Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 37(7): 110025, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788616

RESUMO

Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable cation channel, is gated by intracellular adenosine diphosphate ribose (ADPR), Ca2+, warm temperature, and oxidative stress. It is critically involved in physiological and pathological processes ranging from inflammation to stroke to neurodegeneration. At present, the channel's gating and ion permeation mechanisms, such as the location and identity of the selectivity filter, remain ambiguous. Here, we report the cryo-electron microscopy (cryo-EM) structure of human TRPM2 in nanodisc in the ligand-free state. Cryo-EM map-guided computational modeling and patch-clamp recording further identify a quadruple-residue motif as the ion selectivity filter, which adopts a restrictive conformation in the closed state and acts as a gate, profoundly contrasting with its widely open conformation in the Nematostella vectensis TRPM2. Our study reveals the gating of human TRPM2 by the filter and demonstrates the feasibility of using cryo-EM in conjunction with computational modeling and functional studies to garner structural information for intrinsically dynamic but functionally important domains.


Assuntos
Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/fisiologia , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Cátions , Microscopia Crioeletrônica/métodos , Humanos , Ativação do Canal Iônico/fisiologia , Técnicas de Patch-Clamp/métodos , Ligação Proteica/fisiologia , Canais de Cátion TRPM/ultraestrutura
2.
Biochim Biophys Acta Gen Subj ; 1864(7): 129580, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32109505

RESUMO

TRPM8 member of the TRP superfamily of membrane proteins participates to various cellular processes ranging from Ca2+ uptake and cold sensation to cellular proliferation and migration. TRPM8 is a large tetrameric protein with more than 70% of its residues located in the cytoplasm. TRPM8 is N-glycosylated, with a single site per subunit. This work focuses on the N-glycosylation of TRPM8 channel that was previously studied by our group in relation to proliferation and migration of tumoral cells. Here, experimental data performed with deglycosylating agents assess that the sole glycosylation site contains complex glycans with a molecular weight of 2.5 kDa. The glycosylation state of TRPM8 in cells untreated and treated with a deglycosylating agent was addressed with Terahertz (THz) spectroscopy. Results show a clear difference between cells comprising glycosylated and deglycosylated TRPM8, the first presenting an increased THz absorption. Human TRPM8 was modelled using as templates the available TRPM8 and other TRPM channels structures. Glycosylations were modelled by considering two glycan structures with molecular weight close to the experiment: shorter and branched at the first sugar unit (glc1) and longer and unbranched (glc2). Simulation of THz spectra based on the molecular dynamics of unglycosylated and the two glycosylated TRPM8 models in lipid membrane and solvation box showed that glycan structure strongly influences the THz spectrum of the channel and of other components from the simulation system. Only spectra of TRPM8 with glc1 glycans were in agreement with the experiment, leading to the validation of glc1 glycan structure.


Assuntos
Glucanos/química , Lipídeos de Membrana/química , Modelos Moleculares , Canais de Cátion TRPM/química , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Glicosilação , Humanos , Açúcares/química , Canais de Cátion TRPM/ultraestrutura , Espectroscopia Terahertz
3.
Nature ; 562(7725): 145-149, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250252

RESUMO

Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that has an essential role in diverse physiological processes such as core body temperature regulation, immune response and apoptosis1-4. TRPM2 is polymodal and can be activated by a wide range of stimuli1-7, including temperature, oxidative stress and NAD+-related metabolites such as ADP-ribose (ADPR). Its activation results in both Ca2+ entry across the plasma membrane and Ca2+ release from lysosomes8, and has been linked to diseases such as ischaemia-reperfusion injury, bipolar disorder and Alzheimer's disease9-11. Here we report the cryo-electron microscopy structures of the zebrafish TRPM2 in the apo resting (closed) state and in the ADPR/Ca2+-bound active (open) state, in which the characteristic NUDT9-H domains hang underneath the MHR1/2 domain. We identify an ADPR-binding site located in the bi-lobed structure of the MHR1/2 domain. Our results provide an insight into the mechanism of activation of the TRPM channel family and define a framework for the development of therapeutic agents to treat neurodegenerative diseases and temperature-related pathological conditions.


Assuntos
Adenosina Difosfato Ribose/farmacologia , Cálcio/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/ultraestrutura , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/ultraestrutura , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Microscopia Crioeletrônica , Ácido Edético/química , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Modelos Moleculares , Doenças Neurodegenerativas/tratamento farmacológico , Domínios Proteicos , Pirofosfatases/química , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/química , Peixe-Zebra , Proteínas de Peixe-Zebra/química
4.
Nature ; 552(7684): 205-209, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29211714

RESUMO

TRPM4 is a calcium-activated, phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) -modulated, non-selective cation channel that belongs to the family of melastatin-related transient receptor potential (TRPM) channels. Here we present the electron cryo-microscopy structures of the mouse TRPM4 channel with and without ATP. TRPM4 consists of multiple transmembrane and cytosolic domains, which assemble into a three-tiered architecture. The N-terminal nucleotide-binding domain and the C-terminal coiled-coil participate in the tetrameric assembly of the channel; ATP binds at the nucleotide-binding domain and inhibits channel activity. TRPM4 has an exceptionally wide filter but is only permeable to monovalent cations; filter residue Gln973 is essential in defining monovalent selectivity. The S1-S4 domain and the post-S6 TRP domain form the central gating apparatus that probably houses the Ca2+- and PtdIns(4,5)P2-binding sites. These structures provide an essential starting point for elucidating the complex gating mechanisms of TRPM4 and reveal the molecular architecture of the TRPM family.


Assuntos
Microscopia Crioeletrônica , Canais de Cátion TRPM/ultraestrutura , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sítios de Ligação , Cálcio/metabolismo , Camundongos , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Especificidade por Substrato , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo
5.
J Dent Res ; 94(7): 945-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25838461

RESUMO

In organized tissues, the precise geometry and the overall shape are critical for the specialized functions that the cells carry out. Odontoblasts are major matrix-producing cells of the tooth and have also been suggested to participate in sensory transmission. However, refined morphologic data on these important cells are limited, which hampers the analysis and understanding of their cellular functions. We took advantage of fluorescent color-coding genetic tracing to visualize and reconstruct in 3 dimensions single odontoblasts, pulp cells, and their assemblages. Our results show distinct structural features and compartments of odontoblasts at different stages of maturation, with regard to overall cellular shape, formation of the main process, orientation, and matrix deposition. We demonstrate previously unanticipated contacts between the processes of pulp cells and odontoblasts. All reported data are related to mouse incisor tooth. We also show that odontoblasts express TRPM5 and Piezo2 ion channels. Piezo2 is expressed ubiquitously, while TRPM5 is asymmetrically distributed with distinct localization to regions proximal to and within odontoblast processes.


Assuntos
Imageamento Tridimensional/métodos , Odontoblastos/citologia , Ameloblastos/citologia , Ameloblastos/ultraestrutura , Animais , Compartimento Celular , Núcleo Celular/ultraestrutura , Forma Celular , Extensões da Superfície Celular/ultraestrutura , Polpa Dentária/citologia , Polpa Dentária/ultraestrutura , Dentina/ultraestrutura , Matriz Extracelular/ultraestrutura , Imunofluorescência , Incisivo/citologia , Incisivo/ultraestrutura , Canais Iônicos/ultraestrutura , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura/métodos , Odontoblastos/ultraestrutura , Canais de Cátion TRPM/ultraestrutura
6.
J Gen Physiol ; 133(2): 189-203, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19171771

RESUMO

TRPM2 is a tetrameric Ca(2+)-permeable channel involved in immunocyte respiratory burst and in postischaemic neuronal death. In whole cells, TRPM2 activity requires intracellular ADP ribose (ADPR) and intra- or extracellular Ca(2+), but the mechanism and the binding sites for Ca(2+) activation remain unknown. Here we study TRPM2 gating in inside-out patches while directly controlling intracellular ligand concentrations. Concentration jump experiments at various voltages and Ca(2+) dependence of steady-state single-channel gating kinetics provide unprecedented insight into the molecular mechanism of Ca(2+) activation. In patches excised from Xenopus laevis oocytes expressing human TRPM2, coapplication of intracellular ADPR and Ca(2+) activated approximately 50-pS nonselective cation channels; K(1/2) for ADPR was approximately 1 microM at saturating Ca(2+). Intracellular Ca(2+) dependence of TRPM2 steady-state opening and closing rates (at saturating [ADPR] and low extracellular Ca(2+)) reveals that Ca(2+) activation is a consequence of tighter binding of Ca(2+) in the open rather than in the closed channel conformation. Four Ca(2+) ions activate TRPM2 with a Monod-Wymann-Changeux mechanism: each binding event increases the open-closed equilibrium constant approximately 33-fold, producing altogether 10(6)-fold activation. Experiments in the presence of 1 mM of free Ca(2+) on the extracellular side clearly show that closed channels do not sense extracellular Ca(2+), but once channels have opened Ca(2+) entering passively through the pore slows channel closure by keeping the "activating sites" saturated, despite rapid continuous Ca(2+)-free wash of the intracellular channel surface. This effect of extracellular Ca(2+) on gating is gradually lost at progressively depolarized membrane potentials, where the driving force for Ca(2+) influx is diminished. Thus, the activating sites lie intracellularly from the gate, but in a shielded crevice near the pore entrance. Our results suggest that in intact cells that contain micromolar ADPR a single brief puff of Ca(2+) likely triggers prolonged, self-sustained TRPM2 activity.


Assuntos
Cálcio/metabolismo , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Sítios de Ligação/fisiologia , Cálcio/química , Sinalização do Cálcio/fisiologia , Retroalimentação Fisiológica/fisiologia , Feminino , Humanos , Ativação do Canal Iônico , Potenciais da Membrana , Oócitos , Técnicas de Patch-Clamp , Ligação Proteica , Relação Estrutura-Atividade , Canais de Cátion TRPM/ultraestrutura , Termodinâmica , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA