Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.557
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982737

RESUMO

Estrogen receptor-positive breast cancers (ER+ BCas) are the most common form of BCa and are increasing in incidence, largely due to changes in reproductive practices in recent decades. Tamoxifen is prescribed as a component of standard-of-care endocrine therapy for the treatment and prevention of ER+ BCa. However, it is poorly tolerated, leading to low uptake of the drug in the preventative setting. Alternative therapies and preventatives for ER+ BCa are needed but development is hampered due to a paucity of syngeneic ER+ preclinical mouse models that allow pre-clinical experimentation in immunocompetent mice. Two ER-positive models, J110 and SSM3, have been reported in addition to other tumour models occasionally shown to express ER (for example 4T1.2, 67NR, EO771, D2.0R and D2A1). Here, we have assessed ER expression and protein levels in seven mouse mammary tumour cell lines and their corresponding tumours, in addition to their cellular composition, tamoxifen sensitivity and molecular phenotype. By immunohistochemical assessment, SSM3 and, to a lesser extent, 67NR cells are ER+. Using flow cytometry and transcript expression we show that SSM3 cells are luminal in nature, whilst D2.0R and J110 cells are stromal/basal. The remainder are also stromal/basal in nature; displaying a stromal or basal Epcam/CD49f FACS phenotype and stromal and basal gene expression signatures are overrepresented in their transcript profile. Consistent with a luminal identity for SSM3 cells, they also show sensitivity to tamoxifen in vitro and in vivo. In conclusion, the data indicate that the SSM3 syngeneic cell line is the only definitively ER+ mouse mammary tumour cell line widely available for pre-clinical research.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Tamoxifeno , Humanos , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Animais , Camundongos , Modelos Animais de Doenças , Receptores de Estrogênio/genética , Tamoxifeno/farmacologia , Fenótipo , Imuno-Histoquímica , Citometria de Fluxo , Transcriptoma , Camundongos da Linhagem 129 , RNA-Seq , Células Epiteliais , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética
2.
Cell Mol Life Sci ; 79(4): 198, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313355

RESUMO

The dual specificity protein phosphatases (Dusps) control dephosphorylation of mitogen-activated protein kinases (MAPKs) as well as other substrates. Here, we report that Dusp26, which is highly expressed in neuroblastoma cells and primary neurons is targeted to the mitochondrial outer membrane via its NH2-terminal mitochondrial targeting sequence. Loss of Dusp26 has a significant impact on mitochondrial function that is associated with increased levels of reactive oxygen species (ROS), reduction in ATP generation, reduction in mitochondria motility and release of mitochondrial HtrA2 protease into the cytoplasm. The mitochondrial dysregulation in dusp26-deficient neuroblastoma cells leads to the inhibition of cell proliferation and cell death. In vivo, Dusp26 is highly expressed in neurons in different brain regions, including cortex and midbrain (MB). Ablation of Dusp26 in mouse model leads to dopaminergic (DA) neuronal cell loss in the substantia nigra par compacta (SNpc), inflammatory response in MB and striatum, and phenotypes that are normally associated with Neurodegenerative diseases. Consistent with the data from our mouse model, Dusp26 expressing cells are significantly reduced in the SNpc of Parkinson's Disease patients. The underlying mechanism of DA neuronal death is that loss of Dusp26 in neurons increases mitochondrial ROS and concurrent activation of MAPK/p38 signaling pathway and inflammatory response. Our results suggest that regulation of mitochondrial-associated protein phosphorylation is essential for the maintenance of mitochondrial homeostasis and dysregulation of this process may contribute to the initiation and development of neurodegenerative diseases.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Fosfatases de Especificidade Dupla/fisiologia , Mitocôndrias/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/fisiologia , Animais , Morte Celular/genética , Respiração Celular/genética , Células Cultivadas , Citoproteção/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Mitocôndrias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estresse Oxidativo/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
3.
Biochem Biophys Res Commun ; 599: 43-50, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35168063

RESUMO

The cyclin-dependent kinase inhibitor p16Ink4a plays a central role in cellular senescence in vitro. Although previous studies suggested cellular senescence is integrated in the systemic mechanisms of organismal aging, the localization and the dynamics of p16Ink4a in tissues remain poorly understood, which hinders uncovering the role of p16Ink4a under the in vivo context. One of the reasons is due to the lack of reliable reagents; as we also demonstrate here that commonly used antibodies raised against human p16INK4A barely recognize its murine ortholog. Here we generated a mouse model, in which the endogenous p16Ink4a is HA-tagged at its N-terminus, to explore the protein expression of p16Ink4a at the organismal level. p16Ink4a was induced at the protein level along the course of senescence in primary embryonic fibroblasts derived from the mice, consistently to its transcriptional level. Remarkably, however, p16Ink4a was not detected in the tissues of the mice exposed to pro-senescence conditions including genotoxic stress and activation of oncogenic signaling pathways, indicating that there is only subtle p16Ink4a proteins induced. These results in our mouse model highlight the need for caution in evaluating p16Ink4a protein expression in vivo.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Animais , Reações Cruzadas , Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Dano ao DNA , Éxons , Fígado/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Células NIH 3T3
4.
Behav Brain Res ; 423: 113767, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077772

RESUMO

Neurofibromatosis type 1 (NF1) is associated with behavioral alterations and cognitive impairments. There is a genetic interaction between NF1 and the receptor tyrosine kinase Alk. Short-term pharmacological Alk inhibition, with a compound FDA-approved for cancer starting 10 days prior to cognitive testing, was shown to improve cognitive performance of NF1 heterozygous (HET) mice. However, effects of long-term Alk inhibition on behavioral cognitive performance are not known. Therefore, in the study described below we determine the effects of prolonged pharmacological Alk inhibition for 24 weeks on behavioral and cognitive performance of NF1 HET mice. As these studies have the ultimate objective of developing a treatment for humans with neurofibromatosis and acceptable side effects in the context of cancer are not acceptable in the context of long-term treatment of patients with neurofibromatosis, we included additional behavioral tests of anxiety-like and depressive-like behaviors as well. Long-term effects of Alk inhibition had genotype-dependent effects, consistent with a specific interaction between Alk and NF1. Beneficial effects of long-term Alk inhibition in NF1 HET mice included rescue of impairments in object recognition in NF1 HET males and females, and improved cognitive performance of NF1 HET males and females in the water maze test. In contrast, long-term Alk inhibition had detrimental effects in WT mice not seen after short-term treatments. As longer treatments are translationally more relevant for NF1 patients, these data highlight the important to assess long-term effects of drugs, especially of repurposed drugs used originally as part of cancer therapy.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Disfunção Cognitiva/tratamento farmacológico , Neurofibromatose 1/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neurofibromatose 1/complicações
5.
Sci Rep ; 12(1): 66, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997052

RESUMO

Amyloid precursor protein (APP) is associated with both familial and sporadic forms of Alzheimer's disease. APP has two homologs, amyloid precursor-like protein 1 and 2 (APLP1 and APLP2), and they have functional redundancy. APP intracellular c-terminal domain (AICD), produced by sequential α- or ß- and γ-secretase cleavages, is thought to control gene expression, similarly as the ICD of Notch. To investigate the role of APP family in transcriptional regulation, we examined gene expression changes in the cerebral cortex of APP/APLP1/APLP2 conditional triple knockout (cTKO) mice, in which APP family members are selectively inactivated in excitatory neurons of the postnatal forebrain. Of the 12 previously reported AICD target genes, only Nep and Npas4 mRNA levels were significantly reduced in the cerebral cortex of cTKO mice, compared to littermate controls. We further examined global transcriptional changes by RNA-seq and identified 189 and 274 differentially expressed genes in the neocortex and hippocampus, respectively, of cTKO mice relative to controls. Gene Ontology analysis indicated that these genes are involved in a variety of cellular functions, including extracellular organization, learning and memory, and ion channels. Thus, inactivation of APP family alters transcriptional profiles of the cerebral cortex and affects wide-ranging molecular pathways.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neprilisina/genética , Neprilisina/metabolismo , Transcrição Gênica
6.
Cell Rep ; 38(2): 110223, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021072

RESUMO

MEK1 and MEK2, the only known activators of ERK, are attractive therapeutic candidates for both cancer and autoimmune diseases. However, how MEK signaling finely regulates immune cell activation is only partially understood. To address this question, we specifically delete Mek1 in hematopoietic cells in the Mek2 null background. Characterization of an allelic series of Mek mutants reveals the presence of distinct degrees of spontaneous B cell activation, which are inversely proportional to the levels of MEK proteins and ERK activation. While Mek1 and Mek2 null mutants have a normal lifespan, 1Mek1 and 1Mek2 mutants retaining only one functional Mek1 or Mek2 allele in hematopoietic cell lineages die from glomerulonephritis and lymphoproliferative disorders, respectively. This establishes that the fine-tuning of the ERK/MAPK pathway is critical to regulate B and T cell activation and function and that each MEK isoform plays distinct roles during lymphocyte activation and disease development.


Assuntos
Ativação Linfocitária/fisiologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Alelos , Animais , Linfócitos B/metabolismo , Feminino , Humanos , Ativação Linfocitária/genética , MAP Quinase Quinase 1/fisiologia , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo
7.
Am J Physiol Renal Physiol ; 322(1): F27-F41, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806449

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in the polycystin 1 (PKD1) or polycystin 2 genes, presents with progressive development of kidney cysts and eventual end-stage kidney disease with limited treatment options. Previous work has shown that metformin reduces cyst growth in rapid ADPKD mouse models via inhibition of cystic fibrosis transmembrane conductance regulator-mediated fluid secretion, mammalian target of rapamycin, and cAMP pathways. The present study importantly tested the effectiveness of metformin as a therapy for ADPKD in a more clinically relevant Pkd1RC/RC mouse model, homozygous for the R3277C knockin point mutation in the Pkd1 gene. This mutation causes ADPKD in humans. Pkd1RC/RC male and female mice, which have a slow progression to end-stage kidney disease, received metformin (300 mg/kg/day in drinking water vs. water alone) from 3 to 9 or 12 mo of age. As previously reported, Pkd1RC/RC females had a more severe disease phenotype as compared with males. Metformin treatment reduced the ratio of total kidney weight-to-body weight relative to age-matched and sex-matched untreated controls at both 9 and 12 mo and reduced the cystic index in females at 9 mo. Metformin also increased glomerular filtration rate, lowered systolic blood pressure, improved anemia, and lowered blood urea nitrogen levels relative to controls in both sexes. Moreover, metformin reduced gene expression of key inflammatory markers and both gene and protein expression of kidney injury marker-1 and cyclin-dependent kinase-1 versus untreated controls. Altogether, these findings suggest several beneficial effects of metformin in this highly relevant slowly progressive ADPKD mouse model, which may help inform new ADPKD therapies in patients.NEW & NOTEWORTHY Metformin treatment improved ADPKD disease severity in a relevant, slowly progressive ADPKD mouse model that recapitulates a PKD-associated PKD1 mutation. Relative to controls, metformin reduced kidney weight/body weight, cystic index and BUN levels, while improving GFR, blood pressure and anemia. Metformin also reduced key inflammatory and injury markers, along with cell proliferation markers. These findings suggest several beneficial effects of metformin in this ADPKD mouse model, which may help inform new ADPKD therapies in patients.


Assuntos
Falência Renal Crônica/prevenção & controle , Rim/efeitos dos fármacos , Metformina/farmacologia , Rim Policístico Autossômico Dominante/tratamento farmacológico , Fármacos Renais/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Predisposição Genética para Doença , Taxa de Filtração Glomerular/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Falência Renal Crônica/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/fisiopatologia , Canais de Cátion TRPP/genética , Fatores de Tempo
8.
Cancer Res ; 82(4): 615-631, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903604

RESUMO

Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 were found to impair protein function to a similar extent as truncating variants, while 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group [OR 2.23; 95% confidence interval (CI), 1.62-3.07; P < 0.0001] and intermediate variants (OR 1.63; 95% CI, 1.21-2.20; P = 0.0014) were associated with an increased breast cancer risk, while functional variants did not show this association (OR 1.13; 95% CI, 0.87-1.46; P = 0.378). Finally, a damaging VUS in CHEK2, c.486A>G/p.D162G, was also identified, which cosegregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer. SIGNIFICANCE: Quantitative assessment of the functional consequences of CHEK2 variants of uncertain significance identifies damaging variants associated with increased cancer risk, which may aid in the clinical management of patients and carriers.


Assuntos
Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Neoplasias/genética , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Células Cultivadas , Quinase do Ponto de Checagem 2/metabolismo , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Neoplasias/enzimologia , Linhagem , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Fatores de Risco
9.
Cancer Res ; 82(4): 695-707, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903606

RESUMO

The mortality of patients with pancreatic ductal adenocarcinoma (PDAC) is strongly associated with metastasis, a multistep process that is incompletely understood in this disease. Although genetic drivers of PDAC metastasis have not been defined, transcriptional and epigenetic rewiring can contribute to the metastatic process. The epigenetic eraser histone deacetylase 2 (HDAC2) has been connected to less differentiated PDAC, but the function of HDAC2 in PDAC has not been comprehensively evaluated. Using genetically defined models, we show that HDAC2 is a cellular fitness factor that controls cell cycle in vitro and metastasis in vivo, particularly in undifferentiated, mesenchymal PDAC cells. Unbiased expression profiling detected a core set of HDAC2-regulated genes. HDAC2 controlled expression of several prosurvival receptor tyrosine kinases connected to mesenchymal PDAC, including PDGFRα, PDGFRß, and EGFR. The HDAC2-maintained program disabled the tumor-suppressive arm of the TGFß pathway, explaining impaired metastasis formation of HDAC2-deficient PDAC. These data identify HDAC2 as a tractable player in the PDAC metastatic cascade. The complexity of the function of epigenetic regulators like HDAC2 implicates that an increased understanding of these proteins is needed for implementation of effective epigenetic therapies. SIGNIFICANCE: HDAC2 has a context-specific role in undifferentiated PDAC and the capacity to disseminate systemically, implicating HDAC2 as targetable protein to prevent metastasis.


Assuntos
Carcinoma Ductal Pancreático/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/genética , Neoplasias Pancreáticas/genética , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Histona Desacetilase 2/metabolismo , Humanos , Estimativa de Kaplan-Meier , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética
10.
Am J Physiol Renal Physiol ; 322(2): F164-F174, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894725

RESUMO

Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.


Assuntos
Glomerulonefrite/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Humanos , Interleucina-1beta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Knockout , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/induzido quimicamente , Proteinúria/patologia , Proteinúria/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Interleucina-1/agonistas , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais
11.
Theranostics ; 11(20): 9791-9804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815786

RESUMO

Rationale: Platelets play an essential role in atherosclerosis, but the underlying mechanisms remain to be addressed. This study is to investigate the role of platelets in d-flow induced vascular inflammation and the underlying mechanism. Methods: We established a disturbed blood flow (d-flow) model by partial carotid ligation (PCL) surgery using atherosclerosis-susceptible mice and wild-type mice to observe the d-flow induced platelet accumulation in the subendothelium or in the plaque by immunostaining or transmission electron microscopy. The mechanism of platelet subendothelial accumulation was further explored by specific gene knockout mice. Results: We observed presence of platelets in atherosclerotic plaques either in the atheroprone area of aortic arch or in carotid artery with d-flow using Ldlr-/- or ApoE-/- mice on high fat diet. Immunostaining showed the subendothelial accumulation of circulating platelets by d-flow in vivo. Transmission electron microscopy demonstrated the accumulation of platelets associated with monocytes in the subendothelial spaces. The subendothelial accumulation of platelet-monocyte/macrophage aggregates reached peak values at 2 days after PCL. In examining the molecules that may mediate the platelet entry, we found that deletion of platelet C-type lectin-like receptor 2 (CLEC-2) reduced the subendothelial accumulation of platelets and monocytes/macrophages by d-flow, and ameliorated plaque formation in Ldlr-/- mice on high fat diet. Supportively, CLEC-2 deficient platelets diminished their promoting effect on the migration of mouse monocyte/macrophage cell line RAW264.7. Moreover, monocyte podoplanin (PDPN), the only ligand of CLEC-2, was upregulated by d-flow, and the myeloid-specific PDPN deletion mitigated the subendothelial accumulation of platelets and monocytes/macrophages. Conclusions: Our results reveal a new CLEC-2-dependent platelet subendothelial accumulation in response to d-flow to regulate vascular inflammation.


Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Circulação Sanguínea , Endotélio , Feminino , Lectinas Tipo C/genética , Leucócitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Placa Aterosclerótica/metabolismo
12.
Theranostics ; 11(20): 9967-9987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815798

RESUMO

Background: BRCA1 plays critical roles in mammary gland development and mammary tumorigenesis. And loss of BRCA1 induces mammary tumors in a stochastic manner. These tumors present great heterogeneity at both intertumor and intratumor levels. Methods: To comprehensively elucidate the heterogeneity of BRCA1 deficient mammary tumors and the underlying mechanisms for tumor initiation and progression, we conducted bulk and single cell RNA sequencing (scRNA-seq) on both mammary gland cells and mammary tumor cells isolated from Brca1 knockout mice. Results: We found the BRCA1 deficient tumors could be classified into four subtypes with distinct molecular features and different sensitivities to anti-cancer drugs at the intertumor level. Whereas within the tumors, heterogeneous subgroups were classified mainly due to the different activities of cell proliferation, DNA damage response/repair and epithelial-to-mesenchymal transition (EMT). Besides, we reconstructed the BRCA1 related mammary tumorigenesis to uncover the transcriptomes alterations during this process via pseudo-temporal analysis of the scRNA-seq data. Furthermore, from candidate markers for BRCA1 mutant tumors, we discovered and validated one oncogene Mrc2, whose loss could reduce mammary tumor growth in vitro and in vivo. Conclusion: Our study provides a useful resource for better understanding of mammary tumorigenesis induced by BRCA1 deficiency.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Animais , Proteína BRCA1/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Reparo do DNA/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Genes BRCA1/fisiologia , Heterogeneidade Genética , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
13.
Cell Rep ; 37(5): 109943, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731603

RESUMO

The ARID1A subunit of SWI/SNF chromatin remodeling complexes is a potent tumor suppressor. Here, a degron is applied to detect rapid loss of chromatin accessibility at thousands of loci where ARID1A acts to generate accessible minidomains of nucleosomes. Loss of ARID1A also results in the redistribution of the coactivator EP300. Co-incident EP300 dissociation and lost chromatin accessibility at enhancer elements are highly enriched adjacent to rapidly downregulated genes. In contrast, sites of gained EP300 occupancy are linked to genes that are transcriptionally upregulated. These chromatin changes are associated with a small number of genes that are differentially expressed in the first hours following loss of ARID1A. Indirect or adaptive changes dominate the transcriptome following growth for days after loss of ARID1A and result in strong engagement with cancer pathways. The identification of this hierarchy suggests sites for intervention in ARID1A-driven diseases.


Assuntos
Proteínas de Ligação a DNA/deficiência , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/metabolismo , Lesões Pré-Cancerosas/metabolismo , Fatores de Transcrição/deficiência , Transcrição Gênica , Ativação Transcricional , Animais , Sítios de Ligação , Linhagem Celular , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Nucleossomos/genética , Lesões Pré-Cancerosas/genética , Proteólise , Fatores de Tempo , Fatores de Transcrição/genética
14.
J Neuroinflammation ; 18(1): 246, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711216

RESUMO

BACKGROUND: Cognitive deficits are common in patients with sepsis. Previous studies in sepsis-associated encephalopathy (SAE) implicated the C-X-C chemokine receptor type (CXCR) 5. The present study used a mouse model of SAE to examine whether CXCR5 down-regulation could attenuate cognitive deficits. METHODS: Sepsis was induced in adult male C57BL/6 J and CXCR5-/- mice by cecal ligation and puncture (CLP). At 14-18 days after surgery, animals were tested in a Morris water maze, followed by a fear conditioning test. Transmission electron microscopy of hippocampal sections was used to assess levels of autophagy. Primary microglial cultures challenged with lipopolysaccharide (LPS) were used to examine the effects of short interfering RNA targeting CXCR5, and to investigate the possible involvement of the p38MAPK/NF-κB/STAT3 signaling pathway. RESULTS: CLP impaired learning and memory and up-regulated CXCR5 in hippocampal microglia. CLP activated hippocampal autophagy, as reflected by increases in numbers of autophagic vacuoles, conversion of microtubule-associated protein 1 light chain 3 (LC3) from form I to form II, accumulation of beclin-1 and autophagy-related gene-5, and a decrease in p62 expression. CLP also shifted microglial polarization to the M1 phenotype, and increased levels of IL-1ß, IL-6 and phosphorylated p38MAPK. CXCR5 knockout further enhanced autophagy but partially reversed all the other CLP-induced effects, including cognitive deficits. Similar effects on autophagy and cytokine expression were observed after knocking down CXCR5 in LPS-challenged primary microglial cultures; this knockdown also partially reversed LPS-induced up-regulation of phosphorylated NF-κB and STAT3. The p38MAPK agonist P79350 partially reversed the effects of CXCR5 knockdown in microglial cultures. CONCLUSIONS: CXCR5 may act via p38MAPK/NF-κB/STAT3 signaling to inhibit hippocampal autophagy during sepsis and thereby contribute to cognitive dysfunction. Down-regulating CXCR5 can restore autophagy and mitigate the proinflammatory microenvironment in the hippocampus.


Assuntos
Disfunção Cognitiva/metabolismo , NF-kappa B/metabolismo , Receptores CXCR5/deficiência , Fator de Transcrição STAT3/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Autofagia/fisiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/prevenção & controle , Regulação para Baixo/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , NF-kappa B/genética , Receptores CXCR5/genética , Fator de Transcrição STAT3/genética , Encefalopatia Associada a Sepse/genética , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
15.
Mol Cell ; 81(20): 4319-4332.e10, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686316

RESUMO

Microdroplet single-cell ATAC-seq is widely used to measure chromatin accessibility, however, highly scalable and simple sample multiplexing procedures are not available. Here, we present a transposome-assisted single nucleus barcoding approach for ATAC-seq (SNuBar-ATAC) that utilizes a single oligonucleotide adaptor for multiplexing samples during the existing tagmentation step and does not require a pre-labeling procedure. The accuracy and scalability of SNuBar-ATAC was evaluated using cell line mixture experiments. We applied SNuBar-ATAC to investigate treatment-induced chromatin accessibility dynamics by multiplexing 28 mice with lung tumors that received different combinations of chemo, radiation, and targeted immunotherapy. We also applied SNuBar-ATAC to study spatial epigenetic heterogeneity by multiplexing 32 regions from a human breast tissue. Additionally, we show that SNuBar can multiplex single cell ATAC and RNA multiomic assays in cell lines and human breast tissue samples. Our data show that SNuBar is a highly accurate, easy-to-use, and scalable system for multiplexing scATAC-seq and scATAC and RNA co-assay experiments.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Neoplasias Pulmonares/metabolismo , Análise de Célula Única , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos/farmacologia , Quimiorradioterapia , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Feminino , Humanos , Células K562 , Cinética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Camundongos da Linhagem 129 , RNA-Seq , Dosagem Radioterapêutica , Fatores de Transcrição/genética
16.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502391

RESUMO

Extracellular Cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released from cells upon hypoxia and cold-stress. The overall absence of extra- and intracellular CIRP is associated with increased angiogenesis, most likely induced through influencing leukocyte accumulation. The aim of the present study was to specifically characterize the role of eCIRP in ischemia-induced angiogenesis together with the associated leukocyte recruitment. For analyzing eCIRPs impact, we induced muscle ischemia via femoral artery ligation (FAL) in mice in the presence or absence of an anti-CIRP antibody and isolated the gastrocnemius muscle for immunohistological analyses. Upon eCIRP-depletion, mice showed increased capillary/muscle fiber ratio and numbers of proliferating endothelial cells (CD31+/CD45-/BrdU+). This was accompanied by a reduction of total leukocyte count (CD45+), neutrophils (MPO+), neutrophil extracellular traps (NETs) (MPO+CitH3+), apoptotic area (ascertained via TUNEL assay), and pro-inflammatory M1-like polarized macrophages (CD68+/MRC1-) in ischemic muscle tissue. Conversely, the number of regenerative M2-like polarized macrophages (CD68+/MRC1+) was elevated. Altogether, we observed that eCIRP depletion similarly affected angiogenesis and leukocyte recruitment as described for the overall absence of CIRP. Thus, we propose that eCIRP is mainly responsible for modulating angiogenesis via promoting pro-angiogenic microenvironmental conditions in muscle ischemia.


Assuntos
Isquemia/patologia , Neovascularização Fisiológica/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Armadilhas Extracelulares/metabolismo , Inflamação/patologia , Isquemia/metabolismo , Contagem de Leucócitos , Leucócitos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Músculos/metabolismo , Neutrófilos/metabolismo , Proteínas de Ligação a RNA/fisiologia
17.
Mol Hum Reprod ; 27(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34524460

RESUMO

Embryo implantation failure is a major cause of infertility in women of reproductive age and a better understanding of uterine factors that regulate implantation is required for developing effective treatments for female infertility. This study investigated the role of the uterine kisspeptin receptor (KISS1R) in the molecular regulation of implantation in a mouse model. To conduct this study, a conditional uterine knockout (KO) of Kiss1r was created using the Pgr-Cre (progesterone receptor-CRE recombinase) driver. Reproductive profiling revealed that while KO females exhibited normal ovarian function and mated successfully to stud males, they exhibited significantly fewer implantation sites, reduced litter size and increased neonatal mortality demonstrating that uterine KISS1R is required for embryo implantation and a healthy pregnancy. Strikingly, in the uterus of Kiss1r KO mice on day 4 (D4) of pregnancy, the day of embryo implantation, KO females exhibited aberrantly elevated epithelial ERα (estrogen receptor α) transcriptional activity. This led to the temporal misexpression of several epithelial genes [Cftr (Cystic fibrosis transmembrane conductance regulator), Aqp5 (aquaporin 5), Aqp8 (aquaporin 8) and Cldn7 (claudin 7)] that mediate luminal fluid secretion and luminal opening. As a result, on D4 of pregnancy, the lumen remained open disrupting the final acquisition of endometrial receptivity and likely accounting for the reduction in implantation events. Our data clearly show that uterine KISS1R negatively regulates ERα signaling at the time of implantation, in part by inhibiting ERα overexpression and preventing detrimentally high ERα activity. To date, there are no reports on the regulation of ERα by KISS1R; therefore, this study has uncovered an important and powerful regulator of uterine ERα during early pregnancy.


Assuntos
Implantação do Embrião , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Kisspeptina-1/metabolismo , Transcrição Gênica , Útero/metabolismo , Animais , Aquaporina 5/genética , Aquaporina 5/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Claudinas/genética , Claudinas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Receptores de Kisspeptina-1/genética , Transdução de Sinais , Fatores de Tempo
18.
Nat Commun ; 12(1): 5680, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584084

RESUMO

Existing preclinical methods for acquiring dissemination kinetics of rare circulating tumor cells (CTCs) en route to forming metastases have not been capable of providing a direct measure of CTC intravasation rate and subsequent half-life in the circulation. Here, we demonstrate an approach for measuring endogenous CTC kinetics by continuously exchanging CTC-containing blood over several hours between un-anesthetized, tumor-bearing mice and healthy, tumor-free counterparts. By tracking CTC transfer rates, we extrapolated half-life times in the circulation of between 40 and 260 s and intravasation rates between 60 and 107,000 CTCs/hour in mouse models of small-cell lung cancer (SCLC), pancreatic ductal adenocarcinoma (PDAC), and non-small cell lung cancer (NSCLC). Additionally, direct transfer of only 1-2% of daily-shed CTCs using our blood-exchange technique from late-stage, SCLC-bearing mice generated macrometastases in healthy recipient mice. We envision that our technique will help further elucidate the role of CTCs and the rate-limiting steps in metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Neoplasias Pancreáticas/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Transfusão de Sangue/métodos , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Ductal Pancreático/sangue , Linhagem Celular Tumoral , Humanos , Cinética , Neoplasias Pulmonares/sangue , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Metástase Neoplásica , Neoplasias Pancreáticas/sangue , Pontuação de Propensão , RNA-Seq/métodos , Análise de Célula Única/métodos , Carcinoma de Pequenas Células do Pulmão/sangue , Neoplasias Pancreáticas
19.
Am J Pathol ; 191(12): 2080-2090, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508690

RESUMO

Lung inflammation interrupts alveolarization and causes bronchopulmonary dysplasia (BPD). Besides mechanical ventilation and hyperoxia, sepsis contributes to BPD pathogenesis. Adrenomedullin (Adm) is a multifunctional peptide that exerts anti-inflammatory effects in the lungs of adult rodents. Whether Adm mitigates sepsis-induced neonatal lung injury is unknown. The lung phenotype of mice exposed to early postnatal lipopolysaccharide (LPS) was recently shown to be similar to that in human BPD. This model was used to test the hypothesis that Adm-deficient neonatal mice will display increased LPS-induced lung injury than their wild-type (WT) littermates. Adm-deficient mice or their WT littermates were intraperitoneally administered 6 mg/kg of LPS or vehicle daily on postnatal days (PNDs) 3 to 5. The lungs were harvested at several time points to quantify inflammation, alveolarization, and vascularization. The extent of LPS-induced lung inflammation in Adm-deficient mice was 1.6-fold to 10-fold higher than their WT littermates. Strikingly, Adm deficiency induced STAT1 activation and potentiated STAT3 activation in LPS-exposed lungs. The severity of LPS-induced interruption of lung development was also greater in Adm-deficient mice at PND7. At PND14, LPS-exposed WT littermates displayed substantial improvement in lung development, whereas LPS-exposed Adm-deficient mice continued to have decreased lung development. These data indicate that Adm is necessary to decrease lung inflammation and injury and promote repair of the injured lungs in LPS-exposed neonatal mice.


Assuntos
Adrenomedulina/fisiologia , Displasia Broncopulmonar/genética , Adrenomedulina/genética , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/induzido quimicamente , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Feminino , Dosagem de Genes/fisiologia , Lipopolissacarídeos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez
20.
Cell Rep ; 36(9): 109626, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469727

RESUMO

Somatic mutations in spliceosome genes are found in ∼50% of patients with myelodysplastic syndromes (MDS), a myeloid malignancy associated with low blood counts. Expression of the mutant splicing factor U2AF1(S34F) alters hematopoiesis and mRNA splicing in mice. Our understanding of the functionally relevant alternatively spliced target genes that cause hematopoietic phenotypes in vivo remains incomplete. Here, we demonstrate that reduced expression of H2afy1.1, an alternatively spliced isoform of the histone H2A variant gene H2afy, is responsible for reduced B cells in U2AF1(S34F) mice. Deletion of H2afy or expression of U2AF1(S34F) reduces expression of Ebf1 (early B cell factor 1), a key transcription factor for B cell development, and mechanistically, H2AFY is enriched at the EBF1 promoter. Induced expression of H2AFY1.1 in U2AF1(S34F) cells rescues reduced EBF1 expression and B cells numbers in vivo. Collectively, our data implicate alternative splicing of H2AFY as a contributor to lymphopenia induced by U2AF1(S34F) in mice and MDS.


Assuntos
Processamento Alternativo , Linfócitos B/metabolismo , Histonas/metabolismo , Linfopoese , Síndromes Mielodisplásicas/metabolismo , Fator de Processamento U2AF/metabolismo , Animais , Linfócitos B/imunologia , Sítios de Ligação , Estudos de Casos e Controles , Células HEK293 , Histonas/genética , Humanos , Células K562 , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/imunologia , Regiões Promotoras Genéticas , Transdução de Sinais , Fator de Processamento U2AF/genética , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA