Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; 54(1): e12955, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33159483

RESUMO

OBJECTIVES: Calcium ion signals are important for osteoclast differentiation. Transient receptor potential vanilloid 6 (TRPV6) is a regulator of bone homeostasis. However, it was unclear whether TRPV6 was involved in osteoclast formation. Therefore, the aim of this study was to evaluate the role of TPRV6 in bone metabolism and to clarify its regulatory role in osteoclasts at the cellular level. MATERIALS AND METHODS: Bone structure and histological changes in Trpv6 knockout mice were examined using micro-computed tomography and histological analyses. To investigate the effects of Trpv6 on osteoclast function, we silenced or overexpressed Trpv6 in osteoclasts via lentivirus transfection, respectively. Osteoclast differentiation and bone resorption viability were measured by tartrate-resistant acid phosphatase (TRAP) staining and pit formation assays. The expression of osteoclast marker genes, including cathepsin k, DC-STAMP, Atp6v0d2 and TRAP, was measured by qRT-PCR. Cell immunofluorescence and Western blotting were applied to explore the mechanisms by which the IGF-PI3K-AKT pathway was involved in the regulation of osteoclast formation and bone resorption by Trpv6. RESULTS: We found that knockout of Trpv6 induced osteoporosis and enhanced bone resorption in mice, but did not affect bone formation. Further studies showed that Trpv6, which was distributed on the cell membrane of osteoclasts, acted as a negative regulator for osteoclast differentiation and function. Mechanistically, Trpv6 suppressed osteoclastogenesis by decreasing the ratios of phosphoprotein/total protein in the IGF-PI3K-AKT signalling pathway. Blocking of the IGF-PI3K-AKT pathway significantly alleviated the inhibitory effect of Trpv6 on osteoclasts formation. CONCLUSIONS: Our study confirmed the important role of Trpv6 in bone metabolism and clarified its regulatory role in osteoclasts at the cellular level. Taken together, this study may inspire a new strategy for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea/metabolismo , Canais de Cálcio/metabolismo , Diferenciação Celular , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Animais , Canais de Cálcio/deficiência , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Somatomedinas/metabolismo , Canais de Cátion TRPV/deficiência
2.
Chem Senses ; 45(7): 573-579, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32572463

RESUMO

Exposure of the oral cavity to acidic solutions evokes not only a sensation of sour, but also of sharp or tangy. Acidic substances potentially stimulate both taste buds and acid-sensitive mucosal free nerve endings. Mice lacking taste function (P2X2/P2X3 double-KO mice) refuse acidic solutions similar to wildtype (WT) mice and intraoral infusion of acidic solutions in these KO animals evokes substantial c-Fos activity within orosensory trigeminal nuclei as well as of the nucleus of the solitary tract (nTS) (Stratford, Thompson, et al. 2017). This residual acid-evoked, non-taste activity includes areas that receive inputs from trigeminal and glossopharyngeal peptidergic (CGRP-containing) nerve fibers that express TrpA1 and TrpV1 both of which are activated by low pH. We compared avoidance responses in WT and TrpA1/V1 double-KO (TRPA1/V1Dbl-/-) mice in brief-access behavioral assay (lickometer) to 1, 3, 10, and 30 mM citric acid, along with 100 µM SC45647 and H2O. Both WT and TRPA1/V1Dbl-/- show similar avoidance, including to higher concentrations of citric acid (10 and 30 mM; pH 2.62 and pH 2.36, respectively), indicating that neither TrpA1 nor TrpV1 is necessary for the acid-avoidance behavior in animals with an intact taste system. Similarly, induction of c-Fos in the nTS and dorsomedial spinal trigeminal nucleus was similar in the WT and TRPA1/V1Dbl-/- animals. Taken together these results suggest non-TrpV1 and non-TrpA1 receptors underlie the residual responses to acids in mice lacking taste function.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Ácido Cítrico/farmacologia , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética , Animais , Aprendizagem da Esquiva/fisiologia , Ácido Cítrico/química , Feminino , Guanidinas/química , Guanidinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Solitário/metabolismo , Canal de Cátion TRPA1/deficiência , Canais de Cátion TRPV/deficiência , Núcleos do Trigêmeo/metabolismo
3.
J Clin Invest ; 130(5): 2527-2541, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999644

RESUMO

Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene-KO mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.


Assuntos
Canais Iônicos/agonistas , Pancreatite/etiologia , Pancreatite/fisiopatologia , Canais de Cátion TRPV/fisiologia , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Células Acinares/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular , Modelos Animais de Doenças , Feminino , Canais Iônicos/genética , Canais Iônicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/fisiopatologia , Pancreatite/patologia , Pressão , Pirazinas/farmacologia , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Tiadiazóis/farmacologia
4.
Neuromolecular Med ; 22(1): 68-72, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31468327

RESUMO

Mutations in TRPV4 are linked to a group of clinically distinct, but also overlapping axonal neuropathies, including Charcot-Marie-Tooth disease type 2C (CMT2C), scapuloperoneal spinal muscular atrophy, and congenital distal spinal muscular atrophy. The incidence of TRPV4-linked cases ranges from 0 to 7% in overall axonal neuropathy cohorts from European countries and Australia. However, the data from other areas remain largely unknown. In this study, we screened for TRPV4 mutations in a well-characterized USA cohort of 62 unrelated CMT2 patients without mutations in MFN2, GARS, NEFL, and GDAP1. All 15 coding exons of TRPV4 were analyzed by Sanger-sequencing. Clinical features of TRPV4-linked patients were compared with those lacking TRPV4 mutations. We identified two TRPV4 mutations in two patients. A TRPV4-R316C was identified in a patient with family history, while a TRPV4-R269C in an apparently sporadic case. Marked clinical variations were observed in the patients with TRPV4 mutations. Our data suggest that TRPV4-linked CMT2C accounts for a sizable fraction in this USA cohort of CMT2; it has a wide phenotypic spectrum, and vocal cord paralysis, scapular weakness and wasting, skeletal dysplasia, and hearing loss are suggestive signs for TRPV4-linked CMT2C.


Assuntos
Doença de Charcot-Marie-Tooth/epidemiologia , Atrofia Muscular Espinal/epidemiologia , Mutação , Canais de Cátion TRPV/genética , Adulto , Axônios/patologia , Doenças do Desenvolvimento Ósseo/etiologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Éxons/genética , Feminino , Aconselhamento Genético , Perda Auditiva/etiologia , Humanos , Incidência , Masculino , Debilidade Muscular/etiologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Mutação Puntual , Canais de Cátion TRPV/deficiência , Estados Unidos/epidemiologia , Paralisia das Pregas Vocais/etiologia
6.
Am J Physiol Renal Physiol ; 318(2): F298-F314, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790304

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic pelvic disorder with sensory symptoms of urinary urgency, frequency, and pain, indicating a key role for hypersensitivity of bladder-innervating sensory neurons. The inflammatory mast cell mediator histamine has long been implicated in IC/BPS, yet the direct interactions between histamine and bladder afferents remain unclear. In the present study, we show, using a mouse ex vivo bladder afferent preparation, that intravesical histamine enhanced the mechanosensitivity of subpopulations of afferents to bladder distension. Histamine also recruited "silent afferents" that were previously unresponsive to bladder distension. Furthermore, in vivo intravesical histamine enhanced activation of dorsal horn neurons within the lumbosacral spinal cord, indicating increased afferent signaling in the central nervous system. Quantitative RT-PCR revealed significant expression of histamine receptor subtypes (Hrh1-Hrh3) in mouse lumbosacral dorsal root ganglia (DRG), bladder detrusor smooth muscle, mucosa, and isolated urothelial cells. In DRG, Hrh1 was the most abundantly expressed. Acute histamine exposure evoked Ca2+ influx in select populations of DRG neurons but did not elicit calcium transients in isolated primary urothelial cells. Histamine-induced mechanical hypersensitivity ex vivo was abolished in the presence of the histamine H1 receptor antagonist pyrilamine and was not present in preparations from mice lacking transient receptor potential vanilloid 1 (TRPV1). Together, these results indicate that histamine enhances the sensitivity of bladder afferents to distension via interactions with histamine H1 receptor and TRPV1. This hypersensitivity translates to increased sensory input and activation in the spinal cord, which may underlie the symptoms of bladder hypersensitivity and pain experienced in IC/BPS.


Assuntos
Cistite Intersticial/metabolismo , Histamina/administração & dosagem , Hiperalgesia/metabolismo , Mecanorreceptores/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Receptores Histamínicos H1/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/inervação , Administração Intravesical , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Cistite Intersticial/fisiopatologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Masculino , Mecanorreceptores/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Limiar da Dor/efeitos dos fármacos , Pressão , Receptores Histamínicos H1/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Urotélio/efeitos dos fármacos , Urotélio/metabolismo
7.
Elife ; 82019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31526479

RESUMO

Epithelial homeostasis and regeneration require a pool of quiescent cells. How the quiescent cells are established and maintained is poorly understood. Here, we report that Trpv6, a cation channel responsible for epithelial Ca2+ absorption, functions as a key regulator of cellular quiescence. Genetic deletion and pharmacological blockade of Trpv6 promoted zebrafish epithelial cells to exit from quiescence and re-enter the cell cycle. Reintroducing Trpv6, but not its channel dead mutant, restored the quiescent state. Ca2+ imaging showed that Trpv6 is constitutively open in vivo. Mechanistically, Trpv6-mediated Ca2+ influx maintained the quiescent state by suppressing insulin-like growth factor (IGF)-mediated Akt-Tor and Erk signaling. In zebrafish epithelia and human colon carcinoma cells, Trpv6/TRPV6 elevated intracellular Ca2+ levels and activated PP2A, which down-regulated IGF signaling and promoted the quiescent state. Our findings suggest that Trpv6 mediates constitutive Ca2+ influx into epithelial cells to continuously suppress growth factor signaling and maintain the quiescent state.


Assuntos
Canais de Cálcio/metabolismo , Proliferação de Células , Células Epiteliais/fisiologia , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/deficiência , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
8.
Am J Physiol Renal Physiol ; 316(5): F948-F956, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30838874

RESUMO

Tight regulation of K+ balance is fundamental for normal physiology. Reduced dietary K+ intake, which is common in Western diets, often leads to hypokalemia and associated cardiovascular- and kidney-related pathologies. The distal nephron, and, specifically, the collecting duct (CD), is the major site of controlled K+ reabsorption via H+-K+-ATPase in the state of dietary K+ deficiency. We (Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. Kidney Int 91: 1398-1409, 2017) have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) Ca2+ channel, abundantly expressed in the CD, contributes to renal K+ handling by promoting flow-induced K+ secretion. Here, we investigated a potential role of TRPV4 in controlling H+-K+-ATPase-dependent K+ reabsorption in the CD. Treatment with a K+-deficient diet (<0.01% K+) for 7 days reduced serum K+ levels in wild-type (WT) mice from 4.3 ± 0.2 to 3.3 ± 0.2 mM but not in TRPV4-/- mice (4.3 ± 0.1 and 4.2 ± 0.3 mM, respectively). Furthermore, we detected a significant reduction in 24-h urinary K+ levels in TRPV4-/- compared with WT mice upon switching to K+-deficient diet. TRPV4-/- animals also had significantly more acidic urine on a low-K+ diet, but not on a regular (0.9% K+) or high-K+ (5% K+) diet, which is consistent with increased H+-K+-ATPase activity. Moreover, we detected a greatly accelerated H+-K+-ATPase-dependent intracellular pH extrusion in freshly isolated CDs from TRPV4-/- compared with WT mice fed a K+-deficient diet. Overall, our results demonstrate a novel kaliuretic role of TRPV4 by inhibiting H+-K+-ATPase-dependent K+ reabsorption in the CD. We propose that TRPV4 inhibition could be a novel strategy to manage certain hypokalemic states in clinical settings.


Assuntos
Hipopotassemia/prevenção & controle , Túbulos Renais Coletores/metabolismo , Deficiência de Potássio/metabolismo , Potássio na Dieta/metabolismo , Reabsorção Renal , Canais de Cátion TRPV/deficiência , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Concentração de Íons de Hidrogênio , Hipopotassemia/genética , Hipopotassemia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Deficiência de Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Canais de Cátion TRPV/genética
9.
Cancer Lett ; 442: 15-20, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401632

RESUMO

The transient receptor potential vanilloid 4 (TRPV4) channel is a mechanosensor in endothelial cells (EC) that regulates cyclic strain-induced reorientation and flow-mediated nitric oxide production. We have recently demonstrated that TRPV4 expression is reduced in tumor EC and tumors grown in TRPV4KO mice exhibited enhanced growth and immature leaky vessels. However, the mechanism by which TRPV4 regulates tumor vascular integrity and metastasis is not known. Here, we demonstrate that VE-cadherin expression at the cell-cell contacts is significantly reduced in TRPV4-deficient tumor EC and TRPV4KO EC. In vivo angiogenesis assays with Matrigel of varying stiffness (700-900 Pa) revealed a significant stiffness-dependent reduction in VE-cadherin-positive vessels in Matrigel plugs from TRPV4KO mice compared with WT mice, despite an increase in vessel growth. Further, syngeneic Lewis Lung Carcinomatumor experiments demonstrated a significant decrease in VE-cadherin positive vessels in TRPV4KO tumors compared with WT. Functionally, enhanced tumor cell metastasis to the lung was observed in TRPV4KO mice. Our findings demonstrate that TRPV4 channels regulate tumor vessel integrity by maintaining VE-cadherin expression at cell-cell contacts and identifies TRPV4 as a novel target for metastasis.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Movimento Celular , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Neoplasias Pulmonares/irrigação sanguínea , Mecanotransdução Celular , Neovascularização Patológica , Canais de Cátion TRPV/metabolismo , Animais , Antígenos CD/genética , Caderinas/genética , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/secundário , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Junções Intercelulares/genética , Junções Intercelulares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
10.
J Cell Mol Med ; 23(2): 761-774, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450767

RESUMO

Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor ß1 (TGFß1), in epithelial-mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFß1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFß1-induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E-cadherin, N-cadherin (NCAD) and α-smooth muscle actin (α-SMA), and (b) TRPV4 deficiency prevented matrix stiffness-induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α-SMA, in a bleomycin-induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes-associated protein/transcriptional coactivator with PDZ-binding motif) in response to matrix stiffness and TGFß1, (b) TRPV4 deletion inhibited both matrix stiffness- and TGFß1-induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness- and TGFß1-induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Epiderme/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Canais de Cátion TRPV/genética , Transativadores/genética , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Bleomicina/administração & dosagem , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/patologia , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Fibrose/induzido quimicamente , Regulação da Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Mecanotransdução Celular , Camundongos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Transativadores/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas de Sinalização YAP
11.
Am J Physiol Renal Physiol ; 315(6): F1583-F1591, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089031

RESUMO

Social stress causes profound urinary bladder dysfunction in children that often continues into adulthood. We previously discovered that the intensity and duration of social stress influences whether bladder dysfunction presents as overactivity or underactivity. The transient receptor potential vanilloid type 1 (TRPV1) channel is integral in causing stress-induced bladder overactivity by increasing bladder sensory outflow, but little is known about the development of stress-induced bladder underactivity. We sought to determine if TRPV1 channels are involved in bladder underactivity caused by stress. Voiding function, sensory nerve activity, and bladder wall remodeling were assessed in C57BL/6 and TRPV1 knockout mice exposed to intensified social stress using conscious cystometry, ex vivo afferent nerve recordings, and histology. Intensified social stress increased void volume, intermicturition interval, bladder volume, and bladder wall collagen content in C57BL/6 mice, indicative of bladder wall remodeling and underactive bladder. However, afferent nerve activity was unchanged and unaffected by the TRPV1 antagonist capsazepine. Interestingly, all indices of bladder function were unchanged in TRPV1 knockout mice in response to social stress, even though corticotrophin-releasing hormone expression in Barrington's Nucleus still increased. These results suggest that TRPV1 channels in the periphery are a linchpin in the development of stress-induced bladder dysfunction, both with regard to increased sensory outflow that leads to overactive bladder and bladder wall decompensation that leads to underactive bladder. TRPV1 channels represent an intriguing target to prevent the development of stress-induced bladder dysfunction in children.


Assuntos
Neurônios Aferentes/metabolismo , Estresse Psicológico/complicações , Canais de Cátion TRPV/metabolismo , Bexiga Inativa/metabolismo , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Animais , Núcleo de Barrington/metabolismo , Núcleo de Barrington/fisiopatologia , Comportamento Animal , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Comportamento Social , Estresse Psicológico/psicologia , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Bexiga Inativa/etiologia , Bexiga Inativa/genética , Bexiga Inativa/fisiopatologia , Micção , Urodinâmica
12.
Immunity ; 49(1): 107-119.e4, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958798

RESUMO

Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Colo/fisiopatologia , Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/análise , Dinoprostona/metabolismo , Feminino , Mucosa Gástrica/citologia , Expressão Gênica , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Contração Muscular , Receptores de Prostaglandina E/antagonistas & inibidores , Receptores de Prostaglandina E/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
13.
PLoS Biol ; 16(4): e2004399, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29689050

RESUMO

Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/genética , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Canais de Cátion TRPV/genética , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Capsaicina/farmacologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Optogenética , Condicionamento Físico Animal , Pró-Opiomelanocortina/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Transdução de Sinais , Análise de Célula Única , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/deficiência , Temperatura
14.
FASEB J ; 32(8): 4612-4623, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29553832

RESUMO

Autosomal-dominant polycystic kidney disease (ADPKD) is a devastating disorder that is characterized by a progressive decline in renal function as a result of the development of fluid-filled cysts. Defective flow-mediated [Ca2+]i responses and disrupted [Ca2+]i homeostasis have been repeatedly associated with cyst progression in ADPKD. We have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) channel is imperative for flow-mediated [Ca2+]i responses in murine distal renal tubule cells. To determine whether compromised TRPV4 function contributes to aberrant Ca2+ regulation in ADPKD, we assessed TRPV4 function in primary cells that were cultured from ADPKD and normal human kidneys (NHKs). Single-channel TRPV4 activity and TRPV4-dependent Ca2+ influxes were drastically reduced in ADPKD cells, which correlated with distorted [Ca2+]i signaling. Whereas total TRPV4 protein levels were comparable in NHK and ADPKD cells, we detected a marked decrease in TRPV4 glycosylation in ADPKD cells. Tunicamycin-induced deglycosylation inhibited TRPV4 activity and compromised [Ca2+]i signaling in NHK cells. Overall, we demonstrate that TRPV4 glycosylation and channel activity are diminished in human ADPKD cells compared with NHK cells, and that this contributes significantly to the distorted [Ca2+]i dynamics. We propose that TRPV4 stimulation may be beneficial for restoring [Ca2+]i homeostasis in cyst cells, thereby interfering with ADPKD progression.-Tomilin, V., Reif, G. A., Zaika, O., Wallace, D. P., Pochynyuk, O. Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca2+]i homeostasis in human autosomal-dominant polycystic kidney disease cells.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetulus , Glicosilação , Humanos , Rim/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia
15.
Cell Rep ; 22(5): 1301-1312, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29386116

RESUMO

Chronic neuropathic pain is a major morbidity of neural injury, yet its mechanisms are incompletely understood. Hypersensitivity to previously non-noxious stimuli (allodynia) is a common symptom. Here, we demonstrate that the onset of cold hypersensitivity precedes tactile allodynia in a model of partial nerve injury, and this temporal divergence was associated with major differences in global gene expression in innervating dorsal root ganglia. Transcripts whose expression change correlates with the onset of cold allodynia were nociceptor related, whereas those correlating with tactile hypersensitivity were immune cell centric. Ablation of TrpV1 lineage nociceptors resulted in mice that did not acquire cold allodynia but developed normal tactile hypersensitivity, whereas depletion of macrophages or T cells reduced neuropathic tactile allodynia but not cold hypersensitivity. We conclude that neuropathic pain incorporates reactive processes of sensory neurons and immune cells, each leading to distinct forms of hypersensitivity, potentially allowing drug development targeted to each pain type.


Assuntos
Comportamento Animal , Hiperalgesia/fisiopatologia , Neuralgia/fisiopatologia , Transcriptoma , Animais , Temperatura Baixa , Hiperalgesia/etiologia , Hiperalgesia/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuralgia/complicações , Neuralgia/imunologia , Células Receptoras Sensoriais/metabolismo , Linfócitos T/imunologia , Canais de Cátion TRPV/deficiência , Tato
16.
J Bone Miner Metab ; 36(3): 274-285, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28516219

RESUMO

Bone pain is one of the most common and life-limiting complications of cancer metastasis to bone. Although the mechanism of bone pain still remains poorly understood, bone pain is evoked as a consequence of sensitization and excitation of sensory nerves (SNs) innervating bone by noxious stimuli produced in the microenvironment of bone metastases. We showed that bone is innervated by calcitonin gene-related protein (CGRP)+ SNs extending from dorsal root ganglia (DRG), the cell body of SNs, in mice. Mice intratibially injected with Lewis lung cancer (LLC) cells showed progressive bone pain evaluated by mechanical allodynia and flinching with increased CGRP+ SNs in bone and augmented SN excitation in DRG as indicated by elevated numbers of pERK- and pCREB-immunoreactive neurons. Immunohistochemical examination of LLC-injected bone revealed that the tumor microenvironment is acidic. Bafilomycin A1, a selective inhibitor of H+ secretion from vacuolar proton pump, significantly alleviated bone pain, indicating that the acidic microenvironment contributes to bone pain. We then determined whether the transient receptor potential vanilloid 1 (TRPV1), a major acid-sensing nociceptor predominantly expressed on SNs, plays a role in bone pain by intratibially injecting LLC cells in TRPV1-deficient mice. Bone pain and SN excitation in the DRG and spinal dorsal horn were significantly decreased in TRPV1 -/- mice compared with wild-type mice. Our results suggest that TRPV1 activation on SNs innervating bone by the acidic cancer microenvironment in bone contributes to SN activation and bone pain. Targeting acid-activated TRPV1 is a potential therapeutic approach to cancer-induced bone pain.


Assuntos
Osso e Ossos/inervação , Osso e Ossos/patologia , Carcinoma Pulmonar de Lewis/complicações , Dor/etiologia , Dor/patologia , Células Receptoras Sensoriais/patologia , Canais de Cátion TRPV/deficiência , Ácidos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Modelos Animais de Doenças , Hiperalgesia/complicações , Hiperalgesia/patologia , Masculino , Camundongos Endogâmicos C57BL , Dor/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Canais de Cátion TRPV/metabolismo
17.
Anal Biochem ; 527: 13-19, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28372979

RESUMO

Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Citometria de Fluxo/métodos , Coloração e Rotulagem/métodos , Canais de Cátion TRPV/genética , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Biomarcadores , Cálcio/imunologia , Capsaicina/farmacologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Expressão Gênica , Indóis/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Baço/citologia , Baço/imunologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/imunologia
18.
Sci Rep ; 7(1): 446, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28348394

RESUMO

Chemotherapy-induced peripheral neuropathic pain (CIPN) is a common and severe debilitating side effect of many widely used cytostatics. However, there is no approved pharmacological treatment for CIPN available. Among other substances, oxaliplatin causes CIPN in up to 80% of treated patients. Here, we report the involvement of the G-protein coupled receptor G2A (GPR132) in oxaliplatin-induced neuropathic pain in mice. We found that mice deficient in the G2A-receptor show decreased mechanical hypersensitivity after oxaliplatin treatment. Lipid ligands of G2A were found in increased concentrations in the sciatic nerve and dorsal root ganglia of oxaliplatin treated mice. Calcium imaging and patch-clamp experiments show that G2A activation sensitizes the ligand-gated ion channel TRPV1 in sensory neurons via activation of PKC. Based on these findings, we conclude that targeting G2A may be a promising approach to reduce oxaliplatin-induced TRPV1-sensitization and the hyperexcitability of sensory neurons and thereby to reduce pain in patients treated with this chemotherapeutic agent.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Compostos Organoplatínicos/efeitos adversos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Hiperalgesia/patologia , Ácidos Linoleicos Conjugados , Camundongos Endogâmicos C57BL , Neuralgia/patologia , Oxaliplatina , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/metabolismo
19.
Sci Rep ; 7: 42385, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225019

RESUMO

Fracture healing, in which osteoclasts and osteoblasts play important roles, has drawn much clinical attention. Osteoclast deficiency or decreased osteoblast activity will impair fracture healing. TRPV1 is a member of the Ca2+ permeable cation channel subfamily, and pharmacological inhibition of TRPV1 prevents ovariectomy-induced bone loss, which makes TRPV1 a potential target for osteoporosis. However, whether long term TRPV1 inhibition or TRPV1 deletion will affect the fracture healing process is unclear. In this study, we found that the wild-type mice showed a well-remodeled fracture callus, whereas TRPV1 knockout mice still had an obvious fracture gap with unresorbed soft-callus 4 weeks post-fracture. The number of osteoclasts was reduced in the TRPV1 knockout fracture callus, and osteoclast formation and resorption activity were also impaired in vitro. TRPV1 deletion decreased the calcium oscillation frequency and peak cytoplasmic concentration in osteoclast precursors, subsequently reducing the expression and nuclear translocation of NFATc1 and downregulating DC-stamp, cathepsin K, and ATP6V. In addition, TRPV1 deletion caused reduced mRNA and protein expression of Runx2 and ALP in bone marrow stromal cells (BMSCs) and reduced calcium deposition in vitro. Our results suggest that TRPV1 deletion impairs fracture healing, and inhibited osteoclastogenesis and osteogenesis.


Assuntos
Diferenciação Celular , Consolidação da Fratura , Deleção de Genes , Osteoblastos/patologia , Osteoclastos/patologia , Canais de Cátion TRPV/genética , Animais , Densidade Óssea , Calo Ósseo/patologia , Sinalização do Cálcio , Cartilagem/patologia , Contagem de Células , Regulação para Baixo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo , Microtomografia por Raio-X
20.
Neuropharmacology ; 113(Pt A): 241-251, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743934

RESUMO

Alzheimer's disease (AD) and type II diabetes mellitus (DM2) are the most common aging-related diseases and are characterized by ß-amyloid and amylin accumulation, respectively. Multiple studies have indicated a strong correlation between these two diseases. Amylin oligomerization in the brain appears to be a novel risk factor for developing AD. Although amylin aggregation has been demonstrated to induce cytotoxicity in neurons through altering Ca2+ homeostasis, the underlying mechanisms have not been fully explored. In this study, we investigated the effects of amylin on rat hippocampal neurons using calcium imaging and whole-cell patch clamp recordings. We demonstrated that the amylin receptor antagonist AC187 abolished the Ca2+ response induced by low concentrations of human amylin (hAmylin). However, the Ca2+ response induced by higher concentrations of hAmylin was independent of the amylin receptor. This effect was dependent on extracellular Ca2+. Additionally, blockade of L-type Ca2+ channels partially reduced hAmylin-induced Ca2+ response. In whole-cell recordings, hAmylin depolarized the membrane potential. Moreover, application of the transient receptor potential (TRP) channel antagonist ruthenium red (RR) attenuated the hAmylin-induced increase in Ca2+. Single-cell RT-PCR demonstrated that transient receptor potential vanilloid 4 (TRPV4) mRNA was expressed in most of the hAmylin-responsive neurons. In addition, selective knockdown of TRPV4 channels inhibited the hAmylin-evoked Ca2+ response. These results indicated that different concentrations of hAmylin act through different pathways. The amylin receptor mediates the excitatory effects of low concentrations of hAmylin. In contrast, for high concentrations of hAmylin, hAmylin aggregates precipitated on the neuronal membrane, activated TRPV4 channels and subsequently triggered membrane voltage-gated calcium channel opening followed by membrane depolarization. Therefore, our data suggest that TRPV4 is a key molecular mediator for the cytotoxic effects of hAmylin on hippocampal neurons.


Assuntos
Cálcio/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Neurônios/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Neurônios/metabolismo , Neurônios/fisiologia , Fragmentos de Peptídeos/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA