Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(4): 168432, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38161000

RESUMO

Helicobacter pylori colonizes the stomach in about half of the human population, leading to an increased risk of peptic ulcer disease and gastric cancer. H. pylori secretes an 88 kDa VacA toxin that contributes to pathogenesis. VacA assembles into oligomeric complexes in solution and forms anion-selective channels in cell membranes. Cryo-electron microscopy (cryo-EM) analyses of VacA oligomers in solution provided insights into VacA oligomerization but failed to reveal the structure of the hydrophobic N-terminal region predicted to be a pore-forming domain. In this study, we incubated VacA with liposomes and used single particle cryo-EM to analyze detergent-extracted VacA oligomers. A 3D structure of detergent-solubilized VacA hexamers revealed the presence of six α-helices extending from the center of the oligomers, a feature not observed in previous studies of water-soluble VacA oligomers. Cryo-electron tomography analysis and 2D averages of VacA associated with liposomes confirmed that central regions of the membrane-associated VacA oligomers can insert into the lipid bilayer. However, insertion is heterogenous, with some membrane-associated oligomers appearing only partially inserted and others sitting on top of the bilayer. These studies indicate that VacA undergoes a conformational change when contacting the membrane and reveal an α-helical region positioned to extend into the membrane. Although the reported VacA 3D structure does not represent a selective anion channel, our combined single particle 3D analysis, cryo-electron tomography, and modeling allow us to propose a model for the structural organization of the VacA N-terminus in the context of a hexamer as it inserts into the membrane.


Assuntos
Proteínas de Bactérias , Helicobacter pylori , Toxinas Biológicas , Canais de Ânion Dependentes de Voltagem , Humanos , Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Detergentes , Helicobacter pylori/química , Lipossomos/química , Toxinas Biológicas/química , Canais de Ânion Dependentes de Voltagem/química , Multimerização Proteica
2.
Redox Biol ; 51: 102264, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35180474

RESUMO

Unraveling the role of VDAC3 within living cells is challenging and still requires a definitive answer. Unlike VDAC1 and VDAC2, the outer mitochondrial membrane porin 3 exhibits unique biophysical features that suggest unknown cellular functions. Electrophysiological studies on VDAC3 carrying selective cysteine mutations and mass spectrometry data about the redox state of such sulfur containing amino acids are consistent with a putative involvement of isoform 3 in mitochondrial ROS homeostasis. Here, we thoroughly examined this issue and provided for the first time direct evidence of the role of VDAC3 in cellular response to oxidative stress. Depletion of isoform 3 but not isoform 1 significantly exacerbated the cytotoxicity of redox cyclers such as menadione and paraquat, and respiratory complex I inhibitors like rotenone, promoting uncontrolled accumulation of mitochondrial free radicals. High-resolution respirometry of transiently transfected HAP1-ΔVDAC3 cells expressing the wild type or the cysteine-null mutant VDAC3 protein, unequivocally confirmed that VDAC3 cysteines are indispensable for protein ability to counteract ROS-induced oxidative stress.


Assuntos
Cisteína , Canais de Ânion Dependentes de Voltagem , Cisteína/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
3.
Cells ; 10(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34359907

RESUMO

The voltage-dependent anion channel (VDAC) is a ß-barrel membrane protein located in the outer mitochondrial membrane (OMM). VDAC has two conductance states: an open anion selective state, and a closed and slightly cation-selective state. VDAC conductance states play major roles in regulating permeability of ATP/ADP, regulation of calcium homeostasis, calcium flux within ER-mitochondria contact sites, and apoptotic signaling events. Three reported structures of VDAC provide information on the VDAC open state via X-ray crystallography and nuclear magnetic resonance (NMR). Together, these structures provide insight on how VDAC aids metabolite transport. The interaction partners of VDAC, together with the permeability of the pore, affect the molecular pathology of diseases including Parkinson's disease (PD), Friedreich's ataxia (FA), lupus, and cancer. To fully address the molecular role of VDAC in disease pathology, major questions must be answered on the structural conformers of VDAC. For example, further information is needed on the structure of the closed state, how binding partners or membrane potential could lead to the open/closed states, the function and mobility of the N-terminal α-helical domain of VDAC, and the physiological role of VDAC oligomers. This review covers our current understanding of the various states of VDAC, VDAC interaction partners, and the roles they play in mitochondrial regulation pertaining to human diseases.


Assuntos
Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Canais de Ânion Dependentes de Voltagem/metabolismo , Sequência de Aminoácidos , Humanos , Proteínas Mitocondriais/metabolismo , Eletricidade Estática , Canais de Ânion Dependentes de Voltagem/química
4.
Phys Chem Chem Phys ; 23(30): 16157-16164, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34297025

RESUMO

Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 ß-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kΩ cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.l-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.


Assuntos
Materiais Biomiméticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Nanoestruturas/química , Poliésteres/química , Polímeros/química , Poliestirenos/química , Álcool de Polivinil/química , Canais de Ânion Dependentes de Voltagem/química , Trifosfato de Adenosina/química , Espectroscopia Dielétrica , Condutividade Elétrica , Canais Iônicos/química , Transporte de Íons , Íons/isolamento & purificação , Lisina/química , Relação Estrutura-Atividade , Propriedades de Superfície
5.
Electromagn Biol Med ; 39(2): 176-182, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32149540

RESUMO

In this study, a correlation between cell channel α-helices displacement and the mitochondrial transmembrane potential after exposure of 3, 7, 15 and 24 h of neuronal-like cells to a uniform magnetic field at the intensity of 2 mT was shown. Fourier Transform Infrared (FTIR) Spectroscopy and fluorescence techniques were used to analyze the secondary structure of protein content and mitochondrial transmembrane potential, respectively. The main result of this study was represented by a significant inverse relation between the mitochondrial transmembrane potential and the intensity of the Amide I band that can be associated with time exposure. Given that mitochondrial transmembrane potential should be related to the gating state of voltage-dependent anion channel (VDAC) in mitochondrial membrane, this result could have a relevant role in medicine. Indeed, VDAC's irregular behavior can be associated with several varieties of mitochondria-associated pathologies and various forms of cancer and neurodegeneration.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro/efeitos adversos , Potencial da Membrana Mitocondrial , Neurônios/citologia , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Linhagem Celular Tumoral , Humanos , Conformação Proteica em alfa-Hélice , Fatores de Tempo
6.
Proteins ; 88(6): 729-739, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31833115

RESUMO

As it forms water-filled channel in the mitochondria outer membrane and diffuses essential metabolites such as NADH and ATP, the voltage-dependent anion channel (VDAC) protein family plays a central role in all eukaryotic cells. In comparison with their mammalian homologues, little is known about the structural and functional properties of plant VDACs. In the present contribution, one of the two VDACs isoforms of Solanum tuberosum, stVDAC36, has been successfully overexpressed and refolded by an in-house method, as demonstrated by the information on its secondary and tertiary structure gathered from circular dichroism and intrinsic fluorescence. Cross-linking and molecular modeling studies have evidenced the presence of dimers and tetramers, and they suggest the formation of an intermolecular disulfide bond between two stVDAC36 monomers. The pore-forming activity was also assessed by liposome swelling assays, indicating a typical pore diameter between 2.0 and 2.7 nm. Finally, insights about the ATP binding inside the pore are given by docking studies and electrostatic calculations.


Assuntos
Trifosfato de Adenosina/química , Lipossomos/química , Proteínas de Plantas/química , Solanum tuberosum/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Lipossomos/metabolismo , Modelos Moleculares , Concentração Osmolar , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Redobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
7.
Cell Physiol Biochem ; 53(S1): 11-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31834993

RESUMO

Ion channels residing in the inner (IMM) and outer (OMM) mitochondrial membranes are emerging as noteworthy pharmacological targets in oncology. While these aspects have not been investigated for all of them, a role in cancer growth and/or metastasis and/or drug resistance has been shown at least for the IMM-residing Ca2+ uniporter complex and K+- selective mtKV1.3, mtIKCa, mtSKCa and mtTASK-3, and for the OMM Voltage-Dependent Anion Channel (mitochondrial porin). A special case is that of the Mitochondrial Permeability Transition Pore, a large pore which forms in the IMM of severely stressed cells, and which may be exploited to precipitate the death of cancerous cells. Here we briefly discuss the oncological relevance of mitochondria and their channels, and summarize the methods that can be adopted to selectively target these intracellular organelles. We then present an updated list of known mitochondrial channels, and review the pharmacology of those with proven relevance for cancer.


Assuntos
Antineoplásicos/química , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Bibliotecas de Moléculas Pequenas/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Humanos , Canais Iônicos/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Canais de Potássio/química , Canais de Potássio/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(6): 2318-2327, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659150

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a ubiquitous mechanism that generates transcriptomic diversity. This process is particularly important for proper neuronal function; however, little is known about how RNA editing is dynamically regulated between the many functionally distinct neuronal populations of the brain. Here, we present a spatial RNA editing map in the Drosophila brain and show that different neuronal populations possess distinct RNA editing signatures. After purifying and sequencing RNA from genetically marked groups of neuronal nuclei, we identified a large number of editing sites and compared editing levels in hundreds of transcripts across nine functionally different neuronal populations. We found distinct editing repertoires for each population, including sites in repeat regions of the transcriptome and differential editing in highly conserved and likely functional regions of transcripts that encode essential neuronal genes. These changes are site-specific and not driven by changes in Adar expression, suggesting a complex, targeted regulation of editing levels in key transcripts. This fine-tuning of the transcriptome between different neurons by RNA editing may account for functional differences between distinct populations in the brain.


Assuntos
Adenosina , Encéfalo/metabolismo , Drosophila/genética , Inosina , Edição de RNA , Transcriptoma , Adenosina/química , Adenosina/genética , Sequência de Aminoácidos , Animais , Imunofluorescência , Inosina/química , Inosina/genética , Microscopia Confocal , Modelos Moleculares , Neurônios/metabolismo , Conformação Proteica , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/genética
9.
J Phys Chem Lett ; 9(11): 2967-2971, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29763546

RESUMO

Membrane protein aggregation is associated with neurodegenerative diseases. Despite remarkable advances to map protein aggregation, molecular elements that drive the structural transition from functional to amyloidogenic ß-sheet polymers remain elusive. Here, we report a simple and reliable reverse-mapping method to identify the molecular elements. We validate our approach by obtaining molecular details of aggregation loci of human ß-barrel nanopore ion channels that are vital for cell survival. By coupling bottom-up synthesis with time-resolved aggregation kinetics and high-resolution imaging, we identify molecular elements that switch folded channels to polymeric ß-rich aggregates. We prove that intrinsic protein aggregation and amyloidogenicity does not depend on total hydrophobicity but on single residue differences in the primary sequence. Our method offers effective strategies for sequence-based design of aggregation inhibitors in biomedicine for neurodegenerative diseases.


Assuntos
Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Microscopia de Fluorescência , Nanoporos , Peptídeos/química , Agregados Proteicos/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo
10.
Biophys J ; 114(4): 772-776, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29338842

RESUMO

A growing number of new technologies are supported by a single- or multi-nanopore architecture for capture, sensing, and delivery of polymeric biomolecules. Nanopore-based single-molecule DNA sequencing is the premier example. This method relies on the uniform linear charge density of DNA, so that each DNA strand is overwhelmingly likely to pass through the nanopore and across the separating membrane. For disordered peptides, folded proteins, or block copolymers with heterogeneous charge densities, by contrast, translocation is not assured, and additional strategies to monitor the progress of the polymer molecule through a nanopore are required. Here, we demonstrate a single-molecule method for direct, model-free, real-time monitoring of the translocation of a disordered, heterogeneously charged polypeptide through a nanopore. The crucial elements are two "selectivity tags"-regions of different but uniform charge density-at the ends of the polypeptide. These affect the selectivity of the nanopore differently and enable discrimination between polypeptide translocation and retraction. Our results demonstrate exquisite sensitivity of polypeptide translocation to applied transmembrane potential and prove the principle that nanopore selectivity reports on biopolymer substructure. We anticipate that the selectivity tag technique will be broadly applicable to nanopore-based protein detection, analysis, and separation technologies, and to the elucidation of protein translocation processes in normal cellular function and in disease.


Assuntos
Simulação por Computador , Modelos Moleculares , Nanoporos , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Humanos , Porosidade , Transporte Proteico
11.
Biochim Biophys Acta Bioenerg ; 1858(8): 665-673, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28283400

RESUMO

The voltage-dependent anion channel (VDAC) is a pore located at the outer membrane of the mitochondrion. It allows the entry and exit of numerous ions and metabolites between the cytosol and the mitochondrion. Flux through the pore occurs in an active way: first, it depends on the open or closed state and second, on the negative or positive charges of the different ion species passing through the pore. The flux of essential metabolites, such as ATP, determines the functioning of the mitochondria to a noxious stimulus. Moreover, VDAC acts as a platform for many proteins and in so doing supports glycolysis and prevents apoptosis by interacting with hexokinase, or members of the Bcl-2 family, respectively. VDAC is thus involved in the choice the cells make to survive or die, which is particularly relevant to cancer cells. For these reasons, VDAC has become a potential therapeutic target to fight cancer but also other diseases in which mitochondrial metabolism is modified. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Assuntos
Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias/metabolismo , Canais de Ânion Dependentes de Voltagem/fisiologia , Animais , Apoptose/fisiologia , Transporte Biológico , Sinalização do Cálcio , Metabolismo Energético , Hexoquinase/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Mitofagia/fisiologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Canais de Ânion Dependentes de Voltagem/antagonistas & inibidores , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/genética
12.
Biochim Biophys Acta Biomembr ; 1859(3): 301-311, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27989743

RESUMO

Voltage-dependent anion selective channels (VDACs) are integral membrane proteins found in the mitochondrial outer membrane. In comparison with the most abundant isoform VDAC1, there is little knowledge about the functional role of VDAC3. Unlikely VDAC1, cysteine residues are particularly abundant in VDAC3. Since the mitochondrial intermembrane space (IMS) has an oxidative potential we questioned whether the redox state of VDAC3 can be modified. By means of SDS-PAGE separation, tryptic and chymotryptic proteolysis and UHPLC/High Resolution ESI-MS/MS analysis we investigated the oxidation state of cysteine and methionine residues of rat liver VDAC3. Our results demonstrate that the mitochondrial VDAC3, in physiological state, contains methionines oxidized to methionine sulfoxide. Furthermore, cysteine residues 36, 65, and 165 are oxidized to a remarkable extend to sulfonic acid. Cysteines 2 and 8 are observed exclusively in the carboxyamidomethylated form. Cys229 is detected exclusively in the oxidized form of sulfonic acid, whereas the oxidation state of Cys122 could not be determined because peptides containing this residue were not detected. Control experiments ruled out the possibility that over-oxidation of cysteines might be due to artefactual reasons. The peculiar behavior of Met and Cys residues of VDAC3 may be related with the accessibility of the protein to a strongly oxidizing environment and may be connected with the regulation of the activity of this trans-membrane pore protein.


Assuntos
Cisteína/química , Metionina/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Espectrometria de Massas em Tandem , Canais de Ânion Dependentes de Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Oxirredução , Peptídeos/análise , Ratos , Tripsina/metabolismo , Canais de Ânion Dependentes de Voltagem/química
13.
Sci Rep ; 6: 33516, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27641616

RESUMO

After invading red blood cells (RBCs), Plasmodium falciparum (Pf) can export its own proteins to the host membrane and activate endogenous channels that are present in the membrane of RBCs. This transport pathway involves the Voltage Dependent Anion Channel (VDAC). Moreover, ligands of the VDAC partner TranSlocator PrOtein (TSPO) were demonstrated to inhibit the growth of the parasite. We studied the expression of TSPO and VDAC isoforms in late erythroid precursors, examined the presence of these proteins in membranes of non-infected and infected human RBCs, and evaluated the efficiency of TSPO ligands in inhibiting plasmodium growth, transporting the haem analogue Zn-protoporphyrin-IX (ZnPPIX) and enhancing the accumulation of reactive oxygen species (ROS). TSPO and VDAC isoforms are differentially expressed on erythroid cells in late differentiation states. TSPO2 and VDAC are present in the membranes of mature RBCs in a unique protein complex that changes the affinity of TSPO ligands after Pf infection. TSPO ligands dose-dependently inhibited parasite growth, and this inhibition was correlated to ZnPPIX uptake and ROS accumulation in the infected RBCs. Our results demonstrate that TSPO ligands can induce Pf death by increasing the uptake of porphyrins through a TSPO2-VDAC complex, which leads to an accumulation of ROS.


Assuntos
Plasmodium falciparum/crescimento & desenvolvimento , Protoporfirinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD34/metabolismo , Transporte Biológico , Diferenciação Celular , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Células Eritroides/citologia , Células Eritroides/metabolismo , Perfilação da Expressão Gênica , Glutationa/metabolismo , Humanos , Ligantes , Espectrometria de Massas , Parasitos/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de GABA/química , Receptores de GABA/genética , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo
14.
Biochim Biophys Acta ; 1857(8): 1219-1227, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26947058

RESUMO

In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Cisteína/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Membranas Mitocondriais/metabolismo , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/química , Canais de Ânion Dependentes de Voltagem/química , Animais , Sequência Conservada , Evolução Molecular , Expressão Gênica , Humanos , Transporte de Íons , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Moleculares , Mutação , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
15.
Biochim Biophys Acta ; 1863(10): 2498-502, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26826035

RESUMO

The voltage dependent anion-selective channel, VDAC, is the major permeability pathway by which molecules and ion cross the mitochondrial outer membrane. This pathway has evolved to optimize the flow of these substances and to control this flow by a gating process that is influenced by a variety of factors including transmembrane voltage. The permeation pathway formed through the membrane by VDAC is complex. Small ion flow is primarily influenced by the charged surface of the inner walls of the channel. Channel closure changes this landscape resulting in a change from a channel that favors anions to one that favors cations. Molecular ions interact more intimately with the inner walls of the channel and are selected by their 3-dimensional structure, not merely by their size and charge. Molecular ions typically found in cells are greatly favored over those that are not. For these larger structures the channel may form a low-energy translocation path that complements the structure of the permeant. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Assuntos
Membranas Mitocondriais/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico Ativo , Cloretos/metabolismo , Humanos , Ativação do Canal Iônico , Transporte de Íons , Modelos Moleculares , Potássio/metabolismo , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato , Canais de Ânion Dependentes de Voltagem/química
16.
Biochim Biophys Acta ; 1858(4): 813-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26806159

RESUMO

The human VDAC channel exists in three isoforms characterized by high sequence homology and structural similarity. Yet the function and mode of action of hVDAC3 are still elusive. The presence of six surface cysteines exposed to the oxidizing environment of the mitochondrial inter-membrane space suggests the possible establishment of intramolecular disulfide bonds. Two natural candidates for disulfide bridge formation are Cys2 and Cys8 that, located on the flexible N-terminal domain, can easily come in contact. A third potentially important residue is Cys122 that is close to Cys2 in the homology model of VDAC3. Here we analyzed the impact of SS bonds through molecular dynamics simulations of derivatives of hVDAC3 (dubbed SS-2-8, SS-2-122, SS-8-122) including a single disulfide bond. Simulations showed that in SS-8-122, the fragment 1-7 crosses the top part of the barrel partially occluding the pore and causing a 20% drop of conductance. In order to identify other potential channel-occluding disulfide bonds, we used a set of neural networks and structural bioinformatics algorithms, after filtering with the steric constraints imposed by the 3D-structure. We identified other three species, namely SS-8-65, SS-2-36 and SS-8-36. While the conductance of SS-8-65 and SS-2-36 is about 30% lower than that of the species without disulfide bonds, the conductance of SS-8-36 was 40-50% lower. The results show how VDAC3 is able to modulate its pore size and current by exploiting the mobility of the N-terminal and forming, upon external stimuli, disulfide bridges with cysteine residues located on the barrel and exposed to the inter-membrane space.


Assuntos
Cisteína/química , Dissulfetos/química , Proteínas de Transporte da Membrana Mitocondrial/química , Conformação Proteica , Canais de Ânion Dependentes de Voltagem/química , Humanos , Transporte de Íons , Simulação de Dinâmica Molecular , Isoformas de Proteínas/química
17.
Biochim Biophys Acta ; 1848(12): 3188-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407725

RESUMO

The voltage-dependent anion channels (VDACs), VDAC1, VDAC2, and VDAC3, are pore-forming proteins that control metabolite flux between mitochondria and cytoplasm. VDAC1 and VDAC2 have voltage-dependent gating activity, whereas VDAC3 is thought to have weak activity. The aim of this study was to analyze the channel properties of all three human VDAC isoforms and to clarify the channel function of VDAC3. Bacterially expressed recombinant human VDAC proteins were reconstituted into artificial planar lipid bilayers and their gating activities were evaluated. VDAC1 and VDAC2 had typical voltage-dependent gating activity, whereas the gating of VDAC3 was weak, as reported. However, gating of VDAC3 was evoked by dithiothreitol (DTT) and S-nitrosoglutathione (GSNO), which are thought to suppress disulfide-bond formation. Several cysteine mutants of VDAC3 also exhibited typical voltage-gating. Our results indicate that channel gating was induced by reduction of a disulfide-bond linking the N-terminal region to the bottom of the pore. Thus, channel gating of VDAC3 might be controlled by redox sensing under physiological conditions.


Assuntos
Dissulfetos/metabolismo , Ativação do Canal Iônico , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Isoformas de Proteínas/fisiologia , Canais de Ânion Dependentes de Voltagem/fisiologia , Sequência de Aminoácidos , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Dados de Sequência Molecular , Isoformas de Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canais de Ânion Dependentes de Voltagem/química
18.
Biochemistry ; 54(36): 5646-56, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26303511

RESUMO

The voltage-dependent anion channel (VDAC) is the main mitochondrial porin allowing the exchange of ions and metabolites between the cytosol and the mitochondrion. In addition, VDAC was found to actively interact with proteins playing a fundamental role in the regulation of apoptosis and being of central interest in cancer research. VDAC is a large transmembrane ß-barrel channel, whose N-terminal helical fragment adheres to the channel interior, partially closing the pore. This fragment is considered to play a key role in protein stability and function as well as in the interaction with apoptosis-related proteins. Three VDAC isoforms are differently expressed in higher eukaryotes, for which distinct and complementary roles are proposed. In this work, the folding propensity of their N-terminal fragments has been compared. By using multiple spectroscopic techniques, and complementing the experimental results with theoretical computer-assisted approaches, we have characterized their conformational equilibrium. Significant differences were found in the intrinsic helical propensity of the three peptides, decreasing in the following order: hVDAC2 > hVDAC3 > hVDAC1. In light of the models proposed in the literature to explain voltage gating, selectivity, and permeability, as well as interactions with functionally related proteins, our results suggest that the different chemicophysical properties of the N-terminal domain are possibly correlated to different functions for the three isoforms. The overall emerging picture is that a similar transmembrane water accessible conduit has been equipped with not identical domains, whose differences can modulate the functional roles of the three VDAC isoforms.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas Mitocondriais/química , Peptídeos/química , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/química , Canais de Ânion Dependentes de Voltagem/química , Dicroísmo Circular , Biologia Computacional , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho
19.
J Biol Chem ; 290(44): 26784-9, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26306046

RESUMO

It was previously shown that tubulin dimer interaction with the mitochondrial outer membrane protein voltage-dependent anion channel (VDAC) blocks traffic through the channel and reduces oxidative metabolism and that this requires the unstructured anionic C-terminal tail peptides found on both α- and ß-tubulin subunits. It was unclear whether the α- and ß-tubulin tails contribute equally to VDAC blockade and what effects might be due to sequence variations in these tail peptides or to tubulin post-translational modifications, which mostly occur on the tails. The nature of the contribution of the tubulin body beyond acting as an anchor for the tails had not been clarified either. Here we present peptide-protein chimeras to address these questions. These constructs allow us to easily combine a tail peptide with different proteins or combine different tail peptides with a particular protein. The results show that a single tail grafted to an inert protein is sufficient to produce channel closure similar to that observed with tubulin. We show that the ß-tail is more than an order of magnitude more potent than the α-tail and that the lower α-tail activity is largely due to the presence of a terminal tyrosine. Detyrosination activates the α-tail, and activation is reversed by the removal of the glutamic acid penultimate to the tyrosine. Nitration of tyrosine reverses the tyrosine inhibition of binding and even induces prolonged VDAC closures. Our results demonstrate that small changes in sequence or post-translational modification of the unstructured tails of tubulin result in substantial changes in VDAC closure.


Assuntos
Proteínas Fúngicas/química , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Sequência de Aminoácidos , Animais , Bovinos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Neurospora crassa/química , Neurospora crassa/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Canais de Ânion Dependentes de Voltagem/antagonistas & inibidores , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
20.
PLoS One ; 10(4): e0121746, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860993

RESUMO

In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a "charged brush" which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms.


Assuntos
Fosfatos/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Fenômenos Eletrofisiológicos , Íons/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Termodinâmica , Canais de Ânion Dependentes de Voltagem/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA