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Aderência Bacteriana/fisiologia , Campylobacter jejuni/patogenicidade , Técnicas de Cultura de Células/métodos , Células HT29 , Humanos , Inflamação , Interleucina-8/metabolismo , Virulência
14.
Vet Res ; 49(1): 3, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316981

RESUMO

Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis worldwide and human infections are frequently associated with handling and consumption of contaminated poultry. The polysaccharide capsule of C. jejuni plays important roles in colonisation of the chicken gut, invasion of epithelial cells and serum resistance and is subject to modification with O-methyl phosphoramidate (MeOPN) in most strains. In this study, the cytokine responses of mouse bone marrow-derived macrophages (mBMMs), chicken bone marrow-derived macrophages (chBMMs) and human monocyte-derived macrophages (hMDMs) were measured following infection with C. jejuni 11168H wild-type (WT) or isogenic mutants lacking either the capsule (Δcj1439) or its MeOPN modification (Δcj1417). Consistent with previous observations using murine bone marrow-derived dendritic cells, mutants lacking the capsule or MeOPN elicited enhanced transcription of IL-6 and IL-10 in mBMMs compared to wild-type C. jejuni. However, the lack of capsule and MeOPN did not alter IL-6 and IL-10 expression in chBMMs and hMDMs compared to C. jejuni WT. Phagocytosis assays showed the acapsular mutant was not impaired in uptake or net intracellular survival after phagocytosis in both chicken and human macrophages; however, the phagocytosis of the MeOPN mutant was significantly decreased in both chicken and human macrophages. In conclusion, differences in the response of macrophages of varying host origin to Campylobacter were detected. The absence of MeOPN modification on the capsule of C. jejuni did not alter the levels of innate cytokine expression in both chicken and human macrophages compared to the 11168H WT, but affected phagocytosis by host macrophages.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Galinhas , Macrófagos/metabolismo , Doenças das Aves Domésticas/microbiologia , Amidas/metabolismo , Animais , Cápsulas Bacterianas/metabolismo , Medula Óssea , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Citocinas/metabolismo , Humanos , Monócitos/metabolismo , Mutação , Ácidos Fosfóricos/metabolismo , Ratos
15.
Poult Sci ; 97(2): 485-493, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253230

RESUMO

Campylobacter jejuni (C. jejuni) is one of the main causes of human campylobacteriosis worldwide. Chicken is the main reservoir of C. jejuni. The cecum is the primary site of C. jejuni colonization. Our previous study has shown that the CLOCK gene is important to regulate the response to C. jejuni inoculation and has a cross-talking with immune-related genes. Correlation networks between the CLOCK gene and microRNAs (miRNAs) play vital roles in colorectal tumorigenesis. MiRNAs play crucial roles in bacterial invasion through regulating multiple target genes. To study the regulatory correlation between miRNAs and target genes, 5 miRNAs that regulate the expression of the CLOCK gene (CLOCK-interacted miRNAs) and 5 immune-related target genes predicted through Targetscan and miRDB were selected to analyze the expression pattern in chicken ceca at 4, 8, 12, 16, 20, and 24 h post C. jejuni inoculation using quantitative PCR. The results showed that the expression of gga-miR-148a, gga-miR-1416-5p, gga-miR-30b, and gga-miR-30c were significantly up-regulated at 8 hpi, and gga-miR-30a-5p, gga-miR-30b, and gga-miR-30c were significantly down-regulated at 24 hpi, and gga-miR-1416-5p was significantly down-regulated at 20 hpi (P < 0.05). The expression levels of BCL9 (B-cell CLL/lymphoma 9), STX16 (syntaxin16), IL4R (interleukin 4 receptor), and IRF4 (interferon regulatory factor 4) genes were significantly up-regulated at 8 hpi, while SOCS3 (suppressor of cytokine signaling 3) was significantly down-regulated. Furthermore, the expression pattern of gga-miR-30b was consistent with gga-miR-30c. Both miRNAs and mRNAs showed an oscillation expression pattern in both inoculated and non-inoculated groups. The regulatory direction of SOCS3 was contrary to those of gga-miR-148a, gga-miR-1416-5p, gga-miR-30b, and gga-miR-30c at 8 hpi. In summary, MiR-30 and the miR-148/miR-152 family time-dependently regulate the response to C. jejuni inoculation in chicken ceca. BCL9, STX16, IRF4, and IL4R play important roles in the response to C. jejuni inoculation. The CLOCK gene-interacted miRNA and immune-related target genes had a correlative response to C. jejuni inoculation. The SOCS3 gene interacts with gga-miR-30b, gga-miR-30c, gga-miR-148a, and gga-miR-1416-5p in response to C. jejuni inoculation at 8 hpi. The correlations between CLOCK-interacted miRNA and immune-related target genes play vital roles in the response to C. jejuni inoculation. The results herein will lay the foundation for further study of a regulatory mechanism of chicken miRNAs and their target genes in response to C. jejuni inoculation.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Galinhas , Expressão Gênica , Doenças das Aves Domésticas/genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Infecções por Campylobacter/genética , Infecções por Campylobacter/microbiologia , Ceco/microbiologia , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Aves Domésticas/microbiologia , Organismos Livres de Patógenos Específicos
16.
Microb Pathog ; 111: 395-401, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28916318

RESUMO

Inflammation in Guillain-Barré syndrome (GBS) is manifested by changes in matrix metalloproteinase (MMP) and pro-inflammatory cytokine expression. We investigated the expression of MMP-2, -9 and TNF-α and correlated it with pathological changes in sciatic nerve tissue from Campylobacter jejuni-induced chicken model for GBS. Campylobacter jejuni and placebo were fed to chickens and assessed for disease symptoms. Sciatic nerves were examined by histopathology and immunohistochemistry. Expressions of MMPs and TNF-α, were determined by real-time PCR, and activities of MMPs by zymography. Diarrhea developed in 73.3% chickens after infection and 60.0% of them developed GBS like neuropathy. Pathology in sciatic nerves showed perinodal and/or patchy demyelination, perivascular focal lymphocytic infiltration and myelin swelling on 10th- 20th post infection day (PID). MMP-2, -9 and TNF-α were up-regulated in progressive phase of the disease. Enhanced MMP-2, -9 and TNF-α production in progressive phase correlated with sciatic nerve pathology in C. jejuni-induced GBS chicken model.


Assuntos
Infecções por Campylobacter/enzimologia , Campylobacter jejuni/fisiologia , Síndrome de Guillain-Barré/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Paralisia/enzimologia , Animais , Infecções por Campylobacter/genética , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/patologia , Campylobacter jejuni/genética , Galinhas , Modelos Animais de Doenças , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/microbiologia , Síndrome de Guillain-Barré/patologia , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Paralisia/genética , Paralisia/microbiologia , Nervo Isquiático/enzimologia , Nervo Isquiático/microbiologia , Nervo Isquiático/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Poult Sci ; 96(6): 1623-1627, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339707

RESUMO

Campylobacter spp. are the second leading cause of bacterial-induced foodborne illnesses with an estimated economic burden of nearly $2B USD per year. Most human illness associated with campylobacteriosis is due to infection by C. jejuni and chickens are recognized as a reservoir that could lead to foodborne illness in humans resulting from handling or consuming raw or undercooked chicken. We recently developed a novel breeding strategy based on identification and selection of chickens with an inherently high and low phenotype of pro-inflammatory mediators including IL-6, CXCLi2, and CCLi2, hereafter referred to as the high and low lines, respectively. We have shown the high line chickens are more resistant to the foodborne and poultry pathogens Salmonella enterica serovar Enteritidis, Eimeria tenella, and Clostridium perfringens-induced necrotic enteritis compared to the low line. The objective of this study was to determine whether the same trend of enhanced resistance in the high line birds was observed for C. jejuni. Birds were challenged at 2 d of age by oral gavage (0.5 mL) with 5 × 106 colony forming units (cfu) of C. jejuni/mL, necropsied 4 d post challenge, and cecal content collected to determine if there was a difference in C. jejuni resistance between the high and low line chickens. There were fewer (P = 0.01) chickens from the high line (28/40 = 71.8%) that were colonized by C. jejuni compared to the low line (37/39 = 94.9%). The amount of C. jejuni recovered from the ceca of infected birds was quantified; however, no differences were observed (P = 0.10). Since the high line birds were also more resistant to C. jejuni, it provides additional validation of selection based on pro-inflammatory mediators producing a line of chickens with increased natural resistance against diverse foodborne and poultry pathogens. The poultry industry is moving towards reduced therapeutics and, as such, our breeding strategy would be a viable method to incorporate into traditional poultry breeding programs.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/fisiologia , Galinhas , Mediadores da Inflamação , Doenças das Aves Domésticas/genética , Animais , Cruzamento , Infecções por Campylobacter/genética , Infecções por Campylobacter/imunologia , Ceco/microbiologia , Imunidade Inata , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia
18.
FEMS Microbiol Lett ; 364(6)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333199

RESUMO

Campylobacter jejuni frequently infects humans causing many gastrointestinal symptoms, fever, fatigue and several long-term debilitating diseases. Current treatment for campylobacteriosis includes rehydration and in some cases, antibiotic therapy. Probiotics are used to treat several gastrointestinal diseases. Butyrate is a short-chain fatty acid known to promote intestinal health. Interaction of butyrate with its respective receptor (HCAR2) and transporter (SLC5A8), both expressed in the intestine, is associated with water and electrolyte absorption as well as providing defense against colon cancer and inflammation. Alterations in gut microbiota influence the presence of HCAR2 and SLC5A8 in the intestine. We hypothesized that adherence and/or invasion of C. jejuni and alterations in HCAR2 and SLC5A8 expression would be minimized with butyrate or Lactobacillus GG (LGG) pretreatment of Caco-2 cells. We found that both C. jejuni adhesion but not invasion was reduced with butyrate pretreatment. While LGG pretreatment did not prevent C. jejuni adhesion, it did result in reduced invasion which was associated with altered cell supernate pH. Both butyrate and LGG protected HCAR2 and SLC5A8 protein expression following C. jejuni infection. These results suggest that the first stages of C. jejuni infection of Caco-2 cells may be minimized by LGG and butyrate pretreatment.


Assuntos
Butiratos/metabolismo , Butiratos/farmacologia , Campylobacter jejuni/fisiologia , Proteínas de Transporte/metabolismo , Lacticaseibacillus rhamnosus/efeitos dos fármacos , Lacticaseibacillus rhamnosus/metabolismo , Interações Microbianas , Aderência Bacteriana/efeitos dos fármacos , Células CACO-2 , Infecções por Campylobacter/genética , Infecções por Campylobacter/metabolismo , Infecções por Campylobacter/microbiologia , Células Cultivadas , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
19.
J Appl Microbiol ; 122(1): 65-77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27709726

RESUMO

AIMS: To define anti-Campylobacter jejuni activity of an extract from waste skins and seeds of Pinot noir grapes (GSS), resveratrol and possible resistance mechanisms, and the influence of these on Camp. jejuni morphology. METHODS AND RESULTS: Using gene-specific knock-out Camp. jejuni mutants and an efflux pump inhibitor, we showed CmeABC as the most active efflux pump for extrusion across the outer membrane of GSS extract and resveratrol. Using polystyrene surface and pig small intestine epithelial (PSI) and human foetal small intestine (H4) cell lines, GSS extract shows an efficient inhibition of adhesion of Camp. jejuni to these abiotic and biotic surfaces. CONCLUSIONS: Low doses of GSS extract can inhibit Camp. jejuni adhesion to polystyrene surfaces and to PSI and H4 cells, and can thus modulate Camp. jejuni invasion and intracellular survival. SIGNIFICANCE AND IMPACT OF THE STUDY: An understanding of the activities of GSS extract and resveratrol as bacterial growth inhibitors and the specific mechanisms of cell accumulation is crucial for our understanding of Camp. jejuni resistance. GSS extract inhibition of Camp. jejuni adhesion to abiotic and biotic surfaces provides a further step towards the application of new innovative strategies to control Campylobacter contamination and infection via the food chain.


Assuntos
Campylobacter jejuni/efeitos dos fármacos , Estilbenos/farmacologia , Vitis/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/fisiologia , Linhagem Celular , Farmacorresistência Bacteriana , Células Epiteliais/efeitos dos fármacos , Humanos , Intestinos/citologia , Testes de Sensibilidade Microbiana , Plâncton , Poliestirenos , Resveratrol , Sementes/química , Suínos
20.
Cell Microbiol ; 18(4): 561-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26451973

RESUMO

Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are cytotoxic to Caco-2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E-cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co-incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E-cadherin and occludin. The addition of 11168H OMVs to the co-culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time-dependent and dose-dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells.


Assuntos
Caderinas/metabolismo , Campylobacter jejuni/enzimologia , Campylobacter jejuni/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Exossomos/enzimologia , Ocludina/metabolismo , Animais , Aderência Bacteriana , Endocitose , Humanos , Lepidópteros , Proteólise , Serina Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA