Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 9(13): e14935, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231965

RESUMO

Interleukin-6 (IL-6) via trans-signaling pathway plays a role in modifying muscle sensory nerve-exaggerated exercise pressor reflex in rats with ligated femoral arteries, but the underlying mechanisms are poorly understood. It is known that voltage-gated potassium channel subfamily member Kv4 channels contribute to the excitabilities of sensory neurons and neuronal signaling transduction. Thus, in this study, we determined that 1) IL-6 regulates the exaggerated exercise pressor reflex in rats with peripheral artery disease (PAD) induced by femoral artery ligation and 2) Kv4 channels in muscle dorsal root ganglion (DRG) neurons are engaged in the role played by IL-6 trans-signaling pathway. We found that the protein levels of IL-6 and its receptor IL-6R expression were increased in the DRGs of PAD rats with 3-day of femoral artery occlusion. Inhibition of muscle afferents' IL-6 trans-signaling pathway (gp130) by intra-arterial administration of SC144, a gp130 inhibitor, into the hindlimb muscles of PAD rats alleviated blood pressure response to static muscle contraction. On the other hand, we found that 3-day femoral occlusion decreased amplitude of Kv4 currents in rat muscle DRG neurons. The homo IL-6/IL-6Rα fusion protein (H. IL-6/6Rα), but not IL-6 alone significantly inhibited Kv4 currents in muscle DRG neurons; and the effect of H. IL-6/6Rα was largely reverted by SC144. In conclusion, our data suggest that via trans-signaling pathway upregulated IL-6 in muscle afferent nerves by ischemic hindlimb muscles inhibits the activity of Kv4 channels and thus likely leads to adjustments of the exercise pressor reflex in PAD.


Assuntos
Pressão Sanguínea/fisiologia , Artéria Femoral , Interleucina-6/metabolismo , Músculo Esquelético/fisiologia , Neurônios Aferentes/fisiologia , Doença Arterial Periférica/fisiopatologia , Condicionamento Físico Animal/fisiologia , Reflexo/fisiologia , Canais de Potássio Shal/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Masculino , Músculo Esquelético/inervação , Ratos , Ratos Sprague-Dawley , Canais de Potássio Shal/fisiologia
2.
J Physiol ; 597(23): 5707-5722, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31612994

RESUMO

As in mammals, Drosophila circadian clock neurons display rhythms of activity with higher action potential firing rates and more positive resting membrane potentials during the day. This rhythmic excitability has been widely observed but, critically, its regulation remains unresolved. We have characterized and modelled the changes underlying these electrical activity rhythms in the lateral ventral clock neurons (LNvs). We show that currents mediated by the voltage-gated potassium channels Shaw (Kv3) and Shal (Kv4) oscillate in a circadian manner. Disruption of these channels, by expression of dominant negative (DN) subunits, leads to changes in circadian locomotor activity and shortens lifespan. LNv whole-cell recordings then show that changes in Shaw and Shal currents drive changes in action potential firing rate and that these rhythms are abolished when the circadian molecular clock is stopped. A whole-cell biophysical model using Hodgkin-Huxley equations can recapitulate these changes in electrical activity. Based on this model and by using dynamic clamp to manipulate clock neurons directly, we can rescue the pharmacological block of Shaw and Shal, restore the firing rhythm, and thus demonstrate the critical importance of Shaw and Shal. Together, these findings point to a key role for Shaw and Shal in controlling circadian firing of clock neurons and show that changes in clock neuron currents can account for this. Moreover, with dynamic clamp we can switch the LNvs between morning-like and evening-like states of electrical activity. We conclude that changes in Shaw and Shal underlie the daily oscillation in LNv firing rate.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Drosophila/fisiologia , Neurônios/fisiologia , Canais de Potássio Shal/fisiologia , Canais de Potássio Shaw/fisiologia , Animais , Ritmo Circadiano , Drosophila , Feminino , Locomoção , Masculino , Modelos Biológicos
3.
J Neurosci ; 34(41): 13586-99, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297088

RESUMO

Parkinson disease (PD) is an α-synucleinopathy resulting in the preferential loss of highly vulnerable dopamine (DA) substantia nigra (SN) neurons. Mutations (e.g., A53T) in the α-synuclein gene (SNCA) are sufficient to cause PD, but the mechanism of their selective action on vulnerable DA SN neurons is unknown. In a mouse model overexpressing mutant α-synuclein (A53T-SNCA), we identified a SN-selective increase of in vivo firing frequencies in DA midbrain neurons, which was not observed in DA neurons in the ventral tegmental area. The selective and age-dependent gain-of-function phenotype of A53T-SCNA overexpressing DA SN neurons was in part mediated by an increase of their intrinsic pacemaker frequency caused by a redox-dependent impairment of A-type Kv4.3 potassium channels. This selective enhancement of "stressful pacemaking" of DA SN neurons in vivo defines a functional response to mutant α-synuclein that might be useful as a novel biomarker for the "DA system at risk" before the onset of neurodegeneration in PD.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Mutação/fisiologia , Estresse Oxidativo/fisiologia , Canais de Potássio Shal/fisiologia , Substância Negra/fisiologia , alfa-Sinucleína/genética , Envelhecimento/fisiologia , Animais , Fenômenos Eletrofisiológicos , Glutationa/metabolismo , Glutationa/fisiologia , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Mutação/genética , Substância Negra/citologia , Substância Negra/crescimento & desenvolvimento , Área Tegmentar Ventral/crescimento & desenvolvimento , Área Tegmentar Ventral/fisiologia
4.
J Neurosci ; 32(44): 15511-20, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115188

RESUMO

Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here, we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2, and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylation of serine 727. Chronically stimulated neurons go through apoptosis when they fail to activate another serine/threonine kinase, Akt. Gain- and loss-of-function experiments show that STAT3 plays the key role directly downstream from Erk1/2 as the alternative survival pathway. Elevated neuronal activity resulted in increased expression of a tumor suppressor, p53, and its target gene, Bax. These changes are observed in Kv4.2 knock-out mouse hippocampal neurons, which are also sensitive to the blockade of TrkB signaling, confirming that the alteration occurs in vivo. Thus, this study provides new insight into a mechanism by which chronic elevation of activity may cause neurodegeneration.


Assuntos
Hipocampo/fisiologia , Neurônios/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Cálcio/metabolismo , Contagem de Células , Sobrevivência Celular/fisiologia , Imunoprecipitação da Cromatina , Hipocampo/citologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/patologia , Neuroimagem , Proteínas Proto-Oncogênicas c-akt/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Canais de Potássio Shal/genética , Canais de Potássio Shal/fisiologia , Transfecção
5.
Am J Physiol Lung Cell Mol Physiol ; 303(7): L598-607, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22865553

RESUMO

Pulmonary neuroepithelial bodies (NEBs), composed of clusters of amine [serotonin (5-HT)] and peptide-producing cells, are widely distributed within the airway mucosa of human and animal lungs. NEBs are thought to function as airway O(2)-sensors, since they are extensively innervated and release 5-HT upon hypoxia exposure. The small cell lung carcinoma cell line (H146) provides a useful model for native NEBs, since they contain (and secrete) 5-HT and share the expression of a membrane-delimited O(2) sensor [classical NADPH oxidase (NOX2) coupled to an O(2)-sensitive K(+) channel]. In addition, both native NEBs and H146 cells express different NADPH oxidase homologs (NOX1, NOX4) and its subunits together with a variety of O(2)-sensitive voltage-dependent K(+) channel proteins (K(v)) and tandem pore acid-sensing K(+) channels (TASK). Here we used H146 cells to investigate the role and interactions of various NADPH oxidase components in O(2)-sensing using a combination of coimmunoprecipitation, Western blot analysis (quantum dot labeling), and electrophysiology (patchclamp, amperometry) methods. Coimmunoprecipitation studies demonstrated formation of molecular complexes between NOX2 and K(v)3.3 and K(v)4.3 ion channels but not with TASK1 ion channels, while NOX4 associated with TASK1 but not with K(v) channel proteins. Downregulation of mRNA for NOX2, but not for NOX4, suppressed hypoxia-sensitive outward current and significantly reduced hypoxia -induced 5-HT release. Collectively, our studies suggest that NOX2/K(v) complexes are the predominant O(2) sensor in H146 cells and, by inference, in native NEBs. Present findings favor a NEB cell-specific plasma membrane model of O(2)-sensing and suggest that unique NOX/K(+) channel combinations may serve diverse physiological functions.


Assuntos
Células Quimiorreceptoras/fisiologia , Glicoproteínas de Membrana/fisiologia , NADPH Oxidases/fisiologia , Corpos Neuroepiteliais/fisiologia , Oxigênio/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Glicoproteínas de Membrana/química , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Serotonina/metabolismo , Canais de Potássio Shal/química , Canais de Potássio Shal/fisiologia , Canais de Potássio Shaw/química , Canais de Potássio Shaw/fisiologia
6.
Cardiovasc Res ; 93(3): 424-33, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22198508

RESUMO

AIMS: The human cardiac transient outward K(+) current I(to) (encoded by Kv4.3 or KCND3) plays an important role in phase 1 rapid repolarization of cardiac action potentials in the heart. However, modulation of I(to) by intracellular signal transduction is not fully understood. The present study was therefore designed to determine whether/how human atrial I(to) and hKv4.3 channels stably expressed in HEK 293 cells are regulated by protein tyrosine kinases (PTKs). METHODS AND RESULTS: Whole-cell patch voltage-clamp, immunoprecipitation, western blotting, and site-directed mutagenesis approaches were employed in the present study. We found that human atrial I(to) was inhibited by the broad-spectrum PTK inhibitor genistein, the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556, and the Src-family kinases inhibitor PP2. The inhibitory effect was countered by the protein tyrosine phosphatase inhibitor orthovanadate. In HEK 293 cells stably expressing human KCND3, genistein, AG556, and PP2 significantly reduced the hKv4.3 current, and the reduction was antagonized by orthovanadate. Interestingly, orthovanadate also reversed the reduced tyrosine phosphorylation level of hKv4.3 channels by genistein, AG556, or PP2. Mutagenesis revealed that the hKv4.3 mutant Y136F lost the inhibitory response to AG556, while Y108F lost response to PP2. The double-mutant Y108F-Y136F hKv4.3 channels showed no response to either AG556 or PP2. CONCLUSION: Our results demonstrate that human atrial I(to) and cloned hKv4.3 channels are modulated by EGFR kinase via phosphorylation of the Y136 residue and by Src-family kinases via phosphorylation of the Y108 residue; tyrosine phosphorylation of the channel may be involved in regulating cardiac electrophysiology.


Assuntos
Potenciais de Ação/fisiologia , Receptores ErbB/metabolismo , Miócitos Cardíacos/fisiologia , Canais de Potássio Shal/fisiologia , Quinases da Família src/metabolismo , Potenciais de Ação/efeitos dos fármacos , Células Cultivadas , Genisteína/farmacologia , Células HEK293 , Átrios do Coração/citologia , Humanos , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Canais de Potássio Shal/genética , Transdução de Sinais/fisiologia , Tirosina/metabolismo , Tirfostinas/farmacologia
7.
Biochem J ; 441(3): 859-67, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22023388

RESUMO

Down-regulation of Kv4.3 K⁺ channels commonly occurs in multiple diseases, but the understanding of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in pathological conditions are limited. HEK (human embryonic kidney)-293T cells are derived from HEK-293 cells which are transformed by expression of the large T-antigen. In the present study, by comparing HEK-293 and HEK-293T cells, we find that HEK-293T cells express more Kv4.3 K⁺ channels and more transcription factor Sp1 (specificity protein 1) than HEK-293 cells. Inhibition of Sp1 with Sp1 decoy oligonucleotide reduces Kv4.3 K⁺ channel expression in HEK-293T cells. Transfection of pN3-Sp1FL vector increases Sp1 protein expression and results in increased Kv4.3 K⁺ expression in HEK-293 cells. Since the ultimate determinant of the phenotype difference between HEK-293 and HEK-293T cells is the large T-antigen, we conclude that the large T-antigen up-regulates Kv4.3 K⁺ channel expression through an increase in Sp1. In both HEK-293 and HEK-293T cells, inhibition of Kv4.3 K⁺ channels with 4-AP (4-aminopyridine) or Kv4.3 small interfering RNA induces cell apoptosis and necrosis, which are completely rescued by the specific CaMKII (calcium/calmodulin-dependent protein kinase II) inhibitor KN-93, suggesting that Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through CaMKII activation. In summary, we establish: (i) the HEK-293 and HEK-293T cell model for Kv4.3 K⁺ channel study; (ii) that large T-antigen up-regulates Kv4.3 K⁺ channels through increasing Sp1 levels; and (iii) that Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through activating CaMKII. The present study provides deep insights into the mechanism of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in cell death.


Assuntos
Antígenos Virais de Tumores/fisiologia , Apoptose/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Necrose/genética , Canais de Potássio Shal/genética , Canais de Potássio Shal/fisiologia , Fator de Transcrição Sp1/fisiologia , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Biológicos , Necrose/metabolismo , RNA Interferente Pequeno/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/metabolismo , Regulação para Cima/genética
8.
Mol Pharmacol ; 80(2): 345-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21540294

RESUMO

Kv4 (Shal) potassium channels are responsible for the transient outward K(+) currents in mammalian hearts and central nervous systems. Heteropoda toxin 2 (HpTx2) is an inhibitor cysteine knot peptide toxin specific for Kv4 channels that inhibits gating of Kv4.3 in the voltage-dependent manner typical for this type of toxin. HpTx2 interacts with four independent binding sites containing two conserved hydrophobic amino acids in the S3b transmembrane segments of Kv4.3 and the closely related Kv4.1. Despite these similarities, HpTx2 interaction with Kv4.1 is considerably less voltage-dependent, has smaller shifts in the voltage-dependences of conductance and steady-state inactivation, and a 3-fold higher K(d) value. Swapping four nonconserved amino acids in S3b between the two channels exchanges the phenotypic response to HpTx2. To understand these differences in gating modification, we constructed Markov models of Kv4.3 and Kv4.1 activation gating in the presence of HpTx2. Both models feature a series of voltage-dependent steps leading to a final voltage-independent transition to the open state and closely replicate the experimental data. Interaction with HpTx2 increases the energy barrier for channel opening by slowing activation and accelerating deactivation. The greater degree of voltage-dependence in Kv4.3 occurs because it is the voltage-dependent transitions that are most affected by HpTx2; in contrast, it is the voltage-independent step in Kv4.1 that is most affected by the presence of toxin. These data demonstrate the basis for subtype-specificity of HpTx2 and point the way to a general model of gating modifier toxin interaction with voltage-gated ion channels.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais de Potássio Shal/metabolismo , Venenos de Aranha/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Camundongos , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Canais de Potássio Shal/fisiologia , Venenos de Aranha/farmacologia , Xenopus laevis
9.
Nat Neurosci ; 13(1): 53-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19966842

RESUMO

The output of a neural circuit results from an interaction between the intrinsic properties of neurons in the circuit and the features of the synaptic connections between them. The plasticity of intrinsic properties has been primarily attributed to modification of ion channel function and/or number. We have found a mechanism for intrinsic plasticity in rhythmically active Drosophila neurons that was not based on changes in ion conductance. Larval motor neurons had a long-lasting, sodium-dependent afterhyperpolarization (AHP) following bursts of action potentials that was mediated by the electrogenic activity of Na(+)/K(+) ATPase. This AHP persisted for multiple seconds following volleys of action potentials and was able to function as a pattern-insensitive integrator of spike number that was independent of external calcium. This current also interacted with endogenous Shal K(+) conductances to modulate spike timing for multiple seconds following rhythmic activity, providing a cellular memory of network activity on a behaviorally relevant timescale.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Periodicidade , ATPase Trocadora de Sódio-Potássio/fisiologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Biofísica , Cálcio/metabolismo , Drosophila , Proteínas de Drosophila/genética , Estimulação Elétrica/métodos , Gânglios Espinais/citologia , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Ativação do Canal Iônico/genética , Canais Iônicos/genética , Larva , Locomoção/genética , Locomoção/fisiologia , Modelos Neurológicos , Dinâmica não Linear , Técnicas de Patch-Clamp/métodos , Canais de Potássio Shal/genética , Canais de Potássio Shal/fisiologia , ATPase Trocadora de Sódio-Potássio/genética , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
10.
Circ Arrhythm Electrophysiol ; 2(3): 285-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19808479

RESUMO

BACKGROUND: Potassium currents contribute to action potential duration (APD) and arrhythmogenesis. In heart failure, Ca/calmodulin-dependent protein kinase II (CaMKII) is upregulated and can alter ion channel regulation and expression. METHODS AND RESULTS: We examine the influence of overexpressing cytoplasmic CaMKIIdelta(C), both acutely in rabbit ventricular myocytes (24-hour adenoviral gene transfer) and chronically in CaMKIIdelta(C)-transgenic mice, on transient outward potassium current (I(to)), and inward rectifying current (I(K1)). Acute and chronic CaMKII overexpression increases I(to,slow) amplitude and expression of the underlying channel protein K(V)1.4. Chronic but not acute CaMKII overexpression causes downregulation of I(to,fast), as well as K(V)4.2 and KChIP2, suggesting that K(V)1.4 expression responds faster and oppositely to K(V)4.2 on CaMKII activation. These amplitude changes were not reversed by CaMKII inhibition, consistent with CaMKII-dependent regulation of channel expression and/or trafficking. CaMKII (acute and chronic) greatly accelerated recovery from inactivation for both I(to) components, but these effects were acutely reversed by AIP (CaMKII inhibitor), suggesting that CaMKII activity directly accelerates I(to) recovery. Expression levels of I(K1) and Kir2.1 mRNA were downregulated by CaMKII overexpression. CaMKII acutely increased I(K1), based on inhibition by AIP (in both models). CaMKII overexpression in mouse prolonged APD (consistent with reduced I(to,fast) and I(K1)), whereas CaMKII overexpression in rabbit shortened APD (consistent with enhanced I(K1) and I(to,slow) and faster I(to) recovery). Computational models allowed discrimination of contributions of different channel effects on APD. CONCLUSIONS: CaMKII has both acute regulatory effects and chronic expression level effects on I(to) and I(K1) with complex consequences on APD.


Assuntos
Potenciais de Ação/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos Cardíacos/fisiologia , Canais de Potássio/fisiologia , Potássio/metabolismo , Adenoviridae/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Feminino , Insuficiência Cardíaca/fisiopatologia , Cinética , Canal de Potássio Kv1.4/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Coelhos , Canais de Potássio Shal/fisiologia , Transfecção , Regulação para Cima/fisiologia
11.
J Biol Chem ; 284(24): 16452-16462, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19372218

RESUMO

Cardiac slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits. Although KCNE1 is an obligate IKs component that confers the uniquely slow gating kinetics, KCNE2 is also expressed in human heart. In vitro experiments suggest that KCNE2 can associate with the KCNQ1-KCNE1 complex to suppress the current amplitude without altering the slow gating kinetics. Our goal here is to test the role of KCNE2 in cardiac IKs channel function. Pulse-chase experiments in COS-7 cells show that there is a KCNE1 turnover in the KCNQ1-KCNE1 complex, supporting the possibility that KCNE1 in the IKs channel complex can be substituted by KCNE2 when the latter is available. Biotinylation experiments in COS-7 cells show that although KCNE1 relies on KCNQ1 coassembly for more efficient cell surface expression, KCNE2 can independently traffic to the cell surface, thus becoming available for substituting KCNE1 in the IKs channel complex. Injecting vesicles carrying KCNE1 or KCNE2 into KCNQ1-expressing oocytes leads to KCNQ1 modulation in the same manner as KCNQ1+KCNEx (where x=1 or 2) cRNA coinjection. Thus, free KCNEx peptides delivered to the cell membrane can associate with existing KCNQ1 channels to modulate their function. Finally, adenovirus-mediated KCNE2 expression in adult guinea pig ventricular myocytes exhibited colocalization with native KCNQ1 protein and reduces the native IKs current density. We propose that in cardiac myocytes the IKs current amplitude is under dynamic control by the availability of KCNE2 subunits in the cell membrane.


Assuntos
Canal de Potássio KCNQ1/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potenciais de Ação/fisiologia , Adenoviridae/genética , Animais , Biotinilação , Células COS , Chlorocebus aethiops , Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Cobaias , Humanos , Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/citologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Transporte Proteico/fisiologia , Ratos , Receptores de Superfície Celular/fisiologia , Canais de Potássio Shal/fisiologia
12.
Biochem J ; 418(3): 529-40, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19138172

RESUMO

The KChIPs (K(+) channel-interacting proteins) are EF hand-containing proteins required for the traffic of channel-forming Kv4 K(+) subunits to the plasma membrane. KChIP1 is targeted, through N-terminal myristoylation, to intracellular vesicles that appear to be trafficking intermediates from the ER (endoplasmic reticulum) to the Golgi but differ from those underlying conventional ER-Golgi traffic. To define KChIP1 vesicles and the traffic pathway followed by Kv4/KChIP1 traffic, we examined their relationship to potential SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins mediating the trafficking step. To distinguish Kv4/KChIP1 from conventional constitutive traffic, we compared it to the traffic of the VSVG (vesicular-stomatitis virus G-protein). Expression of KChIP with single or triple EF hand mutations quantitatively inhibited Kv4/KChIP1 traffic to the cell surface but had no effect on VSVG traffic. KChIP1-expressing vesicles co-localized with the SNARE proteins Vti1a and VAMP7 (vesicle-associated membrane protein 7), but not with the components of two other ER-Golgi SNARE complexes. siRNA (small interfering RNA)-mediated knockdown of Vti1a or VAMP7 inhibited Kv4/KChIP1traffic to the plasma membrane in HeLa and Neuro2A cells. Vti1a and VAMP7 siRNA had no effect on VSVG traffic or that of Kv4.2 when stimulated by KChIP2, a KChIP with different intrinsic membrane targeting compared with KChIP1. The present results suggest that a SNARE complex containing VAMP7 and Vti1a defines a novel traffic pathway to the cell surface in both neuronal and non-neuronal cells.


Assuntos
Membrana Celular/metabolismo , Proteínas Interatuantes com Canais de Kv/fisiologia , Transporte Proteico/fisiologia , Proteínas SNARE/fisiologia , Canais de Potássio Shal/fisiologia , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Neuroblastoma , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo
13.
Trends Cardiovasc Med ; 16(8): 285-91, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17055385

RESUMO

During pregnancy, healthy women develop ventricular hypertrophy and diastolic dysfunction as a result of volume overload as well as increased stretch and force demand. Pregnancy also induces electrocardiogram disturbances such as longer QT-interval dispersion. Surprisingly, it was not until recently that the underlying molecular mechanisms or the role of sex hormones was addressed in this critical female reproductive stage. Recent work with the use of mouse and rat models show that the molecular signature of pregnancy-related hypertrophy differs from that of a pathologic form in that classic gene markers (e.g., myosin heavy chains [alpha and beta], atrial natriuretic peptide, phospholamban, and sarcoplasmic reticulum Ca(2+)-ATPase) remain unchanged. However, both types of hypertrophies have the commonality of a reduced expression of the Kv4.3 channel, a membrane protein that can prevent cardiac hypertrophy when overexpressed. Increased estrogen in late pregnancy may be a mechanism to induce Kv4.3 protein downregulation and increased activity of the stretch-activated c-Src kinase. Cellular/molecular mechanisms used to make a pregnant woman's heart work more efficiently and recover to normal cardiac function postpartum are beginning to emerge as cardioprotective natriuretic peptides- and NO-cGMP cascades get upregulated postpartum. This exciting initial work calls for more research in this underexplored area that should set the basis for better treatment of women during pregnancy.


Assuntos
Cardiomegalia/fisiopatologia , Complicações Cardiovasculares na Gravidez/fisiopatologia , Animais , Proteína Tirosina Quinase CSK , Cardiomegalia/etiologia , Cardiomegalia/prevenção & controle , Estrogênios/fisiologia , Feminino , Humanos , Camundongos , Gravidez , Complicações Cardiovasculares na Gravidez/etiologia , Complicações Cardiovasculares na Gravidez/prevenção & controle , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Ratos , Canais de Potássio Shal/fisiologia , Transdução de Sinais/fisiologia , Quinases da Família src
14.
Circulation ; 113(3): 345-55, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16432066

RESUMO

BACKGROUND: Sustained heart rate abnormalities produce electrical remodeling and susceptibility to arrhythmia. Uncontrolled tachycardia produces heart failure and ventricular tachyarrhythmia susceptibility, whereas bradycardia promotes spontaneous torsade de pointes (TdP). This study compared arrhythmic phenotypes and molecular electrophysiological remodeling produced by tachycardia versus bradycardia in rabbits. METHODS AND RESULTS: We evaluated mRNA and protein expression of subunits underlying rapid (IKr) and slow (IKs) delayed-rectifier and transient-outward K+ currents in ventricular tissues from sinus rhythm control rabbits and rabbits with AV block submitted to 3-week ventricular pacing either at 60 to 90 bpm (bradypaced) or at 350 to 370 bpm (tachypaced). QT intervals at matched ventricular pacing rates were longer in bradypaced than tachypaced rabbits (eg, by approximately 50% at 60 bpm; P<0.01). KvLQT1 and minK mRNA and protein levels were downregulated in both bradypaced and tachypaced rabbits, whereas ERG was significantly downregulated in bradypaced rabbits only. Kv4.3 and Kv1.4 were downregulated by tachypacing only. Patch-clamp experiments showed that IKs was reduced in both but IKr was decreased in bradypaced rabbits only. Continuous monitoring revealed spontaneous TdP in 75% of bradypaced but only isolated ventricular ectopy in tachypaced rabbits. Administration of dofetilide (0.02 mg/kg) to mimic IKr downregulation produced ultimately lethal TdP in all tachypaced rabbits. CONCLUSIONS: Sustained tachycardia and bradycardia downregulate IKs subunits, but bradycardia also suppresses ERG/IKr, causing prominent repolarization delays and spontaneous TdP. Susceptibility of tachycardia/heart failure rabbits to malignant tachyarrhythmias is induced by exposure to IKr blockers. These results point to a crucial role for delayed-rectifier subunit remodeling in TdP susceptibility associated with rate-related cardiac remodeling.


Assuntos
Bradicardia/fisiopatologia , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/fisiologia , Taquicardia Ventricular/fisiopatologia , Animais , Bradicardia/diagnóstico , Canais de Potássio de Retificação Tardia/química , Regulação para Baixo , Eletrocardiografia , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/fisiologia , Canal de Potássio Kv1.4/química , Canal de Potássio Kv1.4/genética , Canal de Potássio Kv1.4/fisiologia , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/fisiopatologia , Marca-Passo Artificial , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Coelhos , Canais de Potássio Shal/química , Canais de Potássio Shal/genética , Canais de Potássio Shal/fisiologia , Taquicardia Ventricular/diagnóstico , Torsades de Pointes/diagnóstico , Torsades de Pointes/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA