Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 958
Filtrar
1.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703217

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Assuntos
Mitocôndrias , Estresse Oxidativo , Ratos Sprague-Dawley , Canais de Cátion TRPC , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Masculino , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico
2.
Med Sci Monit ; 30: e942667, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771735

RESUMO

BACKGROUND Obstructive sleep apnea-hypopnea syndrome (OSAHS) presents a significant health concern, particularly among individuals with essential hypertension (EH). Understanding the genetic underpinnings of this association is crucial for effective management and intervention. We investigated the relationship between TRPC3 gene polymorphisms and susceptibility to OSAHS in patients with EH. MATERIAL AND METHODS We enrolled 373 patients with EH hospitalized at the First Affiliated Hospital of Xinjiang Medical University between April 2015 and November 2017. Patients were categorized into EH (n=74) and EH+OSAHS (n=299) groups according to the apnea-hypopnea index. Sequenom detection technology was used for TRPC3 gene single-nucleotide polymorphism genotyping, including genotypes at rs953691, rs10518289, rs2292232, rs4995894, rs951974, and rs4292355. RESULTS Sex, smoking history, alcohol history, hypertension duration, fasting blood glucose, urea, creatinine, total cholesterol, HDL-C, LDL-C, glycosylated hemoglobin, 24-h mean systolic BP, and 24-h mean diastolic BP were not significantly different between the 2 groups (P>0.05); however, age, BMI, triglyceride levels differed significantly (P<0.05). No significant difference was detected in distribution frequency of polymorphisms of TRPC3 gene between the 2 groups (P>0.05), while genotype, dominant genotype, and recessive genotype at rs10518289 and alleles at rs4292355 differed significantly (P<0.05). Logistic regression analysis showed age, BMI, and CG+GG genotypes at rs10518289 were risk factors for OSAHS in patients with EH. Interaction between TRPC3 (rs10518289) and obesity was not a risk of OSAHS with EH (P>0.05). CONCLUSIONS CC genotype of rs10518289 in the TRPC3 gene could be a protective genetic marker of OSAHS, and CG+GG genotype may be a risk genetic marker of OSAHS with EH.


Assuntos
Predisposição Genética para Doença , Genótipo , Hipertensão , Polimorfismo de Nucleotídeo Único , Apneia Obstrutiva do Sono , Canais de Cátion TRPC , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Apneia Obstrutiva do Sono/genética , Polimorfismo de Nucleotídeo Único/genética , Hipertensão/genética , Canais de Cátion TRPC/genética , Idoso , China , Fatores de Risco , Adulto , Alelos , Hipertensão Essencial/genética
3.
Ecotoxicol Environ Saf ; 276: 116309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599156

RESUMO

Emerging evidence has suggested that exposure to PM2.5 is a significant contributing factor to the development of chronic obstructive pulmonary disease (COPD). However, the underlying biological effects and mechanisms of PM2.5 in COPD pathology remain elusive. In this study, we aimed to investigate the implication and regulatory effect of biomass fuels related-PM2.5 (BRPM2.5) concerning the pathological process of fibroblast-to-myofibroblast transition (FMT) in the context of COPD. In vivo experimentation revealed that exposure to biofuel smoke was associated with airway inflammation in rats. After 4 weeks of exposure, there was inflammation in the small airways, but no significant structural changes in the airway walls. However, after 24 weeks, airway remodeling occurred due to increased collagen deposition, myofibroblast proliferation, and tracheal wall thickness. In vitro, cellular immunofluorescence results showed that with stimulation of BRPM2.5 for 72 h, the cell morphology of fibroblasts changed significantly, most of the cells changed from spindle-shaped to star-shaped irregular, α-SMA stress fibers appeared in the cytoplasm and the synthesis of type I collagen increased. The collagen gel contraction experiment showed that the contractility of fibroblasts was enhanced. The expression level of TRPC1 in fibroblasts was increased. Specific siRNA-TRPC1 blocked BRPM2.5-induced FMT and reduced cell contractility. Additionally, specific siRNA-TRPC1 resulted in a decrease in the augment of intracellular Ca2+ concentration ([Ca2+]i) induced by BRPM2.5. Notably, it was found that the PI3K inhibitor, LY294002, inhibited enhancement of AKT phosphorylation level, FMT occurrence, and elevation of TRPC1 protein expression induced by BRPM2.5. The findings indicated that BRPM2.5 is capable of inducing the FMT, with the possibility of mediation by PI3K/AKT/TRPC1. These results hold potential implications for the understanding of the molecular mechanisms involved in BRPM2.5-induced COPD and may aid in the development of novel therapeutic strategies for pathological conditions characterized by fibrosis.


Assuntos
Fibroblastos , Pulmão , Miofibroblastos , Material Particulado , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Canais de Cátion TRPC , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/efeitos dos fármacos , Ratos , Miofibroblastos/efeitos dos fármacos , Material Particulado/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Canais de Cátion TRPC/metabolismo , Masculino , Biomassa , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/patologia
4.
Free Radic Biol Med ; 219: 141-152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636714

RESUMO

Pulmonary hypertension (PH) is a devastating disease that lacks effective treatment options and is characterized by severe pulmonary vascular remodeling. Pulmonary arterial endothelial cell (PAEC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension. Canonical transient receptor potential (TRPC) channels, a family of Ca2+-permeable channels, play an important role in various diseases. However, the effect and mechanism of TRPCs on PH development have not been fully elucidated. Among the TRPC family members, TRPC4 expression was markedly upregulated in PAECs from hypoxia combined with SU5416 (HySu)-induced PH mice and monocrotaline (MCT)-treated PH rats, as well as in hypoxia-exposed PAECs, suggesting that TRPC4 in PAECs may participate in the occurrence and development of PH. In this study, we aimed to investigate whether TRPC4 in PAECs has an aggravating effect on PH and elucidate the molecular mechanisms. We observed that hypoxia treatment promoted PAEC apoptosis through a caspase-12/endoplasmic reticulum stress (ERS)-dependent pathway. Knockdown of TRPC4 attenuated hypoxia-induced apoptosis and caspase-3/caspase-12 activity in PAECs. Accordingly, adeno-associated virus (AAV) serotype 6-mediated pulmonary endothelial TRPC4 silencing (AAV6-Tie-shRNA-TRPC4) or TRPC4 antagonist suppressed PH progression as evidenced by reduced right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, PAEC apoptosis and reactive oxygen species (ROS) production. Mechanistically, unbiased RNA sequencing (RNA-seq) suggested that TRPC4 deficiency suppressed the expression of the proapoptotic protein sushi domain containing 2 (Susd2) in hypoxia-exposed mouse PAECs. Moreover, TRPC4 activated hypoxia-induced PAEC apoptosis by promoting Susd2 expression. Therefore, inhibiting TRPC4 ameliorated PAEC apoptosis and hypoxic PH in animals by repressing Susd2 signaling, which may serve as a therapeutic target for the management of PH.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Células Endoteliais , Hipertensão Pulmonar , Hipóxia , Canais de Cátion TRPC , Animais , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/genética , Ratos , Hipóxia/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Masculino , Monocrotalina/toxicidade , Remodelação Vascular/genética , Modelos Animais de Doenças , Humanos , Transdução de Sinais , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Células Cultivadas , Indóis , Pirróis
5.
Nucleic Acids Res ; 52(9): 4784-4798, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38621757

RESUMO

Antisense oligonucleotide (ASO) therapy is a novel therapeutic approach in which ASO specifically binds target mRNA, resulting in mRNA degradation; however, cellular uptake of ASOs remains critically low, warranting improvement. Transient receptor potential canonical (TRPC) channels regulate Ca2+ influx and are activated upon stimulation by phospholipase C-generated diacylglycerol. Herein, we report that a novel TRPC3/C6/C7 activator, L687, can induce cellular ASO uptake. L687-induced ASO uptake was enhanced in a dose- and incubation-time-dependent manner. L687 enhanced the knockdown activity of various ASOs both in vitro and in vivo. Notably, suppression of TRPC3/C6 by specific siRNAs reduced ASO uptake in A549 cells. Application of BAPTA-AM, a Ca2+ chelator, and SKF96365, a TRPC3/C6 inhibitor, suppressed Ca2+ influx via TRPC3/C6, resulting in reduced ASO uptake, thereby suggesting that Ca2+ influx via TRPC3/C6 is critical for L687-mediated increased ASO uptake. L687 also induced dextran uptake, indicating that L687 increased endocytosis. Adding ASO to L687 resulted in endosome accumulation; however, the endosomal membrane disruptor UNC7938 facilitated endosomal escape and enhanced knockdown activity. We discovered a new function for TRPC activators regarding ASO trafficking in target cells. Our findings provide an opportunity to formulate an innovative drug delivery system for the therapeutic development of ASO.


Assuntos
Cálcio , Oligonucleotídeos Antissenso , Canais de Cátion TRPC , Humanos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/antagonistas & inibidores , Cálcio/metabolismo , Células A549 , Animais , Camundongos , Imidazóis/farmacologia , Canal de Cátion TRPC6/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/antagonistas & inibidores , Ácido Egtázico/farmacologia , Ácido Egtázico/análogos & derivados , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673977

RESUMO

Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, little is known about the protein distribution of TRPC channels-especially TRPC3 and TRPC6-in this organ. Our aim was therefore to investigate the protein expression profile of TRPC3 and TRPC6 in healthy and diseased human parathyroid glands. Surgery samples from patients with healthy parathyroid glands and from patients suffering from primary hyperparathyroidism (pHPT) were investigated by immunohistochemistry using knockout-validated antibodies against TRPC3 and TRPC6. A software-based analysis similar to an H-score was performed. For the first time, to our knowledge, TRPC3 and TRPC6 protein expression is described here in the parathyroid glands. It is found in both chief and oxyphilic cells. Furthermore, the TRPC3 staining score in diseased tissue (pHPT) was statistically significantly lower than that in healthy tissue. In conclusion, TRPC3 and TRPC6 proteins are expressed in the human parathyroid gland. Furthermore, there is strong evidence indicating that TRPC3 plays a role in pHPT and subsequently in parathyroid hormone secretion regulation. These findings ultimately require further research in order to not only confirm our results but also to further investigate the relevance of these channels and, in particular, that of TRPC3 in the aforementioned physiological functions and pathophysiological conditions.


Assuntos
Regulação para Baixo , Hiperparatireoidismo Primário , Glândulas Paratireoides , Canais de Cátion TRPC , Canal de Cátion TRPC6 , Humanos , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Hiperparatireoidismo Primário/metabolismo , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/patologia , Glândulas Paratireoides/metabolismo , Glândulas Paratireoides/patologia , Feminino , Masculino , Canal de Cátion TRPC6/metabolismo , Canal de Cátion TRPC6/genética , Pessoa de Meia-Idade , Idoso , Adulto , Imuno-Histoquímica , Hormônio Paratireóideo/metabolismo
7.
Cell Signal ; 117: 111078, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320625

RESUMO

Hepatocellular carcinoma(HCC) is one of the most common tumors in the world. Human insulin-like growth factor 2(IGF2) mRNA binding protein 2(IGF2BP2) plays an important role in the progression of hepatocellular carcinoma. Additionally, long non-coding RNA(lncRNA) has been confirmed as a key regulator of hepatocellular carcinoma occurrence. However, the function of TRPC7-AS1 has not been verified in hepatocellular carcinoma. The research results revealed that high IGF2BP2 expression was associated with a decreased survival rate in patients with hepatocellular carcinoma. Furthermore, IGF2BP2 knockdown inhibited and IGF2BP2 overexpression promoted the cell proliferation and invasion of hepatocellular carcinoma cells. The research illuminated that IGF2BP2 regulated the expression of TRPC7-AS1, and a correlation was observed between IGF2BP2 and TRPC7-AS1 expression. TRPC7-AS1 silencing repressed and its overexpression promoted the progression of hepatocellular carcinoma. After silencing or overexpressing TRPC7-AS1, the expression of the high-mobility group AT-hook 2 (HMGA2) gene decreased or increased, respectively. IGF2BP2 enhanced the expression of TRPC7-AS1 and thus affected the expression of HMGA2, thereby promoting hepatocellular carcinoma progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Canais de Cátion TRPC/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Eur J Med Chem ; 265: 116066, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185057

RESUMO

Glioblastoma multiforme represents a substantial clinical challenge. Transient receptor potential channel (TRPC) antagonists might provide new therapeutic options for this aggressive cancer. In this study, a series of N-alkyl-N-benzoyl and N-alkyl-N-benzyl thiazoles were designed and prepared using a scaffold-hopping strategy and evaluated as TRPC6 antagonists. This resulted in the discovery of 15g, a potent TRPC antagonist that exhibited suitable inhibitory micromolar activities against TRPC3, TRPC4, TRPC5, TPRC6, and TRPC7 and displayed noteworthy anti-glioblastoma efficacy in vitro against U87 cell lines. In addition, 15g featured an acceptable pharmacokinetic profile and exhibited better in vivo potency (25 mg/kg/d) than the frontline therapeutic agent temozolomide (50 mg/kg/d) in xenograft models. Taken together, the TRPC antagonist 15g represents a promising lead compound for developing new anti-glioblastoma agents.


Assuntos
Glioblastoma , Canais de Potencial de Receptor Transitório , Humanos , Linhagem Celular , Glioblastoma/tratamento farmacológico , Temozolomida , Canais de Potencial de Receptor Transitório/agonistas , Canais de Cátion TRPC/metabolismo
9.
Mol Biotechnol ; 66(3): 544-553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37278959

RESUMO

MicroRNAs play a key role in the pathogenesis of many types of cancer, including thyroid cancer (TC). MiR-138-5p has been confirmed to be abnormally expressed in TC tissues. However, the role of miR-138-5p in TC progression and its potential molecular mechanism need to be further explored. In this study, quantitative real-time PCR was used to examine miR-138-5p and TRPC5 expression, and western blot analysis was performed to examine the protein levels of TRPC5, stemness-related markers, and Wnt pathway-related markers. Dual-luciferase reporter assay was used to assess the interaction between miR-138-5p and TRPC5. Cell proliferation, stemness, and apoptosis were examined using colony formation assay, sphere formation assay, and flow cytometry. Our data showed that miR-138-5p could target TRPC5 and its expression was negatively correlated with TRPC5 expression in TC tumor tissues. MiR-138-5p decreased proliferation, stemness, and promoted gemcitabine-induced apoptosis in TC cells, and this effect could be reversed by TRPC5 overexpression. Moreover, TRPC5 overexpression abolished the inhibitory effect of miR-138-5p on the activity of Wnt/ß-catenin pathway. In conclusion, our data showed that miR-138-5p suppressed TC cell growth and stemness via the regulation of TRPC5/Wnt/ß-catenin pathway, which provided some guidance for studying the potential function of miR-138-5p in TC progression.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Proliferação de Células , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Regulação Neoplásica da Expressão Gênica
10.
Cell Rep ; 42(11): 113347, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37910503

RESUMO

Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.


Assuntos
Antineoplásicos , Canais de Potencial de Receptor Transitório , Canais de Cálcio/metabolismo , Integrina alfa6 , Canal de Cátion TRPC6 , Cálcio/metabolismo , Canais de Cátion TRPC/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
J Med Chem ; 66(22): 15061-15072, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37922400

RESUMO

Selective modulation of TRPC6 ion channels is a promising therapeutic approach for neurodegenerative diseases and depression. A significant advancement showcases the selective activation of TRPC6 through metalated type-B PPAP, termed PPAP53. This success stems from PPAP53's 1,3-diketone motif facilitating metal coordination. PPAP53 is water-soluble and as potent as hyperforin, the gold standard in this field. In contrast to type-A, type-B PPAPs offer advantages such as gram-scale synthesis, easy derivatization, and long-term stability. Our investigations reveal PPAP53 selectively binding to the C-terminus of TRPC6. Although cryoelectron microscopy has resolved the majority of the TRPC6 structure, the binding site in the C-terminus remained unresolved. To address this issue, we employed state-of-the-art artificial-intelligence-based protein structure prediction algorithms to predict the missing region. Our computational results, validated against experimental data, indicate that PPAP53 binds to the 777LLKL780-region of the C-terminus, thus providing critical insights into the binding mechanism of PPAP53.


Assuntos
Canais de Cátion TRPC , Sítios de Ligação , Microscopia Crioeletrônica , Canais de Cátion TRPC/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/efeitos dos fármacos , Floroglucinol/farmacologia , Compostos Policíclicos/farmacologia
12.
J Am Soc Nephrol ; 34(11): 1823-1842, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678257

RESUMO

SIGNIFICANCE STATEMENT: Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND: Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS: This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS: Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS: Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Humanos , Camundongos , Animais , Canal de Cátion TRPC6/fisiologia , Podócitos/metabolismo , Nefropatias Diabéticas/metabolismo , Calpaína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Modelos Animais de Doenças , Autofagia
13.
Ann Anat ; 250: 152150, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633502

RESUMO

Since the discovery of TRP proteins in 1969, during studies of the fruit fly Drosophila melanogaster, interest around them and the subfamily of TRPC channels has remained high. TRPC3 was able to be detected in a number of organs in rodents, such as rats and mice, and also in various human tissues. For the most part, these investigations were carried out using gene expression of TRPC3. Further work has already confirmed the relevance of TRPC3 in the context of neurodegenerative diseases, such as spinocerebellar ataxia, and carcinogenic entities, such as ovarian carcinoma. An association with TRPC3 has also been demonstrated for diseases that affect the liver. In order to confirm the expression of TRPC3 in the human liver, this study uses samples taken from eight (n = 8) fixated human body donors and analyzed with immunohistochemistry. In accordance with the macroscopic anatomy of the organs, six samples (n = 6) of liver tissue and three (n = 3) of gallbladder tissue were obtained. TRPC3 was clearly detected in all liver and gallbladder samples examined. Thus, it is not unlikely that TRPC3 plays a role in the extensive metabolic processes of the liver and could also serve as a target for pharmacological interventions in an imbalance of calcium homeostasis.


Assuntos
Vesícula Biliar , Canais de Cátion TRPC , Humanos , Ratos , Camundongos , Animais , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Vesícula Biliar/metabolismo , Drosophila melanogaster/metabolismo , Fígado , Cálcio/metabolismo
14.
Mol Pharmacol ; 104(4): 144-153, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399325

RESUMO

Englerin A (EA) is a potent agonist of tetrameric transient receptor potential canonical (TRPC) ion channels containing TRPC4 and TRPC5 subunits. TRPC proteins form cation channels that are activated by plasma membrane receptors. They convert extracellular signals such as angiotensin II into cellular responses, whereupon Na+ and Ca2+ influx and depolarization of the plasma membrane occur. Via depolarization, voltage-gated Ca2+ (CaV) channels can be activated, further increasing Ca2+ influx. We investigated the extent to which EA also affects the functions of CaV channels using the high-voltage-activated L-type Ca2+ channel CaV1.2 and the low-voltage-activated T-type Ca2+ channels CaV3.1, CaV3.2, and CaV3.3. After expression of cDNAs in human embryonic kidney (HEK293) cells, EA inhibited currents through all T-type channels at half-maximal inhibitory concentrations (IC50) of 7.5 to 10.3 µM. In zona glomerulosa cells of the adrenal gland, angiotensin II-induced elevation of cytoplasmic Ca2+ concentration leads to aldosterone release. We identified transcripts of low- and high-voltage-activated CaV channels and of TRPC1 and TRPC5 in the human adrenocortical (HAC15) zona glomerulosa cell line. Although no EA-induced TRPC activity was measurable, Ca2+ channel blockers distinguished T- and L-type Ca2+ currents. EA blocked 60% of the CaV current in HAC15 cells and T- and L-type channels analyzed at -30 mV and 10 mV were inhibited with IC50 values of 2.3 and 2.6 µM, respectively. Although the T-type blocker Z944 reduced basal and angiotensin II-induced 24-hour aldosterone release, EA was not effective. In summary, we show here that EA blocks CaV1.2 and T-type CaV channels at low-micromolar concentrations. SIGNIFICANCE STATEMENT: In this study we showed that englerin A (EA), a potent agonist of tetrameric transient receptor potential canonical (TRPC)4- or TRPC5-containing channels and currently under investigation to treat certain types of cancer, also inhibits the L-type voltage-gated Ca2+ (CaV) channel CaV1.2 and the T-type CaV channels CaV3.1, CaV3.2, and CaV3.3 channels at low micromolar concentrations.


Assuntos
Canais de Cálcio Tipo T , Canais de Potencial de Receptor Transitório , Humanos , Canais de Cálcio Tipo T/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Aldosterona/farmacologia , Células HEK293 , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo
15.
Biomolecules ; 13(6)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371532

RESUMO

An elevated level of circulating homocysteine (Hcy) has been regarded as an independent risk factor for cardiovascular disease; however, the clinical benefit of Hcy lowering-therapy is not satisfying. To explore potential unrevealed mechanisms, we investigated the roles of Ca2+ influx through TRPC channels and regulation by Hcy-copper complexes. Using primary cultured human aortic endothelial cells and HEK-293 T-REx cells with inducible TRPC gene expression, we found that Hcy increased the Ca2+ influx in vascular endothelial cells through the activation of TRPC4 and TRPC5. The activity of TRPC4 and TRPC5 was regulated by extracellular divalent copper (Cu2+) and Hcy. Hcy prevented channel activation by divalent copper, but monovalent copper (Cu+) had no effect on the TRPC channels. The glutamic acids (E542/E543) and the cysteine residue (C554) in the extracellular pore region of the TRPC4 channel mediated the effect of Hcy-copper complexes. The interaction of Hcy-copper significantly regulated endothelial proliferation, migration, and angiogenesis. Our results suggest that Hcy-copper complexes function as a new pair of endogenous regulators for TRPC channel activity. This finding gives a new understanding of the pathogenesis of hyperhomocysteinemia and may explain the unsatisfying clinical outcome of Hcy-lowering therapy and the potential benefit of copper-chelating therapy.


Assuntos
Cobre , Células Endoteliais , Humanos , Cobre/farmacologia , Cobre/metabolismo , Células Endoteliais/metabolismo , Células HEK293 , Proteínas de Transporte , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo
16.
Life Sci ; 328: 121871, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352915

RESUMO

AIMS: Transient receptor potential canonical 5 (TRPC5) channels are redox-sensitive cation-permeable channels involved in temperature and mechanical sensation. Increased expression and over-activation of these channels has been implicated in several central nervous system disorders such as epilepsy, depression, traumatic brain injury, anxiety, Huntington's disease and stroke. TRPC5 channel activation causes increased calcium influx which in turn activates numerous downstream signalling pathways involved in the pathophysiology of neurological disorders. Therefore, we hypothesized that pharmacological blockade and knockdown of TRPC5 channels could attenuate the behavioural deficits and molecular changes seen in CNS disease models such as MPTP/MPP+ induced Parkinson's disease (PD). MATERIALS AND METHODS: In the present study, PD was induced after bilateral intranigral infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the Sprague Dawley rats. Additionally, SH-SY5Y neurons were exposed to 1-methyl-4-phenylpyridinium (MPP+) to further determine the role of TRPC5 channels in PD. KEY FINDINGS: We used clemizole hydrochloride, a potent TRPC5 channel blocker, to reverse the behavioural deficits, molecular changes and biochemical parameters in MPTP/MPP+-induced PD. Furthermore, knockdown of TRPC5 expression using siRNA also closely phenocopies these effects. We further observed restoration of tyrosine hydroxylase levels and improved mitochondrial health following clemizole treatment and TRPC5 knockdown. These changes were accompanied by diminished calcium influx, reduced levels of reactive oxygen species and decreased apoptotic signalling in the PD models. SIGNIFICANCE: These findings collectively suggest that increased expression of TRPC5 channels is a potential risk factor for PD and opens a new therapeutic window for the development of pharmacological agents targeting neurodegeneration and PD.


Assuntos
Neuroblastoma , Doença de Parkinson , Canais de Potencial de Receptor Transitório , Animais , Humanos , Ratos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-fenilpiridínio , Cálcio/metabolismo , Neurônios Dopaminérgicos , Neuroblastoma/metabolismo , Oxirredução , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
17.
Cells ; 12(9)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174704

RESUMO

Gadopentetic acid and gadodiamide are paramagnetic gadolinium-based contrast agents (GBCAs) that are routinely used for dynamic contrast-enhanced magnetic resonance imaging (MRI) to monitor disease progression in cancer patients. However, growing evidence indicates that repeated administration of GBCAs may lead to gadolinium (III) cation accumulation in the cortical bone tissue, skin, basal ganglia, and cerebellum, potentially leading to a subsequent slow long-term discharge of Gd3+. Gd3+ is a known activator of the TRPC5 channel that is implicated in breast cancer's resistance to chemotherapy. Herein, we found that gadopentetic acid (Gd-DTPA, 1 mM) potentiated the inward and outward currents through TRPC5 channels, which were exogenously expressed in HEK293 cells. Gd-DTPA (1 mM) also activated the Gd3+-sensitive R593A mutant of TRPC5, which exhibits a reduced sensitivity to GPCR-Gq/11-PLC dependent gating. Conversely, Gd-DTPA had no effect on TRPC5-E543Q, a Gd3+ insensitive TRPC5 mutant. Long-term treatment (28 days) of human breast cancer cells (MCF-7 and SK-BR-3) and adriamycin-resistant MCF-7 cells (MCF-7/ADM) with Gd-DTPA (1 mM) or gadodiamide (GDD, 1 mM) did not affect the IC50 values of ADM. However, treatment with Gd-DTPA or GDD significantly increased TRPC5 expression and decreased the accumulation of ADM in the nuclei of MCF-7 and SK-BR-3 cells, promoting the survival of these two breast cancer cells in the presence of ADM. The antagonist of TRPC5, AC1903 (1 µM), increased ADM nuclear accumulation induced by Gd-DTPA-treatment. These data indicate that prolonged GBCA treatment may lead to increased breast cancer cell survival owing to the upregulation of TRPC5 expression and the increased ADM resistance. We propose that while focusing on providing medical care of the best personalized quality in the clinic, excessive administration of GBCAs should be avoided in patients with metastatic breast cancer to reduce the risk of promoting breast cancer cell drug resistance.


Assuntos
Neoplasias da Mama , Compostos Organometálicos , Humanos , Feminino , Gadolínio DTPA/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Gadolínio/farmacologia , Gadolínio/metabolismo , Células HEK293 , Meios de Contraste/farmacologia , Canais de Cátion TRPC/metabolismo
18.
J Biochem Mol Toxicol ; 37(7): e23372, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37102204

RESUMO

Cis-diamminedichloroplatinum (II) (cisplatin, Cis) is widely employed to treat several types of cancer. It has many important toxic side effects; one of the most important of which is nephrotoxicity. Clemizole hydrochloride (Clem) as the most potent inhibitor of TRPC5 channels was tested in an animal model of Cis-induced nephrotoxicity. Rats were divided into the following groups: control; Cis (8 mg/kg); Cis + 1 mg/kg Clem; Cis + 5 mg/kg Clem; Cis + 10 mg/kg Clem. Kidney injury was detected by histopathological and biochemical analysis. Urine urea nitrogen (UUN), creatinine, urine neutrophil gelatinase-associated lipocalin (NGAL), serum catalase (CAT), and malondialdehyde (MDA) levels were determined by enzyme-linked immunosorbent assay. Total antioxidant status (TAS) and total oxidant status (TOS) were studied using a colorimetric assay. Nephrin, synaptopodin, and Rac family small GTPase 1 (RAC1) expressions were detected by Western blot analysis. Cis was found to induce histopathological alterations, including tubular degeneration, congestion, hemorrhage, hyaline casts, glomerular collapse, and apoptotic cell death. Clem at a dose of 1 and 5 mg/kg attenuated histopathological alterations. UUN, creatinine, and NGAL levels increased in the Cis-administered group, while all doses of Clem decreased in those. CAT and TAS levels decreased, while TOS and oxidative stress index levels increased in the Cis-treated group. A dose of 1 and 5 mg Clem showed antioxidant effects against oxidative stress. Cis induced lipid peroxidation by increasing MDA levels. All doses of Clem reduced MDA levels. Nephrin and synaptopodin expressions were decreased by Cis, and all doses of Clem increased that. All doses of Clem successfully depressed RAC1 expression. Clem showed a highly ameliorating effect on toxicity caused by Cis by blocking TRPC5 calcium channels.


Assuntos
Cisplatino , Insuficiência Renal , Ratos , Animais , Cisplatino/toxicidade , Lipocalina-2/metabolismo , Lipocalina-2/farmacologia , Creatinina , Rim , Insuficiência Renal/induzido quimicamente , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Ureia , Canais de Cátion TRPC/metabolismo
19.
Med Oncol ; 40(3): 97, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797544

RESUMO

The liver is the main organ of metabolism in the human body, and it is easy to suffer from hepatitis, cirrhosis, liver cancer, and other diseases, the most serious of which is liver cancer. Worldwide, liver cancer is the most common and deadly malignant tumor, the third leading cause of cancer death in the world. Based on TCGA and ICGC databases, our research discovered the important role of TRPC1 in liver cancer through bioinformatics. The results showed that TRPC1 was over-expressed in hepatocellular carcinoma, and the higher the expression level of TRPC1, the worse the OS and the lower the survival rate. TRPC1 was a risk factor affecting the overall survival probability of hepatocellular carcinoma patients. By analyzing the function of the TRP family in liver cancer, TRPC1 might promote the occurrence of liver cancer by up-regulating common signal pathways in tumors such as tumor proliferation signature, and down-regulating important metabolic reactions such as retinol metabolism. In addition, TRPC1 could promote the development of liver cancer by up-regulating the expression of ABI2, MAPRE1, YEATS2, MTA3, TMEM237, MTMR2, CCDC6, AC069544.2, and NCBP2 genes. These results illustrate that TRPC1 is very valuable in the study of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Canais de Cátion TRPC , Humanos , Carcinoma Hepatocelular/patologia , Cirrose Hepática , Neoplasias Hepáticas/patologia , Prognóstico , Transdução de Sinais , Canais de Cátion TRPC/metabolismo
20.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834672

RESUMO

Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.


Assuntos
Canais de Cálcio , Células Endoteliais , Animais , Bovinos , Camundongos , Ratos , Humanos , Canais de Cálcio/metabolismo , Células Endoteliais/metabolismo , Canais de Cátion TRPC/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Sinalização do Cálcio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA