Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.461
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(3): e9672, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211346

RESUMO

RATIONALE: Nav 1.1, 1.2, and 1.6 are transmembrane proteins acting as voltage-gated sodium channels implicated in various forms of epilepsy. There is a need for knowing their actual concentration in target tissues during drug development. METHODS: Unique peptides for Nav 1.1, Nav 1.2, and Nav 1.6 were selected as quantotropic peptides for each protein and used for their quantification in membranes from stably transfected HEK293 cells and rodent and human brain samples using ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. RESULTS: Nav 1.1, 1.2, and 1.6 protein expressions in three stably individually transfected HEK293 cell lines were found to be 2.1 ± 0.2, 6.4 ± 1.2, and 4.0 ± 0.6 fmol/µg membrane protein, respectively. In brains, Nav 1.2 showed the highest expression, with approximately three times higher (P < 0.003) in rodents than in humans at 3.05 ± 0.57, with 3.35 ± 0.56 in mouse and rat brains and 1.09 ± 0.27 fmol/µg in human brain. Both Nav 1.1 and 1.6 expressions were much lower in the brains, with approximately 40% less expression in human Nav 1.1 than rodent Nav 1.1 at 0.49 ± 0.1 (mouse), 0.43 ± 0.3 (rat), and 0.28 ± 0.04 (humans); whereas Nav 1.6 had approximately 60% less expression in humans than rodents at 0.27 ± 0.09 (mouse), 0.26 ± 0.06 (rat), and 0.11 ± 0.02 (humans) fmol/µg membrane proteins. CONCLUSIONS: Multiple reaction monitoring was used to quantify sodium channels Nav 1.1, 1.2, and 1.6 expressed in stably transfected HEK293 cells and brain tissues from mice, rats, and humans. We found significant differences in the expression of these channels in mouse, rat, and human brains. Nav expression ranking among the three species was Nav 1.2 ≫ Nav 1.1 > Nav 1.6, with the human brain expressing much lower concentrations overall compared to rodent brain.


Assuntos
Proteínas de Membrana , Roedores , Humanos , Ratos , Camundongos , Animais , Células HEK293 , Roedores/metabolismo , Proteínas de Membrana/metabolismo , Canais de Sódio/metabolismo , Encéfalo/metabolismo , Peptídeos/metabolismo
2.
Channels (Austin) ; 18(1): 2297605, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38154047

RESUMO

Preclinical evidence suggests that voltage gradients can act as a kind of top-down master regulator during embryogenesis and orchestrate downstream molecular-genetic pathways during organ regeneration or repair. Moreover, electrical stimulation shifts response to injury toward regeneration instead of healing or scarring. Cancer and embryogenesis not only share common phenotypical features but also commonly upregulated molecular pathways. Voltage-gated ion channel activity is directly or indirectly linked to the pathogenesis of cancer hallmarks, while experimental and clinical studies suggest that their modulation, e.g., by anesthetic agents, may exert antitumor effects. A large recent clinical trial served as a proof-of-principle for the benefit of preoperative use of topical sodium channel blockade as a potential anticancer strategy against early human breast cancers. Regardless of whether ion channel aberrations are primary or secondary cancer drivers, understanding the functional consequences of these events may guide us toward the development of novel therapeutic approaches.


Assuntos
Neoplasias da Mama , Canais Iônicos , Humanos , Feminino , Canais Iônicos/metabolismo , Canais de Sódio/metabolismo , Oncologia
3.
Mar Drugs ; 21(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999414

RESUMO

The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.


Assuntos
Ciguatera , Ciguatoxinas , Neuroblastoma , Camundongos , Animais , Humanos , Ciguatoxinas/toxicidade , Células HEK293 , Canais de Sódio/metabolismo
4.
Pak J Biol Sci ; 26(8): 419-426, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37937335

RESUMO

<b>Background and Objective:</b> Functional Voltage-Gated Sodium Channels (VGSCs) are expressed in metastatic prostate cancer (PCa) cells. A number of <i>in vitro</i> studies have evaluated the effect of functional VGSC expression on the metastatic cell behavior of PCa cells. This study aimed to evaluate the effect of VGSC inhibition on metastatic cell behavior in PCa cells by meta-analysis. <b>Materials and Methods:</b> Meta-analysis was performed on data taken from 13 publications that examined the effect of VGSC inhibitors on the metastatic cell behavior of metastatic PCa cells expressing functional VGSCs. The measure of effect was calculated according to the random effects model using mean differences and presented with a forest plot graph. Heterogeneity was checked using the Cochran's Q Test (Chi-square statistic) and the I<sup>2</sup> test statistic. In order to evaluate the objectivity, the funnels-plot graph was used. <b>Results:</b> The g value showing the effect size was calculated as 4.49 (95% CI = 5.35-3.62) in the experiments where Tetrodotoxin (TTX) was used, which has a very high specificity for VGSCs but is not licensed for clinical use. In experiments using licensed inhibitors Lamotrigine, Oxcarbazepine, Phenytoin, Ranolazine, Riluzole and Lidocaine, the g value was 1.37 (95 % CI = 2.02-0.71). Suppression of metastatic cell behavior in both subgroups is statistically significant (p<0.00001). <b>Conclusion:</b> Meta-analysis confirmed that VGSCs are an enhancing factor in the metastasis of PCa cells. The VGSCs appear to be an important target in the diagnosis and development of new treatment options in PCa.


Assuntos
Neoplasias da Próstata , Bloqueadores do Canal de Sódio Disparado por Voltagem , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ranolazina/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
5.
J Physiol ; 601(23): 5147-5164, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837315

RESUMO

Many neurons that fire high-frequency action potentials express specialized voltage-gated Na channel complexes that not only conduct transient current upon depolarization, but also pass resurgent current upon repolarization. The resurgent current is associated with recovery of transient current, even at moderately negative potentials where fast inactivation is usually absorbing. The combined results of many experimental studies have led to the hypothesis that resurgent current flows upon repolarization when an endogenous blocking protein that occludes open channels at depolarized potentials is expelled by inwardly permeating Na ions. Additional observations have suggested that the position of the voltage sensor of domain IV regulates the affinity of the channel for the putative blocker. To test the effectiveness of a kinetic scheme incorporating these features, here we develop and justify a Markov model with states grounded in known Na channel conformations. Simulations were designed to investigate whether including a permeation-dependent unblocking rate constant and two open-blocked states, superimposed on conformations and voltage-sensitive movements present in all voltage-gated Na channels, is sufficient to account for the unusual gating of channels with a resurgent component. Optimizing rate constant parameters against a wide range of experimental data from cerebellar Purkinje cells demonstrates that a kinetic scheme for Na channels incorporating the novel aspects of a permeation-dependent unblock, as well as distinct high- and low-affinity blocked states, reproduces all the attributes of experimentally recorded Na currents in a physiologically plausible manner.


Assuntos
Células de Purkinje , Canais de Sódio , Canais de Sódio/metabolismo , Células de Purkinje/fisiologia , Neurônios/fisiologia , Potenciais de Ação
6.
Iran Biomed J ; 27(4): 158-66, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37553755

RESUMO

Background: The majority of insecticides target sodium channels. The increasing emergence of resistance to the current insecticides has persuaded researchers to search for alternative compounds. Scorpion venom gland as a reservoir of peptides or proteins, which selectively target insect sodium channels. These proteins would be an appropriate source for finding new suitable anti-insect components. Methods: Transcriptome of venom gland of scorpion Mesobuthus eupeus was obtained by RNA extraction and complementary DNA library synthesis. The obtained transcriptome was blasted against protein databases to find insect toxins against sodium channel based on the statistically significant similarity in sequence. Physicochemical properties of the identified protein were calculated using bioinformatics software. The three-dimensional structure of this protein was determined using homology modeling, and the final structure was assessed by molecular dynamics simulation. Results: The sodium channel blocker found in the transcriptome of M. eupeus venom gland was submitted to the GenBank under the name of meuNa10, a stable hydrophilic protein consisting of 69 amino acids, with the molecular weight of 7721.77 g/mol and pI of 8.7. The tertiary structure of meuNa10 revealed a conserved LCN-type cysteine-stabilized alpha/beta domain stabilized by eight cysteine residues. The meuNa10 is a member of the 3FP superfamily consisting of three finger-like beta strands. Conclusion: This study identified meuNa10 as a small insect sodium channel-interacting protein with some physicochemical properties, including stability and water-solubility, which make it a good candidate for further in vivo and in vitro experiments in order to develop a new bioinsecticide.


Assuntos
Inseticidas , Venenos de Escorpião , Animais , Sequência de Aminoácidos , Escorpiões/química , Inseticidas/metabolismo , Venenos de Escorpião/genética , Cisteína/metabolismo , Canais de Sódio/química , Canais de Sódio/metabolismo
7.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569281

RESUMO

Elevated excitability of glutamatergic neurons in the lateral parabrachial nucleus (PBL) is associated with the pathogenesis of inflammatory pain, but the underlying molecular mechanisms are not fully understood. Sodium leak channel (NALCN) is widely expressed in the central nervous system and regulates neuronal excitability. In this study, chemogenetic manipulation was used to explore the association between the activity of PBL glutamatergic neurons and pain thresholds. Complete Freund's adjuvant (CFA) was used to construct an inflammatory pain model in mice. Pain behaviour was tested using von Frey filaments and Hargreaves tests. Local field potential (LFP) was used to record the activity of PBL glutamatergic neurons. Gene knockdown techniques were used to investigate the role of NALCN in inflammatory pain. We further explored the downstream projections of PBL using cis-trans-synaptic tracer virus. The results showed that chemogenetic inhibition of PBL glutamatergic neurons increased pain thresholds in mice, whereas chemogenetic activation produced the opposite results. CFA plantar modelling increased the number of C-Fos protein and NALCN expression in PBL glutamatergic neurons. Knockdown of NALCN in PBL glutamatergic neurons alleviated CFA-induced pain. CFA injection induced C-Fos protein expression in central nucleus amygdala (CeA) neurons, which was suppressed by NALCN knockdown in PBL glutamatergic neurons. Therefore, elevated expression of NALCN in PBL glutamatergic neurons contributes to the development of inflammatory pain via PBL-CeA projections.


Assuntos
Núcleos Parabraquiais , Camundongos , Animais , Núcleos Parabraquiais/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Canais de Sódio/metabolismo , Dor/metabolismo , Neurônios/metabolismo , Sódio/metabolismo
8.
EMBO J ; 42(19): e114986, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37635635

RESUMO

Although ion transporters and channels have been extensively studied over the last couple of decades, there are still unresolved aspects with regards to their contribution to cancer cell biology. Recent work by Folcher et al (2023) reports a critical role for Na+ leak channel NALCN in metastatic prostate cancer. The study demonstrates that NALCN promotes metastatic spread to distant organs by controlling Ca2+ signaling.


Assuntos
Canais Iônicos , Neoplasias da Próstata , Masculino , Humanos , Canais de Sódio , Neoplasias da Próstata/tratamento farmacológico , Sódio/metabolismo , Proteínas de Membrana/genética
9.
Am J Physiol Heart Circ Physiol ; 325(2): H264-H277, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389950

RESUMO

Clinical studies suggest low testosterone levels are associated with cardiac arrhythmias, especially in later life. We investigated whether chronic exposure to low circulating testosterone promoted maladaptive electrical remodeling in ventricular myocytes from aging male mice and determined the role of late inward sodium current (INa,L) in this remodeling. C57BL/6 mice had a gonadectomy (GDX) or sham surgery (1 mo) and were aged to 22-28 mo. Ventricular myocytes were isolated; transmembrane voltage and currents were recorded (37°C). Action potential duration at 70 and 90% repolarization (APD70 and APD90) was prolonged in GDX compared with sham myocytes (APD90, 96.9 ± 3.2 vs. 55.4 ± 2.0 ms; P < 0.001). INa,L was also larger in GDX than sham (-2.4 ± 0.4 vs. -1.2 ± 0.2 pA/pF; P = 0.002). When cells were exposed to the INa,L antagonist ranolazine (10 µM), INa,L declined in GDX cells (-1.9 ± 0.5 vs. -0.4 ± 0.2 pA/pF; P < 0.001) and APD90 was reduced (96.3 ± 14.8 vs. 49.2 ± 9.4 ms; P = 0.001). GDX cells had more triggered activity (early/delayed afterdepolarizations, EADs/DADs) and spontaneous activity than sham. EADs were inhibited by ranolazine in GDX cells. The selective NaV1.8 blocker A-803467 (30 nM) also reduced INa,L, decreased APD and abolished triggered activity in GDX cells. Scn5a (NaV1.5) and Scn10a (NaV1.8) mRNA was increased in GDX ventricles, but only NaV1.8 protein abundance was increased in GDX compared with sham. In vivo studies showed QT prolongation and more arrhythmias in GDX mice. Thus, triggered activity in ventricular myocytes from aging male mice with long-term testosterone deficiency arises from APD prolongation mediated by larger NaV1.8- and NaV1.5-associated currents, which may explain the increase in arrhythmias.NEW & NOTEWORTHY Older men with low testosterone levels are at increased risk of developing cardiac arrhythmias. We found aged mice chronically exposed to low testosterone had more arrhythmias and ventricular myocytes had prolonged repolarization, abnormal electrical activity, larger late sodium currents, and increased expression of NaV1.8 sodium channels. Drugs that inhibit late sodium current or NaV1.8 channels abolished abnormal electrical activity and shortened repolarization. This suggests the late sodium current may be a novel target to treat arrhythmias in older testosterone-deficient men.


Assuntos
Sódio , Testosterona , Camundongos , Masculino , Animais , Ranolazina/farmacologia , Ranolazina/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo , Sódio/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas , Canais de Sódio/metabolismo , Potenciais de Ação , Envelhecimento
10.
Molecules ; 28(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049936

RESUMO

Ischemia-reperfusion injury (IRI) is an irreversible functional and structural injury. Restoration of normal oxygen concentration exacerbates the emergence and development of deadly cells. One of the possible moments of reperfusion damage to cells is an increase in the intracellular concentration of sodium ions. In this article, we study the mu-agatoxin-Aa1a, a modulator of sodium channels, on the processes of IRI cells damage. The toxin was synthesized using an automatic peptide synthesizer. Hypoxia was induced by reducing the content of serum and oxygen in the CHO-K1 culture. The influence of the toxin on the level of apoptosis; intracellular concentration of sodium, calcium, and potassium ions; intracellular pH; totality of reactive oxygen species (ROS), nitric oxide (NO), and ATP; and changes in the mitochondrial potential were studied. The experiments performed show that mu-agatoxin-Aa1a effectively prevents IRI of cells. Toxin reduces the level of apoptosis and prevents a decrease in the intracellular concentration of sodium and calcium ions during IRI. Mu-agatoxin-Aa1a contributes to the maintenance of elevated intracellular pH, reduces the intracellular concentration of ROS, and prevents the decrease in intracellular NO concentration and mitochondrial potential under conditions of reoxygenation/reperfusion. An analysis of experimental data shows that the mu-agatoxin-Aa1a peptide has adaptogenic properties. In the future, this peptide can be used to prevent ischemia/reperfusion tissue damage different genesis.


Assuntos
Cálcio , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Oxigênio , Óxido Nítrico , Peptídeos/farmacologia , Canais de Sódio , Sódio
11.
Curr Biol ; 33(9): 1818-1824.e3, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023754

RESUMO

The Na+ channels that are important for action potentials show rapid inactivation, a state in which they do not conduct, although the membrane potential remains depolarized.1,2 Rapid inactivation is a determinant of millisecond-scale phenomena, such as spike shape and refractory period. Na+ channels also inactivate orders of magnitude more slowly, and this slow inactivation has impacts on excitability over much longer timescales than those of a single spike or a single inter-spike interval.3,4,5,6,7,8,9,10 Here, we focus on the contribution of slow inactivation to the resilience of axonal excitability11,12 when ion channels are unevenly distributed along the axon. We study models in which the voltage-gated Na+ and K+ channels are unevenly distributed along axons with different variances, capturing the heterogeneity that biological axons display.13,14 In the absence of slow inactivation, many conductance distributions result in spontaneous tonic activity. Faithful axonal propagation is achieved with the introduction of Na+ channel slow inactivation. This "normalization" effect depends on relations between the kinetics of slow inactivation and the firing frequency. Consequently, neurons with characteristically different firing frequencies will need to implement different sets of channel properties to achieve resilience. The results of this study demonstrate the importance of the intrinsic biophysical properties of ion channels in normalizing axonal function.


Assuntos
Axônios , Neurônios , Axônios/fisiologia , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Canais de Sódio
12.
Sci Total Environ ; 858(Pt 3): 160111, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370778

RESUMO

Emerging marine biotoxins such as ciguatoxins and pyrethroid compounds, widely used in agriculture, are independently treated as environmental toxicants. Their maximum residue levels in food components are set without considering their possible synergistic effects as consequence of their interaction with the same cellular target. There is an absolute lack of data on the possible combined cellular effects that biological and chemical pollutants, may have. Nowadays, an increasing presence of ciguatoxins in European Coasts has been reported and these toxins can affect human health. Similarly, the increasing use of phytosanitary products for control of food plagues has raised exponentially during the last decades due to climate change. The lack of data and regulation evaluating the combined effect of environmental pollutants with the same molecular target led us to analyse their in vitro effects. In this work, the effects of ciguatoxins and pyrethroids in human sodium channels were investigated. The results presented in this study indicate that both types of compounds have a profound synergistic effect in voltage-dependent sodium channels. These food pollutants act by decreasing the maximum peak inward sodium currents and hyperpolarizing the sodium channels activation, effects that are boosted by the simultaneous presence of both compounds. A fact that highlights the need to re-evaluate their limits in feedstock as well as their potential in vivo toxicity considering that they act on the same cellular target. Moreover, this work sets the cellular basis to further apply this type of studies to other water and food pollutants that may act synergistically and thus implement the corresponding regulatory limits taking into account its presence in a healthy diet.


Assuntos
Poluentes Ambientais , Praguicidas , Humanos , Toxinas Marinhas , Canais de Sódio
13.
Histol Histopathol ; 38(1): 9-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35880756

RESUMO

There are two kinds of toxins in sea anemones: neurotoxins and pore forming toxins. As a representative of the sodium channel toxin, the neurotoxin ATX II in neurotoxin mainly affects the process of action potential and the release of transmitter to affect the inactivation of the sodium channel. As the representatives of potassium channel toxins, BgK and ShK mainly affect the potassium channel current. EqTx and Sticholysins are representative of pore forming toxins, which can form specific ion channels in cell membranes and change the concentration of internal and external ions, eventually causing hemolytic effects. Based on the above mechanism, toxins such as ATX II can also cause toxic effects in tissues and organs such as heart, lung and muscle. As an applied aspect it was shown that sea anemone toxins often have strong toxic effects on tumor cells, induce cancer cells to enter the pathway of apoptosis, and can also bind to monoclonal antibodies or directly inhibit relevant channels for the treatment of autoimmune diseases.


Assuntos
Neurotoxinas , Anêmonas-do-Mar , Animais , Neurotoxinas/toxicidade , Neurotoxinas/metabolismo , Anêmonas-do-Mar/metabolismo , Canais de Sódio/metabolismo , Canais de Sódio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/farmacologia , Membrana Celular/metabolismo
14.
Oncogene ; 42(8): 601-612, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564468

RESUMO

The incidence of colorectal cancer (CRC) is rising worldwide. Here, we identified SCNN1B as an outlier down-regulated in CRC and it functions as a tumor suppressor. SCNN1B mRNA and protein expression were down-regulated in primary CRC and CRC cells. In a tissue microarray cohort (N = 153), SCNN1B protein was an independent prognostic factor for favorable outcomes in CRC. Ectopic expression of SCNN1B in CRC cell lines suppressed cell proliferation, induced apoptosis, and cell cycle arrest, and suppressed cell migration in vitro. Xenograft models validated tumor suppressive function of SCNN1B in vivo. Mechanistically, Gene Set Enrichment Analysis (GSEA) showed that SCNN1B correlates with KRAS signaling. Consistently, MAPK qPCR and kinase arrays revealed that SCNN1B suppressed MAPK signaling. In particular, SCNN1B overexpression suppressed p-MEK/p-ERK expression and SRE-mediated transcription activities, confirming blockade of Ras-Raf-MEK-ERK cascade. Mechanistically, SCNN1B did not affect KRAS activation, instead impairing activation of c-Raf by inducing its inhibitory phosphorylation and targeting active c-Raf for degradation. The ectopic expression of c-Raf fully rescued cell proliferation and colony formation in SCNN1B-overexpressing CRC cells, confirming c-Raf as the principal molecular target of SCNN1B. In summary, we identified SCNN1B as a tumor suppressor by functioning as a c-Raf antagonist, which in turn suppressed oncogenic MEK-ERK signaling.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Canais Epiteliais de Sódio/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Canais de Sódio/metabolismo
15.
Biochimie ; 204: 118-126, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36116743

RESUMO

Scorpion venoms are known as a rich mixture of components, including peptides that can interact with different ion channels, particularly voltage-gated potassium channels (Kv), calcium channels (Cav) and sodium channels (Nav), essential membrane proteins for various physiological functions in organisms. The present work aimed to characterize the modulation of hNa+-channels by Tst1, a peptide purified from the venom of Tityus stigmurus, using whole-cell patch clamp. Tst1 at 100 nM provoked current inhibition in Nav 1.3 (85.23%), Nav 1.2 (67.26%) and Nav 1.4 (63.43%), while Nav 1.1, 1.5, 1.6, and 1.7 were not significantly affected. Tst1 also shifted the voltage of activation and steady-state inactivation to more hyperpolarized states and altered the recovery from inactivation of the channels, reducing repetitive firing of cells, which was more effective in Nav 1.3. Tst1 also demonstrated that the effect on Nav 1.3 is dose-dependent, with an IC50 of 8.79 nM. Taken together, these results confirmed that Tst1, the first Tityus stigmurus NaScTx assayed in relation to Nav channels, is a ß-toxin, as was previously suggested due to its amino acid sequence. KEY CONTRIBUTION: First ß-toxin purified from the venom of Tityus stigmurus scorpion broadly characterized in hNa+-channels.


Assuntos
Venenos de Escorpião , Toxinas Biológicas , Animais , Escorpiões/química , Sequência de Aminoácidos , Peptídeos/química , Canais de Sódio , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química
16.
J Physiol ; 601(9): 1543-1553, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36183245

RESUMO

Cancers of epithelial origin such as breast, prostate, cervical, gastric, colon and lung cancer account for a large proportion of deaths worldwide. Better treatment of metastasis, the main cause of cancer deaths, is therefore urgently required. Several of these tumours have been shown to have an abnormally high concentration of Na+ ([Na+ ]) and emerging evidence points to this accumulation being due to elevated intracellular [Na+ ]. This poses intriguing questions about the cellular mechanisms underlying Na+ dysregulation in cancer, and its pathophysiological significance. Elevated intracellular [Na+ ] may be due to alterations in activity of the Na+ /K+ -ATPase, and/or increased influx via Na+ channels and Na+ -linked transporters. Maintenance of the electrochemical Na+ gradient across the plasma membrane is vital to power many cellular processes that are highly active in cancer cells, including glucose and glutamine import. Na+ channels are also upregulated in cancer cells, which in turn promotes tumour growth and metastasis. For example, ENaC and ASICs are overexpressed in cancers, increasing invasion and proliferation. In addition, voltage-gated Na+ channels are also upregulated in a range of tumour types, where they promote metastatic cell behaviours via various mechanisms, including membrane potential depolarisation and altered pH regulation. Together, recent findings relating to elevated Na+ in the tumour microenvironment and how this may be regulated by several classes of Na+ channels provide a link between altered Na+ handling and poor clinical outcome. There are new opportunities to leverage this altered Na+ microenvironment for therapeutic benefit, as exemplified by several ongoing clinical trials.


Assuntos
Neoplasias da Mama , Canais de Sódio , Humanos , Feminino , Canais de Sódio/metabolismo , Membrana Celular/metabolismo , Neoplasias da Mama/metabolismo , Microambiente Tumoral
17.
Artigo em Chinês | MEDLINE | ID: mdl-38604681

RESUMO

OBJECTIVE: To investigate the level of deltamethrin resistance and mutation sites in the sodium iron channel gene in Rhipicephalus microplus in Huaihua City, Hunan Province, and to examine the correlation between deltamethrin resistance and mutation sites in the sodium iron channel gene in Rh. microplus. METHODS: Rh. microplus was sampled from multiple yellow cattle farms in Huaihua City, Hunan Province from June to September 2022, and the level of resistance to deltamethrin was determined in ticks using the adult immersion test. The sodium iron channel domain III gene was amplified in deltamethrin-resistant and wild-type Rh. microplus using PCR assay. Following sequencing and sequence alignment, mutation sites were detected in bases. The sodium iron channel domain III gene in Rh. microplus was translated, and the signal peptide, transmembrane domain, and phosphorylation and glycosylation sites were detected in amino acid sequences. The tertiary structures of the sodium iron channel domain III protein of deltamethrin-resistant and wild-type Rh. microplus were deduced and compared, and the association be tween mutation sites in bases and resistance to deltamethrin was examined in Rh. microplus according the level of deltamethrin resistance, sequence alignment and protein tertiary structure. RESULTS: The median (LC50) and 95% lethal concentrations (LC95) of deltamethrin were 121.39 mg/L and 952.61 mg/L against Rh. microplus, with a resistance factor of 9.24 and level II resistance. The sequence of the sodium ion channel domain III gene was 1 010 bp in size, and mutation sites were detected in two neighboring bases in the sequence of the sodium ion channel domain III gene in deltamethrin-resistant Rh. microplus. Although no signal peptides were found in the sodium iron channel domain III protein of deltamethrin-resistant or wild-type Rh. microplus, 6 trans-membrane domains, 42 phosphorylation sites and 8 glycosylation sites were identified, with a significant difference in the tertiary structure of the sodium iron channel domain III protein between deltamethrin-resistant and wild-type Rh. microplus. CONCLUSIONS: Level II resistance to deltamethrin is detected in Rh. microplus in Huaihua City, Hunan Province, and two mutation sites that correlate with the emergence of deltamethrin resistance are identified in the sequence of the sodium iron channel domain III gene in deltamethrin-resistant Rh. microplus.


Assuntos
Nitrilas , Piretrinas , Rhipicephalus , Animais , Bovinos , Rhipicephalus/genética , Piretrinas/farmacologia , Mutação , Canais de Sódio/genética , Sódio , Resistência a Inseticidas/genética
18.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232927

RESUMO

Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice and the signaling pathway modulating these channels. A surgical incision was made in the plantar hind paw of male Swiss mice. Nociceptive thresholds were assessed by von Frey filaments. Gene expression of Nav1.8, Nav1.9, TNF-α, and COX-2 was evaluated by Real-Time PCR in dorsal root ganglia (DRG). Knockdown mice for Nav1.8 and Nav1.9 were produced by antisense oligodeoxynucleotides intrathecal treatments. Local levels of TNF-α and PGE2 were immunoenzymatically determined. Incised mice exhibited hypernociception and upregulated expression of Nav1.8 and Nav1.9 in DRG. Antisense oligodeoxynucleotides reduced hypernociception and downregulated Nav1.8 and Nav1.9. TNF-α and COX-2/PGE2 were upregulated in DRG and plantar skin. Inhibition of TNF-α and COX-2 reduced hypernociception, but only TNF-α inhibition downregulated Nav1.8 and Nav1.9. Antagonizing NF-κB and p38 mitogen-activated protein kinase (MAPK), but not ERK or JNK, reduced both hypernociception and hyperexpression of Nav1.8 and Nav1.9. This study proposes the contribution of the TNF-α/p38/NF-κB/Nav1.8 and Nav1.9 pathways to the pathophysiology of the mouse model of incisional pain.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , NF-kappa B , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Masculino , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Oligodesoxirribonucleotídeos , Dor Pós-Operatória/tratamento farmacológico , Prostaglandinas E , Canais de Sódio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Genes (Basel) ; 13(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36292641

RESUMO

Brugada syndrome (BrS) is an inherited autosomal dominant genetic disorder responsible for sudden cardiac death from malignant ventricular arrhythmia. The term "channelopathy" is nowadays used to classify BrS as a purely electrical disease, mainly occurring secondarily to loss-of-function mutations in the α subunit of the cardiac sodium channel protein Nav1.5. In this setting, arrhythmic manifestations of the disease have been reported in the absence of any apparent structural heart disease or cardiomyopathy. Over the last few years, however, a consistent amount of evidence has grown in support of myocardial structural and functional abnormalities in patients with BrS. In detail, abnormal ventricular dimensions, either systolic or diastolic dysfunctions, regional wall motion abnormalities, myocardial fibrosis, and active inflammatory foci have been frequently described, pointing to alternative mechanisms of arrhythmogenesis which challenge the definition of channelopathy. The present review aims to depict the status of the art of concealed arrhythmogenic substrates in BrS, often resulting from an advanced and multimodal diagnostic workup, to foster future preclinical and clinical research in support of the cardiomyopathic nature of the disease.


Assuntos
Síndrome de Brugada , Cardiomiopatias , Humanos , Síndrome de Brugada/genética , Síndrome de Brugada/diagnóstico , Cardiomiopatias/genética , Arritmias Cardíacas , Morte Súbita Cardíaca , Canais de Sódio
20.
Zool Res ; 43(5): 886-896, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36052553

RESUMO

Various peptide toxins in animal venom inhibit voltage-gated sodium ion channel Nav1.7, including Nav-targeting spider toxin (NaSpTx) Family I. Toxins in NaSpTx Family I share a similar structure, i.e., N-terminal, loops 1-4, and C-terminal. Here, we used Mu-theraphotoxin-Ca2a (Ca2a), a peptide isolated from Cyriopagopus albostriatus, as a template to investigate the general properties of toxins in NaSpTx Family I. The toxins interacted with the cell membrane prior to binding to Nav1.7 via similar hydrophobic residues. Residues in loop 1, loop 4, and the C-terminal primarily interacted with the S3-S4 linker of domain II, especially basic amino acids binding to E818. We also identified the critical role of loop 2 in Ca2a regarding its affinity to Nav1.7. Our results provide further evidence that NaSpTx Family I toxins share similar structures and mechanisms of binding to Nav1.7.


Assuntos
Venenos de Aranha , Animais , Peptídeos/química , Canais de Sódio , Venenos de Aranha/química , Venenos de Aranha/genética , Venenos de Aranha/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA