Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clinics (Sao Paulo) ; 78: 100213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37269788

RESUMO

OBJECTIVES: Pain is associated with many circumstances, including inflammatory reactions, which arise from modification of the features of signaling pathways. α2-adrenergic receptor antagonists are widely utilized in narcosis. Here, the authors focused on the narcotic effect of A-80426 (A8) on Complete Freund's Adjuvant (CFA) injections-triggered chronic inflammation pain in WT and TRPV1-/- mice and explored whether its antinociceptive impact was modulated via Transient Receptor Potential Vanilloid 1 (TRPV1). METHOD: CFA with or without A8 was co-administered to the mice, which were categorized randomly into four groups: CFA, A8, control, and vehicle. Pain behaviors underwent evaluation through mechanical withdrawal threshold, abdominal withdrawal reflex, and thermal withdrawal latency of WT animals. RESULTS: Quantitative polymerase chain reaction revealed that inflammation-promoting cytokines (IL-1ß, IL-6, and TNF-α) were upregulated in Dorsal Root Ganglion (DRG) and Spinal Cord Dorsal Horn (SCDH) tissues of WT animals. A8 administration reduced the pain behaviors and production of pro-inflammatory cytokines; however, this effect was significantly reduced in TRPV1-/- mice. Further analysis showed that CFA treatment reduced the TRPV1 expression in WT mice and A8 administration increased its expression and activity. The co-administration of SB-705498, a TRPV1 blocker, did not influence the pain behaviors and inflammation cytokines in CFA WT mice; however, SB-705498 the effect of A8 in WT mice. In addition, the TRPV1 block decreased the NFκB and PI3K activation in the Dorsal Root Ganglia (DRG) and Spinal Cord Dorsal Horn (SCDH) tissues of WT mice. CONCLUSIONS: Together, A8 exerted a narcotic impact on CFA-supplemented mice via the TRPV1-modulated NFκB and PI3K pathway.


Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Adjuvante de Freund/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Cátion TRPV/efeitos adversos , Canais de Cátion TRPV/metabolismo , Dor/tratamento farmacológico , Citocinas , NF-kappa B/metabolismo , Antineoplásicos/efeitos adversos , Inflamação
2.
Ecotoxicol Environ Saf ; 256: 114851, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004430

RESUMO

Intestinal inflammation induced by heat stress is an important factor restricting the healthy growth of broilers. The aim of this study was to evaluate the effect of chicken embryo thermal manipulation (39.5 â„ƒ and 65 % RH for 3 h daily during 16-18 th embryonic age) on intestinal inflammation in broilers under postnatal heat stress and to investigate whether transient receptor potential V4 (TRPV4) plays a role in this process. Our results suggest that broilers with embryo thermal manipulation experience could delay the rising of rectal temperature during postnatal heat stress (P < 0.05), and had better production performance (P < 0.05), intestinal morphological parameters (P < 0.05) and higher expression of tight junction related genes (P < 0.05). The increased serum lipopolysaccharide (LPS) content, activation of nuclear factor-kappa B (NF-κB) signaling pathway and the increased expression of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6 and tumor necrosis factor alpha (TNF-α) in jejunum during postnatal heat stress were alleviated by embryo thermal manipulation (P < 0.05). Postnatal heat stress induced an increase in mRNA and protein expression of TRPV4 in jejunum (P < 0.05), but had no effect on broilers which experienced embryo thermal manipulation (P > 0.05). Inhibition of TRPV4 reduced LPS-induced Ca2+ influx and restrained the activation of NF-κB signaling pathway and the expression of downstream pro-inflammatory cytokines (P < 0.05). The expression of DNA methyltransferase (DNMT) in the jejunum of broilers exposed to postnatal heat stress was increased by embryo thermal manipulation (P < 0.05). The DNA methylation level of TRPV4 promoter region was detected, and the results showed that embryo thermal manipulation increased the DNA methylation level of TRPV4 promoter region (P < 0.05). In conclusion, Chicken embryo thermal manipulation can alleviate jejunal inflammation in broilers under postnatal heat stress. This may be due to the decreased circulating LPS or the increased DNA methylation level in the promoter region of TRPV4, which inhibits TRPV4 expression, thereby reducing Ca2+ influx, and finally alleviating inflammation by affecting NF-κB signaling pathway. The work is an attempt to understand the mechanism involved in alleviation of adverse effects of heat stress during postnatal life through prenatal thermal manipulation and to reveal the important role of epigenetics.


Assuntos
Galinhas , Jejuno , Animais , Embrião de Galinha , Jejuno/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos , Canais de Cátion TRPV/efeitos adversos , Resposta ao Choque Térmico , Citocinas/metabolismo , Inflamação/induzido quimicamente
3.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4707-4714, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164878

RESUMO

This study aims to explore the effect of Jinzhen Oral Liquid(JOL) on cough after infection in rats and the mechanism. To be specific, a total of 60 male SD rats were classified into 6 groups: normal group(equivalent volume of distilled water, ig), model group(equivalent volume of distilled water, ig), Dextromethorphan Hydrobromide Oral Solution group(3.67 mL·kg~(-1), ig), high-, medium-, and low-dose JOL groups(11.34, 5.67, and 2.84 mL·kg~(-1), respectively, ig). Lipopolysaccharide(LPS, nasal drip), smoking, and capsaicin(nebulization) were employed to induce cough after infection in rats except the normal group. Administration began on the 19 th day and lasted 7 days. Capsaicin(nebulization) was used to stimulate cough 1 h after the last administration and the cough frequency and cough incubation period in rats were recorded. The pathological morphology of lung tissue was observed based on hematoxylin-eosin(HE) staining. Immunohistochemistry(IHC) was used to detect the specific expression of transient receptor potential vanilloid 1(Trpv1), nerve growth factor(NGF), tropomyosin receptor kinase A(TrkA), and phosphorylated-p38 mitogen-activated protein kinase(p-p38 MAPK) in lung tissue, Western blot the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and real-time fluorescent quantitative polymerase chain reaction(real-time PCR) the mRNA expression of Trpv1, NGF, and TrkA. The results showed that model group demonstrated significantly high cough frequency, obvious proliferation and inflammatory cell infiltration in lung tissue, significantly enhanced positive protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue and significant increase in the mRNA expression of Trpv1, NGF, and TrkA compared with the normal group. Compared with the model group, JOL can significantly reduce the cough frequency, alleviate the pathological changes of lung tissue, and decrease the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and high-dose and medium-dose JOL can significantly lower the mRNA expression of Trpv1, NGF, and TrkA. This study revealed that JOL can effectively inhibit Trpv1 pathway-related proteins and improve cough after infection. The mechanism is that it reduces the expression of NGF, TrkA, and p-p38 MAPK in lung tissue, thereby decreasing the expression of Trpv1 and cough sensitivity.


Assuntos
Tosse , Medicina Tradicional Chinesa , Fator de Crescimento Neural , Receptor trkA , Animais , Capsaicina/efeitos adversos , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Dextrometorfano/efeitos adversos , Amarelo de Eosina-(YS)/efeitos adversos , Hematoxilina , Lipopolissacarídeos/efeitos adversos , Masculino , Fator de Crescimento Neural/metabolismo , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptor trkA/genética , Receptor trkA/metabolismo , Canais de Cátion TRPV/efeitos adversos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Tropomiosina/efeitos adversos , Tropomiosina/metabolismo , Água/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6730-6740, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604923

RESUMO

Chronic inflammatory pain is mainly manifested by peripheral sensitization. Baimai Ointment(BMO), a classical Tibetan medicine for external use, has good clinical efficacy in the treatment of chronic inflammatory pain, while its pharmacodynamics and mechanism for relieving peripheral sensitization remain unclear. This study established an animal model of chronic inflammatory pain induced by complete Freund's adjuvant to explore the mechanism of BMO in the treatment of chronic inflammatory pain by behavioral test, side effect assessment, network analysis, and experimental verification. The pharmacodynamics experiment showed that BMO increased the thresholds of mechanical pain sensitivity and thermal radiation pain sensitivity of chronic inflammatory pain mice in a dose-dependent manner, and had inhibitory effect on foot swelling, inflammatory mediator, and the expression of transient receptor potential vanilloid-1(TRPV1) and transient receptor potential A1(TRPA1). The results of body weight monitoring, pain sensitivity threshold detection in normal mice, rotarod performance test, and forced swimming test showed that BMO had no obvious toxic or side effect. The network analysis of 51 candidate active molecules selected according to the efficacy of BMO, content of main components, and ADME parameters showed that the inhibitory effect of BMO on chronic inflammatory pain was associated with the core regulatory elements of tumor necrosis factor(TNF) and T cell receptor signaling pathways. BMO down-regulated the protein levels of mitogen-activated protein kinase 14(MAPK14), MAPK1, and prostaglandin-endoperoxide synthase 2(PTGS2), and up-regulated the phosphorylation le-vel of glycogen synthase kinase 3 beta(GSK3 B) in the plantar tissue of mice. In conclusion, BMO can effectively relieve peripheral sensitization of chronic inflammatory pain without inducing tolerance and obvious toxic and side effects. The relevant mechanism may be related to the regulation of BMO on core regulatory elements of TNF and T cell receptor signaling pathways in surrounding tissues.


Assuntos
Quinase 3 da Glicogênio Sintase , Hiperalgesia , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Quinase 3 da Glicogênio Sintase/efeitos adversos , Quinase 3 da Glicogênio Sintase/metabolismo , Dor/tratamento farmacológico , Dor/induzido quimicamente , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Canais de Cátion TRPV/efeitos adversos
5.
Expert Opin Ther Targets ; 25(7): 529-545, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34289785

RESUMO

INTRODUCTION: Chemotherapy-induced peripheral neuropathy (CIPN) and its related pain is a major side effect of certain chemotherapeutic agents used in cancer treatment. Available analgesics are mostly symptomatic, and on prolonged treatment, patients become refractive to them. Hence, the development of improved therapeutics that act on novel therapeutic targets is necessary. Potential targets include the redox-sensitive TRP channels [e.g. TRPA1, TRPC5, TRPC6, TRPM2, TRPM8, TRPV1, TRPV2, and TRPV4] which are activated under oxidative stress associated with CIPN. AREAS COVERED: We have examined numerous neuropathy-inducing cancer chemotherapeutics and their pathophysiological mechanisms. Oxidative stress and its downstream targets, the redox-sensitive TRP channels, together with their potential pharmacological modulators, are discussed. Finally, we reflect upon the barriers to getting new therapeutic approaches into the clinic. The literature search was conducted in PubMed upto and including April 2021. EXPERT OPINION: Redox-sensitive TRP channels are a promising target in CIPN. Pharmacological modulators of these channels have reduced pain in preclinical models and in clinical studies. Clinical scrutiny suggests that TRPA1, TRPM8, and TRPV1 are the most promising targets because of their pain-relieving potential. In addition to the analgesic effect, TRPV1 agonist-Capsaicin possesses a disease-modifying effect in CIPN through its restorative property in damaged sensory nerves.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Analgésicos/farmacologia , Antineoplásicos/efeitos adversos , Humanos , Oxirredução , Dor/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Canais de Cátion TRPV/efeitos adversos , Canais de Cátion TRPV/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G277-G287, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760763

RESUMO

Mechanosensitive signaling has emerged as a mechanism for the regulation of cholangiocyte transport and bile formation. The mechanical effect of fluid-flow, or shear, at the apical membrane of cholangiocytes regulates secretion through a process involving increases in [Ca2+]i and activation of Ca2+-activated Cl- channels. However, the initiating steps translating shear force to increases in intracellular calcium concentration ([Ca2+]i) are unknown. Transient receptor potential vanilloid member 4 (TRPV4), a nonselective cation channel present in the apical membrane of cholangiocytes, has been proposed as a potential mechanosensor. The aim of the present studies was to determine the potential role of TRPV4 in initiating mechanosensitive signaling in response to fluid-flow in cholangiocytes. TRPV4 expression was confirmed in both small and large mouse cholangiocytes. Exposure of cells to either fluid flow or specific TRPV4 pharmacological agonists rapidly increased both [Ca2+]i and membrane cation currents. Both flow- and agonist-stimulated currents displayed identical biophysical properties and were inhibited in the presence of TRPV4 antagonists or in cells after transfection with TRPV4 small interfering RNA. Transfection of mouse cholangiocytes with a TRPV4-enhanced green fluorescent protein construct increased the expression of TRPV4 and the magnitude of flow-stimulated currents. A specific TRPV4 agonist significantly increased the biliary concentration of ATP and bile flow in live mice when administered intravenously and increased ATP release from cholangiocyte monolayers when applied exogenously. The findings are consistent with a model in which activation of cholangiocyte TRPV4 translates shear force into an acute rise in membrane cation permeability, [Ca2+]i, ATP release, and bile flow. Understanding the role of mechanosensitive transport pathways may provide novel insights to modulate bile flow for the treatment of cholestatic liver disorders.NEW & NOTEWORTHY These studies functionally characterize TRPV4 as a mechanosensitive channel in mouse cholangiocytes. By mediating a rapid rise in intracellular Ca2+, necessary for Ca2+-dependent secretion, TRPV4 represents a mechanosensor responsible for translating fluid flow into intracellular signaling and biliary secretion. Furthermore, intravenous infusion of a specific TRPV4 agonist increases bile flow in live mice. Understanding the role of TRPV4 in mechanosensitive transport pathways may provide novel insights to modulate bile flow during cholestasis.


Assuntos
Ductos Biliares/metabolismo , Bile/metabolismo , Células Epiteliais/metabolismo , Canais de Cátion TRPV/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ductos Biliares/citologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Mecanorreceptores/efeitos dos fármacos , Mecanorreceptores/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/efeitos adversos
7.
Curr Drug Targets ; 18(12): 1392-1398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28595536

RESUMO

OBJECTIVE: This review article focuses on the neuroprotective effect of drug-induced hypothermia in cerebrovascular diseases and discusses its related side effects. METHOD: A systematic literature search was performed using Pubmed and Embase electronic databases for a retrospective analysis. RESULTS: Experimental studies have shown that drug-induced hypothermia alleviates brain damage and plays a neuroprotective role, thereby reducing mortality and ameliorating neurological deficits. Therefore, drug-induced hypothermia has an important research value and is worth further consideration in the clinical setting. However, drug-induced hypothermia is also associated with side effects, such as ventricular tachycardia, ventricular fibrillation, suppressed immune function, infection, electrolyte imbalance, glucose metabolism disorders, and skeletal muscle tremor. Existing drugs with cooling effects belong to the following categories: (1) dopamine receptor agonists; (2) cannabis; (3) opioid receptors; (4) vanilloid receptors; (5) vasopressins (potent neurotensin receptor agonists); (6) thyroid drugs; (7) adenosine drugs; and (8) purine drugs.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Hipotermia Induzida/efeitos adversos , Fármacos Neuroprotetores/administração & dosagem , Animais , Cannabis/efeitos adversos , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/efeitos adversos , Humanos , Hipotermia Induzida/métodos , Fármacos Neuroprotetores/efeitos adversos , Receptores Opioides/administração & dosagem , Estudos Retrospectivos , Canais de Cátion TRPV/administração & dosagem , Canais de Cátion TRPV/efeitos adversos , Vasopressinas/agonistas
8.
Invest New Drugs ; 35(3): 324-333, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28150073

RESUMO

Introduction This was an open-label, dose escalation (3 + 3 design), Phase I study of SOR-C13 in patients with advanced tumors of epithelial origin. Primary objectives were to assess safety/tolerability and pharmacokinetics. Secondary goals were to assess pharmacodynamics and efficacy of SOR-C13. Methods SOR-C13 was administered IV QD on days 1-3 and 8-10 of a 21-day cycle. Doses were 2.75 and 5.5 mg/kg (20-min infusion) and 1.375, 2.75, 4.13 and 6.2 mg/kg (90-min infusion). Toxicity was assessed by National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Dose limiting toxicity (DLT) was assessed within the first treatment cycle. Tumors were evaluated, using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, after two cycles. Results Twenty-three patients were treated. No drug-related serious adverse events occurred. DLTs occurred in six patients: asymptomatic, drug-related, transient Grade 2 hypocalcemia (4 patients), and unrelated Grade 3 anemia and Grade 3 atrial fibrillation, 1 patient each. Calcium and vitamin D supplementation eliminated further Grade 2 hypocalcemia. One Grade 3 treatment emergent adverse event, urticaria, was definitely related to SOR-C13. Four possibly drug-related, Grade 3 events (alanine aminotransferase and aspartate aminotransferase elevation, headache, and hypokalemia) were observed. Of 22 evaluable patients, 54.5% showed stable disease ranging from 2.8 to 12.5 months. The best response was a 27% reduction in a pancreatic tumor with a 55% reduction in CA19-9 levels at 6.2 mg/kg. Conclusion SOR-C13 was safe and tolerated up to 6.2 mg/kg. The Maximal Tolerated Dose (MTD) was not established. Stable disease suggested antitumor activity.


Assuntos
Antineoplásicos , Bloqueadores dos Canais de Cálcio , Neoplasias/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Adulto , Idoso , Alanina Transaminase/sangue , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aspartato Aminotransferases/sangue , Bloqueadores dos Canais de Cálcio/efeitos adversos , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/genética , Feminino , Cefaleia/induzido quimicamente , Humanos , Hipocalcemia/induzido quimicamente , Hipopotassemia/induzido quimicamente , Queratina-18/sangue , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/metabolismo , Peptídeos/efeitos adversos , Peptídeos/farmacocinética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , RNA Mensageiro/sangue , Canais de Cátion TRPV/efeitos adversos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/farmacocinética , Canais de Cátion TRPV/farmacologia , Canais de Cátion TRPV/uso terapêutico , Resultado do Tratamento , Urticária/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA