Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Food Chem ; 444: 138633, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330607

RESUMO

The present study focused on investigating the stability and in vitro simulation characteristics of oil-in-water (O/W) and oleogel-in-water (Og/W) emulsions. Compared with O/W emulsion, the Og/W emulsion exhibited superior stability, with a more evenly spread droplet distribution, and the Og/W emulsion containing 3 % hemp seed protein (HSP) showed better stability against environmental factors, including heat treatment, ionic strength, and changes in pH. Additionally, the stability of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabinol (CBN) and the in vitro digestion of hemp seed oil (HSO) were evaluated. The half-life of CBN in the Og/W emulsion was found to be 131.82 days, with a degradation rate of 0.00527. The in vitro simulation results indicated that the Og/W emulsion effectively delayed the intestinal digestion of HSO, and the bioaccessibility of Δ9-THC and CBN reached 56.0 % and 58.0 %, respectively. The study findings demonstrated that the Og/W emulsion constructed with oleogel and HSP, exhibited excellent stability.


Assuntos
Cannabis , Extratos Vegetais , Cannabis/metabolismo , Emulsões/metabolismo , Canabinol , Dronabinol , Água , Compostos Orgânicos
2.
Forensic Toxicol ; 42(1): 31-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755669

RESUMO

PURPOSE: According to recent reports, cannabigerol (CBG) concentration level in blood and body fluids may have forensic utility as a highly specific albeit insensitive biomarker of recent cannabis smoking. While the analytical sensitivity of cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC) or cannabinol (CBN) estimation by gas chromatography-mass spectrometry (GC-MS) is similar and sufficiently high, it is exceptionally low in the case of CBG (ca. 25 times lower than for the other mentioned cannabinoids). The purpose of this study is to explain the reasons for the extremely low analytical sensitivity of GC-MS in estimating CBG and to present possible ways of its improvement. METHODS: Nuclear magnetic resonance (NMR) data and GC-MS responses to CBG and its various derivatization and transformation products were studied. RESULTS: The validation data of individual derivatives of CBG and its transformation products were established. CBG silylation/acylation or hydration allows to decrease LOD about 3 times, whereas the formation of pyranic CBG derivative leads to 10-times decrease of LOD. The paper enriches the literature of the subject by providing MS and NMR spectra, not published so far, for derivatives of CBG and its transformation products. The most likely cause of low GC-MS response to CBG is also presented. CONCLUSIONS: The presented results shows that although the signal increase of CBG can be obtained through its derivatization by silylation and/or acylation, the greatest increase is observed in the case of its cyclization to the pyranic CBG form during the sample preparation process. The CBG cyclization procedure is very simple and workable in estimating this cannabinoid in blood/plasma samples.


Assuntos
Canabidiol , Canabinoides , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas , Canabidiol/análise , Canabinol/análise
3.
Basic Clin Pharmacol Toxicol ; 134(3): 293-309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37697481

RESUMO

BACKGROUND: Phytocannabinoids (pCBs) have been shown to inhibit the aggregation and neurotoxicity of the neurotoxic Alzheimer's disease protein beta amyloid (Aß). We characterized the capacity of six pCBs-cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), cannabidivarin (CBDV), cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (Δ9 -THC)-to disrupt Aß aggregation and protect against Aß-evoked neurotoxicity in PC12 cells. METHODS: Neuroprotection against lipid peroxidation and Aß-induced cytotoxicity was assessed using the MTT assay. Transmission electron microscopy was used to visualize pCB effects on Aß aggregation and fluorescence microscopy, with morphometrics and principal component analysis to assess PC12 cell morphology. RESULTS: CBD inhibited lipid peroxidation with no significant effect on Aß toxicity, whilst CBN, CBDV and CBG provided neuroprotection. CBC, CBG and CBN inhibited Aß1-42 -induced neurotoxicity in PC12 cells, as did Δ9 -THC, CBD and CBDV. CBC, CBN and CBDV inhibited Aß aggregation, whilst Δ9 -THC reduced aggregate density. Aß1-42 induced morphological changes in PC12 cells, including a reduction in neuritic projections and rounded cell morphology. CBC and CBG inhibited this effect, whilst Δ9 -THC, CBD and CBDV did not alter Aß1-42 effects on cell morphology. CONCLUSIONS: These findings highlight the neuroprotective activity of CBC, CBG and CBN as novel pCBs associated with variable effects on Aß-evoked neurite damage and inhibition of amyloid ß aggregation.


Assuntos
Canabidiol , Canabinoides , Síndromes Neurotóxicas , Ratos , Animais , Canabinol , Peptídeos beta-Amiloides/toxicidade , Células PC12 , Canabidiol/farmacologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Dronabinol/farmacologia
4.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764262

RESUMO

Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.


Assuntos
Canabinol , Inflamassomos , Humanos , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia , Proteínas do Tecido Nervoso , Conexinas
5.
Front Immunol ; 14: 1240800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680639

RESUMO

Introduction: Extracts and compounds isolated from hemp (Cannabis sativa) are increasingly gaining popularity in the treatment of a number of diseases, with topical formulations for dermatological conditions leading the way. Phytocannabinoids such as ( )-cannabidiol, ( )-cannabinol and ( )-Δ9-tetrahydrocannabivarin (CBD, CBN, and THCV, respectively), are present in variable amounts in the plant, and have been shown to have mostly anti-inflammatory effects both in vitro and in vivo, albeit dominantly in murine models. The role of phytocannabinoids in regulating responses of dendritic cells (DCs) remains unclear. Methods: Our research aimed to investigate the effects of CBD, CBN, and THCV on human DCs differentiated from monocytes (moDCs). moDCs were treated with up to 10 µM of each phytocannabinoid, and their effects on viability, differentiation, and maturation were assessed both alone, and in conjunction with TLR agonists. The effects of CBD on cytokine production, T cell activation and polarization as well as the transcriptome of moDCs was also determined. Results: Phytocannabinoids did not influence the viability of moDCs up to 10 µM, and only CBD had effects on maturational markers of moDCs, and neither compound influenced LPS-induced activation at 10 µM. Since only CBD had measurable effects on moDCs, in our subsequent experiments we tested the effect only of that pCB. On moDCs differentiated in the presence of CBD subsequent activation by LPS induced a markedly different, much more tolerogenic response. CBD-treated moDCs also produced significantly more interleukin (IL)-6, TNFα and, importantly, IL-10 in response to LPS, which shows a shift toward anti-inflammatory signaling, as well as a more robust secretory response in general. To rule out the possibility that these effects of CBD are specific to TLR4 signaling, we determined the effect of CBD on TLR7/8-induced maturation as well, and saw similar, although less marked responses. CBD-treated moDCs were also less efficient at activating naïve T cells after LPS stimulation, further supporting the tolerogenic effect of this phytocannabinoid on moDCs. Reactome pathway analysis showed an inflammatory response to LPS in moDCs, and to a lesser extent to CBD as well. In contrast CBD-treated moDCs responded to LPS with a shift towards a more tolerogenic phenotype, as IL-10 signaling was the most prominently induced pathway in this group. Discussion: Our results show that CBD achieves an anti-inflammatory effect on adaptive immune responses only in the presence of an activating stimuli on moDCs by reprogramming cells during long-term treatment, and not through acute, short-term effects.


Assuntos
Canabidiol , Humanos , Animais , Camundongos , Canabidiol/farmacologia , Interleucina-10 , Lipopolissacarídeos/farmacologia , Monócitos , Diferenciação Celular , Canabinol , Interleucina-6
6.
Biomolecules ; 13(8)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37627228

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein aggregates, known as Lewy bodies. It is known that mitochondria dysfunctions, including impaired localization, transport and mitophagy, represent features of PD. Cannabinoids are arising as new therapeutic strategies against neurodegenerative diseases. In this study, we aimed to evaluate the potential protective effects of cannabinol (CBN) pre-treatment in an in vitro PD model, namely retinoic acid-differentiated SH-SY5Y neuroblastoma cells treated with 1-methyl-4-phenylpyridinium (MPP+). With this aim, we performed a transcriptomic analysis through next-generation sequencing. We found that CBN counteracted the loss of cell viability caused by MPP+ treatment. Then, we focused on biological processes relative to mitochondria functions and found that CBN pre-treatment was able to attenuate the MPP+-induced changes in the expression of genes involved in mitochondria transport, localization and protein targeting. Notably, MPP+ treatment increased the expression of the genes involved in PINK1/Parkin mitophagy, while CBN pre-treatment reduced their expression. The results suggested that CBN can exert a protection against MPP+ induced mitochondria impairment.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Canabinol , Transcriptoma , Mitofagia
7.
Forensic Sci Int ; 349: 111762, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392612

RESUMO

In recent years, the therapeutic use of cannabis products, especially cannabis oils, has increased significantly, due to the pharmacological potential of their cannabinoids, for the treatment of conditions, such as pain management, cancer, and epilepsy. In Argentina, patients with medical prescriptions can access to cannabis oil, through self-cultivation, a third-person (grower or importer), or a civil organization authorized for that purpose. However, these products remain largely unregulated in Argentina, and information available regarding labeling accuracy, especially cannabidiol (CBD)/ Δ9-tetrahydrocannabinol (Δ9-THC) concentrations are inconsistent or nonexistent, nor long-term product stability, and lot to lot variability. Understanding these properties is fundamental if these products are to be used in patients with a determinate pathology. Therefore, we analyzed commercially available cannabis oils (n: 500) in Argentina for qualitative and quantitative cannabinoids content. In order to provide a detailed overview of their cannabinoids profiles, and determine Δ9-THC, CBD, and cannabinol (CBN) concentrations, samples were diluted and analyzed by gas chromatography- mass spectrometry (GC/MS). Most of the samples tested positive for cannabinoids (n: 469) with Δ9-THC and CBD as the predominant cannabinoids. Among products tested, only 29.8% (n: 149) gave specific CBD label claims, and testing indicated a CBD tested positive of 70.5% (n: 105). For products (n: 17) with a THC-free label claim, testing indicated 76.5% (n: 13) of Δ9-THC positive, and cannabinoids were not detected in four products. Δ9-THC concentrations ranged from 0.1 to 143.0 mg/mL, CBD concentrations from 0.1 to 125.3 mg/mL, and CBN concentrations from 0.04 to 60.10 mg/mL; CBN/ Δ9-THC ratios ranged from 0.0012 to 2.31, and CBD/ Δ9-THC ratios from 0.0008 to 178.87. Furthermore, the (Δ9-THC + CBN)/CBD ratio of most samples was greater than one. In summary, our results indicate that cannabis oil products show wide variability in cannabinoids content, purity, and labeling.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Canabinoides/análise , Dronabinol/análise , Argentina , Canabinol/análise , Agonistas de Receptores de Canabinoides , Óleos
8.
Food Res Int ; 170: 112996, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316068

RESUMO

Δ9-tetrahydrocannabinol (Δ9-THC) in hemp seed oil is a psychoactive cannabinoid, and the content of Δ9-THC can be reduced. Density functional theory (DFT) was used to simulate the degradation path of Δ9-THC, and the ultrasonic treatment was used to degrade the Δ9-THC in hemp seed oil. Results found that the reaction of Δ9-THC degradation to cannabinol (CBN) was a spontaneous exothermic reaction, which required a certain amount of external energy to initiate reaction process. Through the surface electrostatic potential analysis, the minimum value of electrostatic potential of Δ9-THC was -37.68 kcal/mol, and the maximum value was 40.98 kcal/mol. The frontier molecular orbitals analysis found that the energy level difference of Δ9-THC was lower than that of CBN, indicating that the reactivity of Δ9-THC was stronger. The degradation process of Δ9-THC could be divided into two stages, which needed to cross the reaction energy barriers of 3197.40 and 3087.24 kJ/mol, respectively. Ultrasonic treatment was used to degrade Δ9-THC standard solution, it was found that Δ9-THC can be effectively degraded into CBN through intermediate. Subsequently, ultrasonic technology was applied to hemp seed oil, under the conditions of ultrasonic power 150 W and ultrasonic time 21 min, the Δ9-THC was degraded to 10.00 mg/kg.


Assuntos
Canabinol , Dronabinol , Teoria da Densidade Funcional , Eletricidade Estática
9.
J Pharm Biomed Anal ; 231: 115412, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087774

RESUMO

A quantitative analytical procedure was developed and validated by the use of Ultra- Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MS/MS) for the determination of Cannabidiol (CBD), Cannabinol (CBN), Δ9-Tetrahydrocannabinol (Δ9-THC), Cannabichromene (CBC), Cannabigerol (CBG) and 11-Nor- 9- Carboxy- Tetrahydrocannabinol (THC-COOH) in an unconventional biological matrix, cerumen. All the investigated calibration curves were characterized by high correlation values (R2 ≥ 0.9965). The LODs and LOQs ranged from 0.004 to 0.009 µg g-1 and 0.012-0.029 µg g-1, respectively. Intra-assay and inter-assay precision were found to be 0.6-2.5%, and 0.8-2.2%, respectively. All recovery values of cannabinoids, with the use of the optimum cotton swab, at low (0.008 µg g-1 of cerumen), medium (0.037 µg g-1of cerumen) and high (0.16 µg g-1 of cerumen) control levels, were estimated to be above 86%. The method developed here permitted the analysis of real cerumen samples obtained from fourteen cannabis users. In twelve out of fourteen cases, Δ9-THC was found to be positive, while in six cases, three major cannabinoids, CBN, CBG and Δ9-THC were quantified at concentrations 0.02-0.21 µg g-1, 0.01-0.24 µg g-1 and 0.01-4.86 µg g-1, respectively. Subject #8 has the highest amount of the detected substances in both left and right ear, with Δ9-THC at a concentration of 1.85 and 4.86 µg g-1, CBG 0.06 and 0.24 µg g-1, CBN 0.10 and 0.21 µg g-1, respectively. In addition, a detection window for the substances Δ9-Tetrahydrocannabinol, Cannabinol and Cannabigerol, in cerumen, was defined with success. In this case, Δ9-THC reached a maximum detection frame of up to fifteen days after smoking 0.5 g of marijuana cigarette. ANOVA-one-way analysis also indicated that the average earwax production of non-cannabis users differs significantly from the one of cannabis users (p = 0.048, <0.05). On the other hand, no significant difference was noticed between male and female users as the p value exceeded 0.05. In addition, no significant effect was observed on earwax production in regard to age, frequency and the last time of use (p > 0.05). These last three factors proved to have a significant impact on cannabinoids concentrations, since p values were less than 0.05.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Masculino , Feminino , Dronabinol/análise , Canabinol/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cerume/química , Canabinoides/análise , Biomarcadores
10.
J Pharm Biomed Anal ; 230: 115388, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086553

RESUMO

The knowledge about the stability of compounds and possible ways of their transformation in the process of sample preparation for analysis and during analysis itself is very helpful in the assessment of possible errors which can appear when an accurate and precise estimation of compound concentration in tested samples is attempted. The present paper shows that a significant amount of CBD present in the blood/plasma sample analyzed by means of GC transforms in the hot GC injector not only to 9α-hydroxyhexahydrocannabinol, 8-hydroxy-iso-hexahydrocannabinol, Δ9-tetrahydrocannabinol, Δ8-tetrahydrocannabinol, and cannabinol but also to the trichloroacetic esters of Δ9-THC and Δ8-THC and, unexpectedly, to their dichloroacetic esters when trichloroacetic acid is used as protein precipitation agent. The increase of GC injector temperature favors the formation of dichloroacetic esters of Δ9-THC and Δ8-THC in relation to their trichloroacetic ones. The appearance of dichloroacetic esters of Δ9-THC and Δ8-THC among CBD transformation products is probably the result of the thermal decomposition of their trichloroacetic esters. The transformation of trichloroacetic derivatives of organic compounds into their dichloroacetic derivatives in GC injector has not been reported yet. The instability of trichloroacetic derivatives of Δ8-/Δ9-THC during their GC analysis is probably accounts for the lack of their GC-MS spectra in the databases. NMR, GC-MS and LC-MS spectra of the newly discovered derivatives constitute an important element of the work. The obtained results demonstrate why the use of trichloroacetic acid for plasma samples deproteinization should be avoided when CBD and/or THC are determined by GC.


Assuntos
Canabidiol , Canabidiol/análise , Dronabinol , Artefatos , Ácido Tricloroacético , Canabinol/análise , Canabinol/química
11.
Drug Test Anal ; 15(6): 689-694, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36597181

RESUMO

In the last 2 years, the number of shops selling CBD-rich THC-deprived cannabis flowers (CrTd) has increased considerably in France as in many European countries. The objective of this study was to determine the actual composition of the samples sold in these stores and to discuss regulatory consequences that may affect users. Samples were provided from shops in the region Provence-Alpes Cote d'Azur (PACA), France. Pictures of the samples were taken before they were weighed then crushed. Twenty milligrams were diluted in 10 ml heptane ethyl acetate (7:1; v:v) for analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was validated according to SWGTOX guidelines for the quantification of cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN). Thirty-nine samples obtained between November 2021 and January 2022 in the PACA region were analyzed in this study. Mean content was 0.32% (0.03%-0.77%; STDV = 0.17%; n = 39) for THC, 2.23% (0.01%-5.97%; STDV = 1.29%; n = 39) for CBD and 0.01% (0.004%-0.025%; STDV = 0.01%; n = 19) for CBN. THC content over the threshold defined by the European legislation (>0.3%) was found in 18 of the 39 samples analyzed together with a CBD content <1% in nine samples (23%). None of the products analyzed had health risk messages on the packaging. The consumption of these products may lead to the presence of THC in biological fluids, which can be detected by screening. Users may then find themselves in breach of the law particularly when driving. Consumers should therefore be informed both about the actual composition of these products and about the legal and health risks they run.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Canabinoides/análise , Cannabis/química , Cromatografia Líquida , Inflorescência/química , Espectrometria de Massas em Tandem , Canabinol/análise , Canabidiol/análise , Agonistas de Receptores de Canabinoides , França , Dronabinol/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-36232059

RESUMO

BACKGROUND: The cause of the worldwide doubling-tripling of testicular cancer rates (TCRs) in recent decades is unknown. Previous cohort studies associated cannabis use with TCR including dose-response relationships but the contribution of cannabis to TCRs at the population level is unknown. This relationship was tested by analyzing annual trends across US states and formally assessed causality. Four US datasets were linked at state level: age-adjusted TCRs from Centers for Disease Control Surveillance Epidemiology and End Results database; drug use data from annual National Survey of Drug Use and Health including 74.1% response rate; ethnicity and median household income data from the US Census Bureau; and cannabinoid concentration data from Drug Enforcement Agency reports. Data was processed in R in spatiotemporal and causal inference protocols. RESULTS: Cannabis-use quintile scatterplot-time and boxplots closely paralleled those for TCRs. The highest cannabis-use quintile had a higher TCR than others (3.44 ± 0.05 vs. 2.91 ± 0.2, mean ± S.E.M., t = 10.68, p = 1.29 × 10-22). A dose-response relationship was seen between TCR and Δ9-tetrahydrocannabinol (THC), cannabinol, cannabigerol, and cannabichromene (6.75 × 10-9 < p < 1.83 × 10-142). In a multivariate inverse probability-weighted interactive regression including race and ethnic cannabis exposure (ECE), ECE was significantly related to TCR (ß-estimate = 0.89 (95%C.I. 0.36, 2.67), p < 2.2 × 10-16). In an additive geospatiotemporal model controlling for other drugs, cannabis alone was significant (ß-estimate = 0.19 (0.10, 0.28), p = 3.4 × 10-5). In a full geospatial model including drugs, income and ethnicity cannabinoid exposure was significant (cannabigerol: ß-estimate = 1.39 (0.024, 2.53), p = 0.0017); a pattern repeated at two spatial and two temporal lags (cannabigerol: ß-estimate = 0.71 (0.05, 1.37), p = 0.0.0350; THC: ß-estimate = 23.60 (11.92, 35.29), p = 7.5 × 10-5). 40/41 e-Values > 1.25 ranged up to 1.4 × 1063 and 10 > 1000 fitting causal relationship criteria. Cannabis liberalization was associated with higher TCRs (ChiSqu. = 312.2, p = 2.64 × 10-11). Rates of TC in cannabis-legal states were elevated (3.36 ± 0.09 vs. 3.01 ± 0.03, t = 4.69, p = 4.86 × 10-5). CONCLUSIONS: Cannabis use is closely and causally associated with TCRs across both time and space and higher in States with liberal cannabis legislation. Strong dose-response effects were demonstrated for THC, cannabigerol, cannabinol, cannabichromene and cannabidiol. Cannabinoid genotoxicity replicates all major steps to testicular carcinogenesis including whole-genome doubling, chromosomal arm excision, generalized DNA demethylation and chromosomal translocations thereby accelerating the pathway to testicular carcinogenesis by several decades.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Neoplasias Testiculares , Analgésicos , Canabinol , Carcinogênese , Dronabinol , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas , Receptores de Antígenos de Linfócitos T , Neoplasias Testiculares/epidemiologia
13.
J Am Soc Mass Spectrom ; 33(10): 1840-1849, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149251

RESUMO

Electrochemically deposited electroactive polymer (EAP) films were investigated for their potential to enhance the performance of ambient ionization mass spectrometry (MS). Several EAPs of varying hydrophobicity were evaluated, including the superhydrophobic polymer poly[3,4-(2-dodecylethylenedioxy)thiophene] (PEDOT-C12). The EAPs were electropolymerized onto indium tin oxide-coated glass, placed in front of the inlet of a mass spectrometer, and charged to 3.5-4.5 kV. Analyte solutions were then applied to the surface, initiating ionization events. Analytes including peptides and small molecule pharmaceuticals were studied in 0.1% formic acid in methanol/water ("spray solvent") as well as in synthetic biological fluid matrices, using both EAP spray ionization (EAPSI) and paper spray ionization (PSI). Each EAPSI analysis required as little as 0.1 µL of solution, and the resulting sprays were stable and reproducible. The sensitivity, limit of detection (LOD), and limit of quantification (LOQ) were evaluated using bradykinin, cannabinol, and cannabidiol, which were prepared in pure solvents, artificial urine, and artificial saliva. The limits of detection and quantitation for EAPSI were improved relative to PSI by 1-2 orders of magnitude for analytes prepared in methanol/water and on the same order of magnitude as PSI for analytes prepared in artificial saliva and urine. This EAP-based spray ionization technique offers possibilities for rapid MS analysis with small sample sizes, high accuracy, and miniaturization of MS instruments.


Assuntos
Canabidiol , Polímeros , Bradicinina , Canabinol , Espectrometria de Massas/métodos , Metanol , Peptídeos , Preparações Farmacêuticas , Saliva Artificial , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Tiofenos , Água
14.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080271

RESUMO

Cannabis is the most consumed illicit drug worldwide, and its legal status is a source of concern. This study proposes a rapid procedure for the simultaneous quantification of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), cannabidiol (CBD), and cannabinol (CBN) in urine samples. Microextraction by packed sorbent (MEPS) was used to pre-concentrate the analytes, which were detected by gas chromatography-mass spectrometry. The procedure was previously optimized, and the final conditions were: conditioning with 50 µL methanol and 50 µL of water, sample load with two draw-eject cycles, and washing with 310 µL of 0.1% formic acid in water with 5% isopropanol; the elution was made with 35 µL of 0.1% ammonium hydroxide in methanol. This fast extraction procedure allowed quantification in the ranges of 1-400 ng/mL for THC and CBD, 5-400 ng/mL for CBN and 11-OH-THC, and 10-400 ng/mL for THC-COOH with coefficients of determination higher than 0.99. The limits of quantification and detection were between 1 and 10 ng/mL using 0.25 mL of sample. The extraction efficiencies varied between 26 and 85%. This analytical method is the first allowing the for determination of cannabinoids in urine samples using MEPS, a fast, simple, and low-cost alternative to conventional techniques.


Assuntos
Canabidiol , Canabinoides , Canabidiol/análise , Canabinoides/análise , Canabinol/análise , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metanol/análise , Água
15.
J Anal Toxicol ; 46(8): 882-890, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-35770374

RESUMO

Traditionally, smoking has been the predominant method for administering cannabis, but alternative routes of administration have become more prevalent. Additionally, research examining urinary cannabinoid excretion profiles has primarily focused on 11-nor-9-carboxy-∆9-tetrahydrocannabinol (∆9-THC-COOH), a metabolite of ∆9-tetrahydrocannabinol (∆9-THC), as the primary analyte. The aim of the current study was to characterize the urinary excretion profile of ∆9-THC-COOH, ∆9-THC, ∆8-tetrahydrocannabinol (∆8-THC), 11-hydroxy-∆9-tetrahydrocannabinol (11-OH-∆9-THC), ∆9-tetrahydrocannabivarin (THCV), 11-nor-∆9-tetrahydrocannabivarin-9-carboxlic acid (THCV-COOH), cannabidiol (CBD), cannabinol (CBN) and 8,11-dihydroxytetrahydrocannabinol (8,11-diOH-∆9-THC) following controlled administration of both oral and vaporized cannabis. Participants (n = 21, 11 men/10 women) who were infrequent cannabis users ingested cannabis-containing brownies (0, 10 and 25 mg ∆9-THC) and inhaled vaporized cannabis (0, 5 and 20 mg ∆9-THC) across six double-blind outpatient sessions. Urinary concentrations of ∆9-THC analytes were measured at baseline and for 8 h after cannabis administration. Sensitivity, specificity and agreement between the three immunoassays (IAs) for ∆9-THC-COOH (cutoffs of 20, 50 and 100 ng/mL) and liquid chromatography-tandem mass spectrometry (LC-MS-MS) analyses (confirmatory cutoff concentrations of 15 ng/mL) were assessed. Urinary concentrations for ∆9-THC-COOH, ∆9-THC, 11-OH-∆9-THC, THCV, CBN and 8,11-diOH-∆9-THC all peaked at 5-6 h and 4 h following oral and vaporized cannabis administration, respectively. At each active dose, median maximum concentrations (Cmax) for detected analytes were quantitatively higher after oral cannabis administration compared to vaporized. Using current recommended federal workplace drug-testing criteria (screening via IA with a cutoff of ≥50 ng/mL and confirmation via LC-MS-MS at a cutoff of ≥15 ng/mL), urine specimens tested positive for ∆9-THC-COOH in 97.6% of oral sessions and 59.5% of vaporized sessions with active ∆9-THC doses. These data indicate that while ∆9-THC-COOH may serve as the most consistent confirmatory analyte under the current drug-testing guidelines, future work examining 11-OH-∆9-THC under similar parameters could yield an alternative analyte that may be helpful in distinguishing between licit and illicit cannabis products.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Administração Oral , Analgésicos , Canabinoides/urina , Canabinol , Cannabis/química , Dronabinol , Feminino , Humanos , Masculino , Detecção do Abuso de Substâncias/métodos
16.
Andrologia ; 54(8): e14454, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35524041

RESUMO

There have been conflicting reports on the impact of Cannabis sativa impact on reproductive function. Hence this study was aimed to ascertain the impact of tetrahydrocannabinol (THC) and cannabidiol (CBD) binding affinity on human androgen receptor (AR) via computational molecular dynamic simulation. The human AR coordinate in this study is derived from human AR in complex with the ligand metribolone (R18) (PBD ID: 1E3G) template using (MODELER version. 9.15). CBD (PubChem CID: 644019), and THC (PubChem CID: 16078) 2D structures were retrieved from PubChem and docked (Autodock-Vina inbuilt in PyMol into the active site of human AR using the coordinates of the co-crystalized ligand (R18). All atomic representations in this study were created using visual molecular dynamics (VMD) tools. The result revealed that neither CBD nor THC bear significant 2D similarity with R18. Despite the diversity within the chemical space, both CBD and THC poses bond flexibility required to bind avidly to AR with the docking scores comparable to R18. In fully bound state, the three compounds engage the AR pocket hydrophobic residues such as L701, L704, and L707, and aromatic residues such as F764. Polar contacts with T877 observed in R18 bound state is avoided in the THC and CBD bound states. Moreso, the results revealed that CBD has lesser binding energy compared to THC and R18 compound which serves as standard. This study hypothesized that CBD and THC binds complimentarily to the pocket AR, indicating a likely inhibition of reproductive function and prostate cancer progression.


Assuntos
Canabidiol , Canabinol , Canabidiol/química , Canabidiol/farmacologia , Dronabinol/efeitos adversos , Dronabinol/química , Humanos , Ligantes , Masculino , Receptores Androgênicos
17.
J Chromatogr A ; 1671: 463020, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35405405

RESUMO

The knowledge of compounds stability in the process of sample preparation for analysis and during analysis itself helps assess the accuracy and precision of estimating their concentration in tested samples. The present paper shows that a significant amount of CBD present in the blood/plasma sample analyzed by means of GC transforms in the hot GC injector not only to 9α-hydroxyhexahydrocannabinol, 8-hydroxy-iso-hexahydrocannabinol, delta-9-tetrahydrocannabinol, Δ8-tetrahydrocannabinol, and cannabinol but also to the trifluoroacetic esters of Δ9-THC and Δ8-THC, when trifuoroacetic acid is used as protein precipitation agent. The amount of those newly revealed CBD transformation products depends on the GC injector temperature and on the extrahent type when extracts of the supernatants centrifuged from human plasma samples are analyzed after their preliminary protein precipitation by trifuoroacetic acid. Although trifuoroacetic acid as a protein precipitating agent has many disadvantages, it is quite often used for this purpose due to its very high protein precipitation efficiency. The results presented in the study demonstrate why the use of trifuoroacetic acid for plasma samples deproteinization should be avoided when CBD is determined by GC.


Assuntos
Canabidiol , Artefatos , Canabidiol/análise , Canabinol/análise , Canabinol/química , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos
18.
Drug Test Anal ; 14(7): 1223-1233, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35187817

RESUMO

Cannabis is the most frequently consumed illegal substance worldwide. More recently, an increasing number of legal cannabis products low in psychoactive Δ9 -tetrahydrocannabinol (THC) but high in non-intoxicating cannabidiol (CBD) are being more widely consumed. While the detection and quantification of THC and its metabolites in biological matrices is an important forensic-toxicological task, additional detection of CBD is also important, for example, when examining the plausibility of consumer's statements. This report describes the method validation for the quantitative determination of THC and its two major metabolites, 11-hydroxy-THC (OH-THC) and 11-nor-9-carboxy-THC (THC-COOH), as well as CBD and cannabinol (CBN) in whole blood and urine. The method employs automated on-line solid phase extraction coupled to gas chromatography tandem mass spectrometry (GC-MS/MS). The method was fully validated according to guidelines of the Swiss Society of Legal Medicine (SGRM) and the Society of Toxicological and Forensic Chemistry (GTFCh). The method fulfilled the validation criteria regarding analytical limits, accuracy and precision, extraction efficacy, and sample stability. The limits of detection (LODs) in whole blood and urine were 0.15 ng/mL for THC, OH-THC and CBD, 0.1 ng/mL for CBN, and 1.0 ng/mL for THC-COOH. The limits of quantification (LOQ) in whole blood and urine were 0.3 ng/mL for THC, OH-THC and CBD, 0.2 ng/mL for CBN, and 3.0 ng/mL for THC-COOH. The fully validated and automated method allows sensitive and robust measurement of cannabinoids in whole blood and urine. Detection of CBD provides additional information regarding consumed products.


Assuntos
Canabidiol , Canabinoides , Canabidiol/análise , Canabinoides/análise , Canabinol/análise , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos
19.
Biochim Biophys Acta Mol Basis Dis ; 1868(3): 166325, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921975

RESUMO

OBJECTIVES: Glaucoma is characterized by progressive damage of the retinal ganglion cells (RGCs), resulting in irreversible vision loss. Cannabinoids (CBs) ameliorate several factors that contribute to the progression of glaucoma, including increased intraocular pressure (IOP), degeneration of RGC and optical nerve (ON) damage. However, a direct correlation of specific CBs with the molecular events pertaining to glaucoma pathology is not well established. Therefore, this study aims to evaluate the role of cannabinol (CBN) on RGC protection, modulation of IOP, and its effects on the level of extracellular matrix (ECM) proteins using both in vitro and in vivo models of glaucoma. METHODS AND RESULTS: When exposed to elevated hydrostatic pressure, CBN, in a dose-dependent manner, protected differentiated mouse 661W retinal ganglion precursor-like cells from pressure-induced toxicity. In human trabecular meshwork cells (hTM), CBN attenuated changes in the ECM proteins, including fibronectin and α-smooth muscle actin (α-SMA), as well as mitogen-activated protein kinases (phospho-ERK1/2) in the presence or absence of transforming growth factor-beta 2 (TGF-ß2) induced stress. Ocular pharmacokinetic parameters were evaluated post-intravitreal (IVT) CBN delivery in vivo. Furthermore, we demonstrated that IVT-administered CBN improved pattern electroretinogram (pERG) amplitudes and reduced IOP in a rat episcleral vein laser photocoagulation model of glaucoma. CONCLUSION: CBN promotes neuroprotection, abrogates changes in ECM protein, and normalizes the IOP levels in the eye. Therefore, our observations in the present study indicate a therapeutic potential for CBN in the treatment of glaucoma.


Assuntos
Canabinol/farmacologia , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Pressão Intraocular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Animais , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Camundongos , Ratos , Ratos Wistar , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/metabolismo
20.
Chemosphere ; 289: 133012, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838836

RESUMO

Cannabis, a genus of perennial indigenous plants is well known for its recreational and medicinal activities. Cannabis and its derivatives have potential therapeutic activities to treat epilepsy, anxiety, depression, tumors, cancer, Alzheimer's disease, Parkinson's disease, to name a few. This article reviews some recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes. The biochemistry of some notable cannabinoids such as tetrahydrocannabinol, cannabidiol, cannabinol, cannabigerol, cannabichromene and their carboxylic acid derivatives is explained in the context of therapeutic activities. The medicinal features of Cannabis-derived terpenes are elucidated for treating several neuro and non-neuro disorders. Different extraction techniques to recover cannabinoids are systematically discussed. Besides the medicinal activities, the traditional and recreational utilities of Cannabis and its derivatives are presented. A brief note on the legalization of Cannabis-derived products is provided. This review provides comprehensive knowledge about the medicinal properties, recreational usage, extraction techniques, legalization and some prospects of cannabinoids and terpenes extracted from Cannabis.


Assuntos
Canabidiol , Cannabis , Canabinol , Dronabinol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA