Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Physiol Rep ; 12(14): e16139, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016176

RESUMO

The monocyte-macrophage system plays an important role in phagocytosis of pathogens and cellular debris following infection or tissue injury in several pathophysiological conditions. We examined ENaC/ASIC subunit transcript expression and the importance of select subunits in migration of bone marrow derived monocytes (freshly isolated) and macrophages (monocytes differentiated in culture). We also examined the effect of select subunit deletion on macrophage phenotype. BM monocytes were harvested from the femurs of male and female WT and KO mice (6-12 weeks of age). Our results show that α, ß, γENaC, and ASIC1-5 transcripts are expressed in BM macrophages and monocytes to varying degrees. At least αENaC, ßENaC, and ASIC2 subunits contribute to chemotactic migration responses in BM monocyte-macrophages. Polarization markers (CD86, soluble TNFα) in BM macrophages from mice lacking ASIC2a plus ßENaC were shifted towards the M1 phenotype. Furthermore, select M1 phenotypic markers were recovered with rescue of ßENaC or ASIC2. Taken together, these data suggest that ßENaC and ASIC2 play an important role in BM macrophage migration and loss of ßENaC and/or ASIC2 partially polarizes macrophages to the M1 phenotype. Thus, targeting ENaC/ASIC expression in BM macrophages may regulate their ability to migrate to sites of injury.


Assuntos
Canais Iônicos Sensíveis a Ácido , Quimiotaxia , Canais Epiteliais de Sódio , Macrófagos , Monócitos , Animais , Canais Epiteliais de Sódio/metabolismo , Canais Epiteliais de Sódio/genética , Macrófagos/metabolismo , Masculino , Camundongos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Feminino , Monócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células da Medula Óssea/metabolismo , Células Cultivadas
2.
Cell Mol Life Sci ; 81(1): 266, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880807

RESUMO

Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels that play a role in neurotransmission and pain sensation. The snake venom-derived peptides, mambalgins, exhibit potent analgesic effects in rodents by inhibiting central ASIC1a and peripheral ASIC1b. Despite their distinct species- and subtype-dependent pharmacology, previous structure-function studies have focussed on the mambalgin interaction with ASIC1a. Currently, the specific channel residues responsible for this pharmacological profile, and the mambalgin pharmacophore at ASIC1b remain unknown. Here we identify non-conserved residues at the ASIC1 subunit interface that drive differences in the mambalgin pharmacology from rat ASIC1a to ASIC1b, some of which likely do not make peptide binding interactions. Additionally, an amino acid variation below the core binding site explains potency differences between rat and human ASIC1. Two regions within the palm domain, which contribute to subtype-dependent effects for mambalgins, play key roles in ASIC gating, consistent with subtype-specific differences in the peptides mechanism. Lastly, there is a shared primary mambalgin pharmacophore for ASIC1a and ASIC1b activity, with certain peripheral peptide residues showing variant-specific significance for potency. Through our broad mutagenesis studies across various species and subtype variants, we gain a more comprehensive understanding of the pharmacophore and the intricate molecular interactions that underlie ligand specificity. These insights pave the way for the development of more potent and targeted peptide analogues required to advance our understating of human ASIC1 function and its role in disease.


Assuntos
Canais Iônicos Sensíveis a Ácido , Venenos Elapídicos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Animais , Humanos , Ratos , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Venenos Elapídicos/genética , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Xenopus laevis , Peptídeos
3.
Life Sci ; 351: 122853, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889841

RESUMO

AIMS: Activation of central respiratory chemoreceptors provides excitatory drive to both respiratory and sympathetic outputs. The enhanced respiratory-sympathetic coupling contributes to the onset and development of hypertension. However, the specific central targets and molecular mechanisms involved in this process remain elusive. This study aimed to investigate the role of acid-sensing ion channel 1 (ASIC1) in nucleus tractus solitarii (NTS) neurons in CO2-stimulated cardiorespiratory effects in spontaneously hypertensive rats (SHRs). MAIN METHODS: Respiration and blood pressure of conscious rats were recorded by whole-body plethysmography and telemetry, respectively. Western blot was used to detect the expression difference of ASIC1 protein in NTS region between Wistar-Kyoto (WKY) rats and SHRs. Excitability of NTS neurons were assessed by extracellular recordings. KEY FINDINGS: Compared to WKY rats, the enhanced CO2-stimulated cardiopulmonary effect and up-regulation of ASIC1 in the NTS were already observed in 4-week-old prehypertensive SHRs. Furthermore, specific blockade of ASIC1 effectively attenuated the CO2-stimulated increase in firing rate of NTS neurons in anesthetized adult SHRs. Intracerebroventricular injections of the ASIC1a blocker PcTx1 or knockdown Asic1 in NTS neurons significantly reduced the heightened CO2-stimulated ventilatory response, and diminished the CO2-stimulated increase in arterial pressure and heart rate in adult SHRs. SIGNIFICANCE: These findings showed that dysregulated ASIC1 signaling in the NTS contribute to the exaggerated CO2-stimulated cardiorespiratory effects observed in SHRs.


Assuntos
Canais Iônicos Sensíveis a Ácido , Pressão Sanguínea , Dióxido de Carbono , Hipertensão , Neurônios , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Núcleo Solitário , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Núcleo Solitário/metabolismo , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , Dióxido de Carbono/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Respiração/efeitos dos fármacos , Peptídeos , Venenos de Aranha
4.
Pflugers Arch ; 476(6): 923-937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627262

RESUMO

Fast growing solid tumors are frequently surrounded by an acidic microenvironment. Tumor cells employ a variety of mechanisms to survive and proliferate under these harsh conditions. In that regard, acid-sensitive membrane receptors constitute a particularly interesting target, since they can affect cellular functions through ion flow and second messenger cascades. Our knowledge of these processes remains sparse, however, especially regarding medulloblastoma, the most common pediatric CNS malignancy. In this study, using RT-qPCR, whole-cell patch clamp, and Ca2+-imaging, we uncovered several ion channels and a G protein-coupled receptor, which were regulated directly or indirectly by low extracellular pH in DAOY and UW228 medulloblastoma cells. Acidification directly activated acid-sensing ion channel 1a (ASIC1a), the proton-activated Cl- channel (PAC, ASOR, or TMEM206), and the proton-activated G protein-coupled receptor OGR1. The resulting Ca2+ signal secondarily activated the large conductance calcium-activated potassium channel (BKCa). Our analyses uncover a complex relationship of these transmembrane proteins in DAOY cells that resulted in cell volume changes and induced cell death under strongly acidic conditions. Collectively, our results suggest that these ion channels in concert with OGR1 may shape the growth and evolution of medulloblastoma cells in their acidic microenvironment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Meduloblastoma , Receptores Acoplados a Proteínas G , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Concentração de Íons de Hidrogênio , Tamanho Celular , Morte Celular , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Cálcio/metabolismo , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia
5.
Biophys J ; 123(14): 2122-2135, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38549370

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to fast synaptic transmission and have roles in fear conditioning and nociception. Apart from activation at low pH, ASIC1a also undergoes several types of desensitization, including acute desensitization, which terminates activation; steady-state desensitization, which occurs at sub-activating proton concentrations and limits subsequent activation; and tachyphylaxis, which results in a progressive decrease in response during a series of activations. Structural insights from a desensitized state of ASIC1 have provided great spatial detail, but dynamic insights into conformational changes in different desensitizing conditions are largely missing. Here, we use electrophysiology and voltage-clamp fluorometry to follow the functional changes of the pore along with conformational changes at several positions in the extracellular and upper transmembrane domain via cysteine-labeled fluorophores. Acute desensitization terminates activation in wild type, but introducing an N414K mutation in the ß11-12 linker of mouse ASIC1a interfered with this process. The mutation also affected steady-state desensitization and led to pronounced tachyphylaxis. Although the extracellular domain of this mutant remained sensitive to pH and underwent pH-dependent conformational changes, these conformational changes did not necessarily lead to desensitization. N414K-containing channels also remained sensitive to a known peptide modulator that increases steady-state desensitization, indicating that the mutation only reduced, but not precluded, desensitization. Together, this study contributes to our understanding of the fundamental properties of ASIC1a desensitization, emphasizing the complex interplay between the conformational changes of the extracellular domain and the pore during channel activation and desensitization.


Assuntos
Canais Iônicos Sensíveis a Ácido , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Animais , Camundongos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Conformação Proteica , Mutação , Domínios Proteicos , Xenopus laevis
6.
Carcinogenesis ; 45(6): 399-408, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38306794

RESUMO

Hepatocellular carcinoma (HCC) exhibits a high mortality rate due to its high invasion and metastatic nature, and the acidic microenvironment plays a pivotal role. Acid-sensing ion channel 1 (ASIC1) is upregulated in HCC tissues and facilitates tumor progression in a pH-dependent manner, while the specific mechanisms therein remain currently unclear. Herein, we aimed to investigate the underlying mechanisms by which ASIC1 contributes to the development of HCC. Using bioinformatics analysis, we found a significant association between ASIC1 expression and malignant transformation of HCC, such as poor prognosis, metastasis and recurrence. Specifically, ASIC1 enhanced the migration and invasion capabilities of Li-7 cells in the in vivo experiment using an HCC lung metastasis mouse model, as well as in the in vitro experiments such as wound healing assay and Transwell assay. Furthermore, our comprehensive gene chip and molecular biology experiments revealed that ASIC1 promoted HCC migration and invasion by activating the PRKACA/AP-1 signaling pathway. Our findings indicate that targeting ASIC1 could have therapeutic potential for inhibiting HCC progression.


Assuntos
Canais Iônicos Sensíveis a Ácido , Carcinoma Hepatocelular , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Invasividade Neoplásica , Transdução de Sinais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Camundongos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Masculino , Prognóstico , Proliferação de Células
7.
Pflugers Arch ; 476(4): 659-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175291

RESUMO

It is increasingly appreciated that the acidic microenvironment of a tumour contributes to its evolution and clinical outcomes. However, our understanding of the mechanisms by which tumour cells detect acidosis and the signalling cascades that it induces is still limited. Acid-sensing ion channels (ASICs) are sensitive receptors for protons; therefore, they are also candidates for proton sensors in tumour cells. Although in non-transformed tissue, their expression is mainly restricted to neurons, an increasing number of studies have reported ectopic expression of ASICs not only in brain cancer but also in different carcinomas, such as breast and pancreatic cancer. However, because ASICs are best known as desensitizing ionotropic receptors that mediate rapid but transient signalling, how they trigger intracellular signalling cascades is not well understood. In this review, we introduce the acidic microenvironment of tumours and the functional properties of ASICs, point out some conceptual problems, summarize reported roles of ASICs in different cancers, and highlight open questions on the mechanisms of their action in cancer cells. Finally, we propose guidelines to keep ASIC research in cancer on solid ground.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neoplasias , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Prótons , Transdução de Sinais , Neurônios/metabolismo , Microambiente Tumoral
8.
Pflugers Arch ; 475(9): 1073-1087, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474775

RESUMO

Acid-sensing ion channels (ASICs) are Na+ channels that are almost ubiquitously expressed in neurons of the brain. Functional ASIC1a is also expressed in glioblastoma stem cells, where it might sense the acidic tumor microenvironment. Prolonged acidosis induces cell death in neurons and reduces tumor sphere formation in glioblastoma via activation of ASIC1a. It is currently unknown whether ASICs are expressed and involved in acid-induced cell death in other types of brain tumors. In this study, we investigated ASICs in medulloblastoma, using two established cell lines, DAOY and UW228, as in vitro models. In addition, we characterized ASICs in the most numerous neuron of the brain, the cerebellar granule cell, which shares the progenitor cell with some forms of medulloblastoma. We report compelling evidence using RT-qPCR, western blot and whole-cell patch clamp that DAOY and cerebellar granule cells, but not UW228 cells, functionally express homomeric ASIC1a. Additionally, Ca2+-imaging revealed that extracellular acidification elevated intracellular Ca2+-levels in DAOY cells independently of ASICs. Finally, we show that overexpression of RIPK3, a key component of the necroptosis pathway, renders DAOY cells susceptible to acid-induced cell death via activation of ASIC1a. Our data support the idea that ASIC1a is an important acid sensor in brain tumors and that its activation has potential to induce cell death in tumor cells.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioblastoma , Meduloblastoma , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Meduloblastoma/metabolismo , Glioblastoma/metabolismo , Neurônios/metabolismo , Linhagem Celular , Neoplasias Encefálicas/metabolismo , Cerebelo , Neoplasias Cerebelares/metabolismo , Microambiente Tumoral
9.
J Pain ; 24(8): 1493-1505, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054767

RESUMO

Therapeutic ultrasound (tUS) is widely used in chronic muscle pain control. However, its analgesic molecular mechanism is still not known. Our objective is to reveal the mechanism of the tUS-induced analgesia in mouse models of fibromyalgia. We applied tUS in mice that have developed chronic hyperalgesia induced by intramuscular acidification and determined the tUS frequency at 3 MHz, dosage at 1 W/cm2 (measured output as 6.3 mW/cm2) and 100% duty cycle for 3 minutes having the best analgesic effect. Pharmacological and genetic approaches were used to probe the molecular determinants involved in tUS-mediated analgesia. A second mouse model of fibromyalgia induced by intermittent cold stress was further used to validate the mechanism underlying the tUS-mediated analgesia. The tUS-mediated analgesia was abolished by a pretreatment of NK1 receptor antagonist-RP-67580 or knockout of substance P (Tac1-/-). Besides, the tUS-mediated analgesia was abolished by ASIC3-selective antagonist APETx2 but not TRPV1-selective antagonist capsazepine, suggesting a role for ASIC3. Moreover, the tUS-mediated analgesia was attenuated by ASIC3-selective nonsteroid anti-inflammation drugs (NSAIDs)-aspirin and diclofenac but not by ASIC1a-selective ibuprofen. We next validated the antinociceptive role of substance P signaling in the model induced by intermittent cold stress, in which tUS-mediated analgesia was abolished in mice lacking substance P, NK1R, Asic1a, Asic2b, or Asic3 gene. tUS treatment could activate ASIC3-containing channels in muscle afferents to release substance P intramuscularly and exert an analgesic effect in mouse models of fibromyalgia. NSAIDs should be cautiously used or avoided in the tUS treatment. PERSPECTIVE: Therapeutic ultrasound showed analgesic effects against chronic mechanical hyperalgesia in the mouse model of fibromyalgia through the signaling pathways involving substance P and ASIC3-containing ion channels in muscle afferents. NSAIDs should be cautiously used during tUS treatment.


Assuntos
Analgesia , Fibromialgia , Terapia por Ultrassom , Camundongos , Animais , Fibromialgia/tratamento farmacológico , Substância P , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Dor , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Anti-Inflamatórios não Esteroides/efeitos adversos
10.
Physiol Res ; 72(1): 49-57, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36545882

RESUMO

The acidic tumor microenvironment (TME) of pancreatic cancer affects the physiological function of pancreatic stellate cells (PSCs), which in turn promotes cancer progression. Acid-sensing ion channel 1a (ASIC1a) is responsible for acidosis-related physiopathological processes. In this study, we investigated the effect of acid exposure on the activation and autophagy of PSCs, and the role of ASIC1a in these events. The results showed that acidic medium upregulated the expression of ASIC1a, induced PSCs activation and autophagy, which can be suppressed by inhibiting ASIC1a using PcTx1 or ASIC1a knockdown, suggesting that ASIC1a involves these two processes. In addition, the acid-induced activation of PSCs was impaired after the application of autophagy inhibitor alone or in combination with ASIC1a siRNA, meaning a connection between autophagy and activation. Collectively, our study provides evidence for the involvement of ASIC1a in the acid-caused PSCs activation, which may be associated with autophagy induction.


Assuntos
Canais Iônicos Sensíveis a Ácido , Células Estreladas do Pâncreas , Animais , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Autofagia , Células Estreladas do Pâncreas/metabolismo
11.
Neurosci Bull ; 39(5): 845-862, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36445556

RESUMO

Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.


Assuntos
Canais Iônicos Sensíveis a Ácido , Trifosfato de Adenosina , Encefalopatias , Prótons , Receptores Purinérgicos P2X , Humanos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer , Esclerose Lateral Amiotrófica , Encefalopatias/epidemiologia , Encefalopatias/metabolismo , Encefalopatias/patologia , Dor Crônica , COVID-19 , Epilepsia , Doença de Huntington , AVC Isquêmico , Transtornos Mentais , Esclerose Múltipla , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Doença de Parkinson , Receptores Purinérgicos P2X/metabolismo , Animais
12.
J Physiol ; 601(9): 1583-1595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36479972

RESUMO

Ion channels of the degenerin (DEG)/epithelial Na+ channel (ENaC) family serve diverse functions ranging from mechanosensation over Na+ reabsorption to H+ sensing and neurotransmission. However, several diverse DEG/ENaCs interact with neuropeptides; some are directly activated, whereas others are modulated by neuropeptides. Two questions arise: does this interaction have a common structural basis and does it have an ancient origin? Current evidence suggests that RFamide neuropeptides activate the FMRFamide-activated Na+ channels (FaNaCs) of invertebrates via binding to a pocket at the external face of their large extracellular domain. It is likely that RFamides might activate DEG/ENaCs from the freshwater polyp Hydra (the HyNaCs) via binding to a similar pocket, although there is not yet any experimental evidence. In contrast, RFamide neuropeptides modulate acid-sensing ion channels (ASICs) from vertebrates via binding to a central cavity enclosed by ß-sheets of the extracellular domain. Dynorphin opioid peptides, for their part, bind to the acidic pocket of ASICs, which might be evolutionarily related to the peptide binding pocket of FaNaCs, but instead of opening the channels they work as antagonists to stabilize its closed state. Moreover, peptides interacting with DEG/ENaCs from animals of different phyla, although having similar sequences, are evolutionarily unrelated to each other. Collectively, it appears that despite a seemingly similar interaction with similar peptides, the interaction of DEG/ENaCs with neuropeptides has diverse structural bases and many origins.


Assuntos
Cnidários , Neuropeptídeos , Animais , Canais de Sódio Degenerina/metabolismo , Cnidários/metabolismo , Neuropeptídeos/metabolismo , Peptídeos , Canais Iônicos Sensíveis a Ácido/metabolismo , Íons/metabolismo , Mamíferos/metabolismo , Canais Epiteliais de Sódio/metabolismo
13.
Pflugers Arch ; 475(3): 405-416, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522586

RESUMO

The microenvironment of proliferative and aggressive tumours, such as the brain tumour glioblastoma multiforme (GBM), is often acidic, hypoxic, and nutrient deficient. Acid-sensing ion channels (ASICs) are proton-sensitive Na+ channels that have been proposed to play a role in pH sensing and in modulation of cancer cell migration. We previously reported that primary glioblastoma stem cells (GSCs), which grow as multicellular tumour spheroids, express functional ASIC1a and ASIC3, whereas ASIC2a is downregulated in GSCs. Using a 2.5D migration assay, here we report that acidic pH dramatically increased migration of GSCs of the pro-neural subtype. Pharmacological blockade as well as CRISPR-Cas9-mediated gene knock-out of ASIC1a or stable overexpression of ASIC2a, however, revealed that neither ASIC1a nor ASIC3, nor downregulation of ASIC2a, mediated the aggressive migration at acidic pH. Therefore, we tested the role of two other proteins previously implicated in cancer cell migration: the Ca2+-activated K+ channel KCa3.1 (KCNN4) and phosphoinositide 3-kinase (PI3K). While pharmacological blockade of KCa3.1 did also not affect migration, blockade of PI3K decreased migration at acidic pH to control levels. In summary, our study reveals a strongly enhanced migration of GSCs at acidic pH in vitro and identifies PI3K as an important mediator of this effect.


Assuntos
Glioblastoma , Humanos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Concentração de Íons de Hidrogênio , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo
14.
J Transl Med ; 20(1): 561, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463203

RESUMO

BACKGROUND: Destruction of articular cartilage and bone is the main cause of joint dysfunction in rheumatoid arthritis (RA). Acid-sensing ion channel 1a (ASIC1a) is a key molecule that mediates the destruction of RA articular cartilage. Estrogen has been proven to have a protective effect against articular cartilage damage, however, the underlying mechanisms remain unclear. METHODS: We treated rat articular chondrocytes with an acidic environment, analyzed the expression levels of mitochondrial stress protein HSP10, ClpP, LONP1 by q-PCR and immunofluorescence staining. Transmission electron microscopy was used to analyze the mitochondrial morphological changes. Laser confocal microscopy was used to analyze the Ca2+, mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) level. Moreover, ASIC1a specific inhibitor Psalmotoxin 1 (Pctx-1) and Ethylene Glycol Tetraacetic Acid (EGTA) were used to observe whether acid stimulation damage mitochondrial function through Ca2+ influx mediated by ASIC1a and whether pretreatment with estrogen could counteract these phenomena. Furthermore, the ovariectomized (OVX) adjuvant arthritis (AA) rat model was treated with estrogen to explore the effect of estrogen on disease progression. RESULTS: Our results indicated that HSP10, ClpP, LONP1 protein and mRNA expression and mitochondrial ROS level were elevated in acid-stimulated chondrocytes. Moreover, acid stimulation decreased mitochondrial membrane potential and damaged mitochondrial structure of chondrocytes. Furthermore, ASIC1a specific inhibitor PcTx-1 and EGTA inhibited acid-induced mitochondrial abnormalities. In addition, estrogen could protect acid-stimulated induced mitochondrial stress by regulating the activity of ASIC1a in rat chondrocytes and protects cartilage damage in OVX AA rat. CONCLUSIONS: Extracellular acidification induces mitochondrial stress by activating ASIC1a, leading to the damage of rat articular chondrocytes. Estrogen antagonizes acidosis-induced joint damage by inhibiting ASIC1a activity. Our study provides new insights into the protective effect and mechanism of action of estrogen in RA.


Assuntos
Canais Iônicos Sensíveis a Ácido , Artrite Reumatoide , Condrócitos , Estrogênios , Mitocôndrias , Animais , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Artrite Experimental , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Ácido Egtázico/metabolismo , Ácido Egtázico/toxicidade , Estrogênios/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia
15.
Int Immunopharmacol ; 113(Pt A): 109328, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279671

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia and progressive joint destruction in the middle and late stages. Notably, activated rheumatoid arthritis synovial fibroblasts (RASFs) exhibit tumor-like features, including an increased proliferation rate that largely contributes to pannus formation and joint destruction. Our previous studies have demonstrated that acid-sensing ion channel 1a (ASIC1a) was highly expressed in RASFs, and acidic microenvironment of synovial fluid in patients with RA can activate ASIC1a to promote synovial inflammation, leading to the progression of RA. However, the role and possible mechanism of ASIC1a in RASF proliferation remains unclear. The present study aimed to investigate the effect of ASIC1a activation upon acidosis on RASF proliferation and its molecular mechanism in vivo and in vitro. The results of in vitro experiments showed that activation of ASIC1a upon acidosis promoted the proliferation of RASFs, which could be attenuated by the specific ASIC1a inhibitor Psalmotoxin-1 (PcTx-1) or specific siRNA for ASIC1a. Mechanistically, Wnt/ß-catenin/c-Myc signaling pathway was involved in ASIC1a-induced RASF proliferation. The results of in vivo experiments indicated that intra-articular injection of PcTx-1 reduced synovial hyperplasia and ameliorated cartilage degradation in rats with adjuvant arthritis (AA). Collectively, these results suggest that activation of ASIC1a upon acidosis promotes RASF proliferation, and the mechanism may be related to Wnt/ß-catenin/c-Myc pathway.


Assuntos
Canais Iônicos Sensíveis a Ácido , Acidose , Artrite Reumatoide , Animais , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Acidose/metabolismo , Acidose/patologia , Artrite Reumatoide/genética , beta Catenina/metabolismo , Cateninas/metabolismo , Cateninas/farmacologia , Proliferação de Células , Células Cultivadas , Fibroblastos , Hiperplasia/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Membrana Sinovial/patologia , Via de Sinalização Wnt
16.
Eur J Pharmacol ; 934: 175296, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36162458

RESUMO

AIM: This study aimed to investigate the promoting effect of acid-sensing ion channel 1a (ASIC1a) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and its mechanisms. METHODS: In this experiment, the ALI rat model was induced by intratracheal injection of LPS, and the ASIC1a specific blocker psalmotoxin-1 (PcTx-1) was injected into the tail vein before LPS administration once. Western blot, immunofluorescence, immunohistochemistry and real-time PCR methods were used to detect ASIC1a and apoptosis-related proteins expressions in lung tissue and RLE-6TN rat type II alveolar epithelial cells. Confocal Laser Scanning Microscopy was used to detect Ca2+ fluorescence intensity in RLE-6TN cells. RESULTS: PcTx-1 pretreatment not only inhibited the pathological changes of LPS-induced ALI in lung tissue, but also inhibited lung dysfunction. PcTx-1 also reduced the increased levels of the apoptosis-related proteins B-cell lymphoma-2-associated X (Bax) and cleaved cysteinyl aspartate specific proteinase 3 (Cleaved caspase-3) and increased the decreased level of B-cell lymphoma-2 (Bcl-2) in the lung tissue of the model group. LPS-induced changes in mitochondrial membrane potential and calcium influx in alveolar epithelial cells were also reversed by PcTx-1. CONCLUSION: ASIC1a induces an apoptotic response in ALI through mitochondrial apoptosis.


Assuntos
Canais Iônicos Sensíveis a Ácido , Lesão Pulmonar Aguda , Animais , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Ácido Aspártico , Proteína X Associada a bcl-2/metabolismo , Cálcio/metabolismo , Caspase 3/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Mieloblastina/metabolismo
17.
Cell Death Dis ; 13(8): 702, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961983

RESUMO

Eliciting regulated cell death, like necroptosis, is a potential cancer treatment. However, pathways eliciting necroptosis are poorly understood. It has been reported that prolonged activation of acid-sensing ion channel 1a (ASIC1a) induces necroptosis in mouse neurons. Glioblastoma stem cells (GSCs) also express functional ASIC1a, but whether prolonged activation of ASIC1a induces necroptosis in GSCs is unknown. Here we used a tumorsphere formation assay to show that slight acidosis (pH 6.6) induces necrotic cell death in a manner that was sensitive to the necroptosis inhibitor Nec-1 and to the ASIC1a antagonist PcTx1. In addition, genetic knockout of ASIC1a rendered GSCs resistant to acid-induced reduction in tumorsphere formation, while the ASIC1 agonist MitTx1 reduced tumorsphere formation also at neutral pH. Finally, a 20 amino acid fragment of the ASIC1 C-terminus, thought to interact with the necroptosis kinase RIPK1, was sufficient to reduce the formation of tumorspheres. Meanwhile, the genetic knockout of MLKL, the executive protein in the necroptosis cascade, did not prevent a reduction in tumor sphere formation, suggesting that ASIC1a induced an alternative cell death pathway. These findings demonstrate that ASIC1a is a death receptor on GSCs that induces cell death during prolonged acidosis. We propose that this pathway shapes the evolution of a tumor in its acidic microenvironment and that pharmacological activation of ASIC1a might be a potential new strategy in tumor therapy.


Assuntos
Acidose , Glioblastoma , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Acidose/metabolismo , Animais , Glioblastoma/genética , Glioblastoma/metabolismo , Camundongos , Neurônios/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Células-Tronco/metabolismo , Microambiente Tumoral
18.
BMC Cancer ; 22(1): 778, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35840921

RESUMO

A major challenge in the treatment of liver cancer is that a large proportion of patients fail to achieve long-term disease control, with death from liver cancer cell migration and invasion. Acid-sensitive ion channel 1α (ASIC1α) is involved in the migration, invasion, and proliferation of liver cancer cells. Therefore, we explored the mechanism of ASIC1α-mediated liver cancer cell migration and invasion. We determined the levels of ASIC1α by western blotting and immunofluorescence in HepG2 and SK-Hep1 cells cultured in various acidic conditions. In addition, wound healing assay, transwell invasion assay, and MTT assay were conducted to assess the migration, invasion, and proliferation abilities of liver cancer cells. Western blotting was conducted to determine the levels of MMP2, MMP9, ASIC1α, p-PI3Kp85, t-PI3Kp85, p-AKT(Ser473), t-AKT, p-mTOR (Ser2448), t-mTOR. We first found that the levels of ASIC1α in the HepG2 and SK-Hep1 cells in acidic conditions (pH 6.5) were significantly increased. Inhibition and knockdown of ASIC1α down-regulated MMP-2/9 expression and inhibited the migration, invasion, and proliferation of HepG2 and SK-Hep1 cells; overexpression of ASIC1α had the opposite effect. We further demonstrated that ASIC1α up-regulates MMP-2/9 via activation of the PI3K/AKT/mTOR pathway, thereby promoting migration, invasion, and proliferation of liver cancer cells. Overexpression of MMP-2/9 and activation of AKT reversed these effects on liver cancer cells caused by inhibition of ASIC1α. We conclude that ASIC1α can regulate migration, invasion, and proliferation of liver cancer cells through the MMP-2/9/PI3K/AKT/mTOR pathway. These observations may provide a new reference for liver cancer chemotherapy.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neoplasias Hepáticas , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Canais Iônicos Sensíveis a Ácido/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
19.
Cell Death Dis ; 13(6): 527, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35661105

RESUMO

Inflammation is one of the main pathological features leading to skin fibrosis and a key factor leading to the progression of skin fibrosis. Acidosis caused by a decrease in extracellular pH is a sign of the inflammatory process. Acid-sensing ion channels (ASICs) are ligand-gated ion channels on the cell membrane that sense the drop in extracellular pH. The molecular mechanisms by which skin fibroblasts are regulated by acid-sensing ion channel 3 (ASIC3) remain unknown. This study investigated whether ASIC3 is related to inflammation and skin fibrosis and explored the underlying mechanisms. We demonstrate that macrophage colony-stimulating factor (M-CSF) is a direct target of ASIC3, and ASIC3 activation promotes M-CSF transcriptional regulation of macrophages for M2 polarization. The polarization of M2 macrophages transduced by the ASIC3-M-CSF signal promotes the differentiation of fibroblasts into myofibroblasts through transforming growth factor ß1 (TGF-ß1), thereby producing an ASIC3-M-CSF-TGF-ß1 positive feedback loop. Targeting ASIC3 may be a new treatment strategy for skin fibrosis.


Assuntos
Miofibroblastos , Fator de Crescimento Transformador beta1 , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Diferenciação Celular/fisiologia , Retroalimentação , Fibroblastos/metabolismo , Fibrose , Humanos , Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Int J Mol Med ; 50(1)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35616162

RESUMO

As a major proton­gated cation channel, acid­sensitive ion channels (ASICs) can perceive large extracellular pH changes. ASICs play an important role in the occurrence and development of diseases of various organs and tissues including in the heart, brain, and gastrointestinal tract, as well as in tumor proliferation, invasion, and metastasis in acidosis and regulation of an acidic microenvironment. The permeability of ASICs to sodium and calcium ions is the basis of their physiological and pathological roles in the body. This review summarizes the physiological and pathological mechanisms of ASICs in digestive system diseases, which plays an important role in the early diagnosis, treatment, and prognosis of digestive system diseases related to ASIC expression.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neurônios , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Ácidos , Sistema Digestório/metabolismo , Concentração de Íons de Hidrogênio , Íons/metabolismo , Neurônios/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA