Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell Commun Signal ; 22(1): 416, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192337

RESUMO

Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Receptores ErbB , Gânglios Espinais , Histona Desacetilase 2 , Canal de Potássio KCNQ2 , Animais , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Ratos , Dor do Câncer/genética , Dor do Câncer/metabolismo , Dor do Câncer/patologia , Receptores ErbB/metabolismo , Receptores ErbB/genética , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Transcrição Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Transdução de Sinais/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Feminino , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38737299

RESUMO

Background: Tremor disorders have various genetic causes. Case report: A 60-year-old female with a family history of tremor presented a combined tremor syndrome, transient episodes of loss of contact and speech disturbances, as well as distal painful symptoms. Genetic screening revealed a novel heterozygous missense variant in the KCNQ2 gene. Discussion: The KCNQ2 protein regulates action potential firing, and mutations in its gene are associated with epilepsy and neuropathic pain. The identified variant, although of uncertain significance, may disrupt KCNQ2 function and also play a role in tremor pathogenesis. This case highlights the importance of genetic screening in combined tremor disorders.


Assuntos
Canal de Potássio KCNQ2 , Tremor , Feminino , Humanos , Pessoa de Meia-Idade , Canal de Potássio KCNQ2/genética , Mutação de Sentido Incorreto , Tremor/genética , Tremor/fisiopatologia
3.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37748809

RESUMO

Voltage-sensitive potassium channels play an important role in controlling membrane potential and ionic homeostasis in the gut and have been implicated in gastrointestinal (GI) cancers. Through large-scale analysis of 897 patients with gastro-oesophageal adenocarcinomas (GOAs) coupled with in vitro models, we find KCNQ family genes are mutated in ∼30% of patients, and play therapeutically targetable roles in GOA cancer growth. KCNQ1 and KCNQ3 mediate the WNT pathway and MYC to increase proliferation through resultant effects on cadherin junctions. This also highlights novel roles of KCNQ3 in non-excitable tissues. We also discover that activity of KCNQ3 sensitises cancer cells to existing potassium channel inhibitors and that inhibition of KCNQ activity reduces proliferation of GOA cancer cells. These findings reveal a novel and exploitable role of potassium channels in the advancement of human cancer, and highlight that supplemental treatments for GOAs may exist through KCNQ inhibitors.


Assuntos
Adenocarcinoma , Canais de Potássio KCNQ , Humanos , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Canal de Potássio KCNQ2/fisiologia , Adenocarcinoma/genética
4.
J Neurosci ; 43(43): 7073-7083, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37648450

RESUMO

Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.


Assuntos
Canal de Potássio KCNQ2 , Agonistas Muscarínicos , Masculino , Feminino , Camundongos , Ratos , Animais , Sulfato de Desidroepiandrosterona , Canal de Potássio KCNQ2/metabolismo , Agonistas Muscarínicos/farmacologia , Dor/tratamento farmacológico , Formaldeído , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo
5.
Pharmacology ; 108(2): 138-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36516801

RESUMO

INTRODUCTION: Voltage-gated Kv7/M potassium channels play an essential role in the control of membrane potential and neuronal excitability. Fangchinoline, a bisbenzylisoquinoline alkaloid, displays extensive biological activities including antitumor, anti-inflammatory, and antihypertension effects. In this study, we investigated the effects of fangchinoline on Kv7/M channels. METHODS: A perforated whole-cell patch technique was used to record Kv7 currents from HEK293 cells and M-type currents from mouse dorsal root ganglion (DRG) neurons. RESULTS: Fangchinoline inhibited Kv7.2/Kv7.3 currents in a concentration-dependent manner, with an IC50 of 9.5 ± 1.2 µM. Fangchinoline significantly inhibited Kv7.1, Kv7.2, Kv7.3, Kv7.4, and Kv7.3/Kv7.5 channels without selective effects. Furthermore, fangchinoline significantly slowed the activation of Kv7.1-Kv7.5 channels and inhibited native M-channel currents of DRG neurons. CONCLUSION: Taken together, our findings indicate that fangchinoline concentration-dependently inhibited Kv7/M channel currents.


Assuntos
Benzilisoquinolinas , Humanos , Camundongos , Animais , Células HEK293 , Potenciais da Membrana , Benzilisoquinolinas/farmacologia , Canal de Potássio KCNQ2 , Canal de Potássio KCNQ3
6.
Elife ; 112022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642783

RESUMO

Neuronal KCNQ channels mediate the M-current, a key regulator of membrane excitability in the central and peripheral nervous systems. Mutations in KCNQ2 channels cause severe neurodevelopmental disorders, including epileptic encephalopathies. However, the impact that different mutations have on channel function remains poorly defined, largely because of our limited understanding of the voltage-sensing mechanisms that trigger channel gating. Here, we define the parameters of voltage sensor movements in wt-KCNQ2 and channels bearing epilepsy-associated mutations using cysteine accessibility and voltage clamp fluorometry (VCF). Cysteine modification reveals that a stretch of eight to nine amino acids in the S4 becomes exposed upon voltage sensing domain activation of KCNQ2 channels. VCF shows that the voltage dependence and the time course of S4 movement and channel opening/closing closely correlate. VCF reveals different mechanisms by which different epilepsy-associated mutations affect KCNQ2 channel voltage-dependent gating. This study provides insight into KCNQ2 channel function, which will aid in uncovering the mechanisms underlying channelopathies.


Assuntos
Epilepsia , Canal de Potássio KCNQ2 , Transtornos do Neurodesenvolvimento , Cisteína/genética , Epilepsia/genética , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/genética
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785595

RESUMO

MicroRNAs (miRNAs) have recently emerged as important regulators of ion channel expression. We show here that select miR-106b family members repress the expression of the KCNQ2 K+ channel protein by binding to the 3'-untranslated region of KCNQ2 messenger RNA. During the first few weeks after birth, the expression of miR-106b family members rapidly decreases, whereas KCNQ2 protein level inversely increases. Overexpression of miR-106b mimics resulted in a reduction in KCNQ2 protein levels. Conversely, KCNQ2 levels were up-regulated in neurons transfected with antisense miRNA inhibitors. By constructing more specific and stable forms of miR-106b controlling systems, we further confirmed that overexpression of precursor-miR-106b-5p led to a decrease in KCNQ current density and an increase in firing frequency of hippocampal neurons, while tough decoy miR-106b-5p dramatically increased current density and decreased neuronal excitability. These results unmask a regulatory mechanism of KCNQ2 channel expression in early postnatal development and hint at a role for miR-106b up-regulation in the pathophysiology of epilepsy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso , Neurônios , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Regulação para Cima
8.
Commun Biol ; 4(1): 1189, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650221

RESUMO

Phosphatidylinositol-4,5-bisphosphate (PIP2) is a signaling lipid which regulates voltage-gated Kv7/KCNQ potassium channels. Altered PIP2 sensitivity of neuronal Kv7.2 channel is involved in KCNQ2 epileptic encephalopathy. However, the molecular action of PIP2 on Kv7.2 gating remains largely elusive. Here, we use molecular dynamics simulations and electrophysiology to characterize PIP2 binding sites in a human Kv7.2 channel. In the closed state, PIP2 localizes to the periphery of the voltage-sensing domain (VSD). In the open state, PIP2 binds to 4 distinct interfaces formed by the cytoplasmic ends of the VSD, the gate, intracellular helices A and B and their linkers. PIP2 binding induces bilayer-interacting conformation of helices A and B and the correlated motion of the VSD and the pore domain, whereas charge-neutralizing mutations block this coupling and reduce PIP2 sensitivity of Kv7.2 channels by disrupting PIP2 binding. These findings reveal the allosteric role of PIP2 in Kv7.2 channel activation.


Assuntos
Canal de Potássio KCNQ2/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular
9.
J Biol Chem ; 297(4): 101183, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509475

RESUMO

Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2)-deficient mice develop spontaneous seizures in early life because of a marked reduction in M currents, which regulate neuronal membrane excitability. We have previously shown that hyper-SUMOylation of the Kv7.2 and Kv7.3 channels is critically involved in the regulation of the M currents conducted by these potassium voltage-gated channels. Here, we show that hyper-SUMOylation of the Kv7.2 and Kv7.3 proteins reduced binding to the lipid secondary messenger PIP2. CaM1 has been shown to be tethered to the Kv7 subunits via hydrophobic motifs in its C termini and implicated in the channel assembly. Mutation of the SUMOylation sites on Kv7.2 and Kv7.3 specifically resulted in decreased binding to CaM1 and enhanced CaM1-mediated assembly of Kv7.2 and Kv7.3, whereas hyper-SUMOylation of Kv7.2 and Kv7.3 inhibited channel assembly. SENP2-deficient mice exhibited increased acetylcholine levels in the brain and the heart tissue because of increases in the vagal tone induced by recurrent seizures. The SENP2-deficient mice develop seizures followed by a period of sinus pauses or atrioventricular conduction blocks. Chronic administration of the parasympathetic blocker atropine or unilateral vagotomy significantly prolonged the life of the SENP2-deficient mice. Furthermore, we showed that retigabine, an M-current opener, reduced the transcription of SUMO-activating enzyme SAE1 and inhibited SUMOylation of the Kv7.2 and Kv7.3 channels, and also prolonged the life of SENP2-deficient mice. Taken together, the previously demonstrated roles of PIP2, CaM1, and retigabine on the regulation of Kv7.2 and Kv7.3 channel function can be explained by their roles in regulating SUMOylation of this critical potassium channel.


Assuntos
Cisteína Endopeptidases/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Sistemas do Segundo Mensageiro , Sumoilação , Motivos de Aminoácidos , Animais , Encéfalo/metabolismo , Cisteína Endopeptidases/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Camundongos , Camundongos Mutantes , Miocárdio/metabolismo , Convulsões/genética , Convulsões/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
10.
Sci Rep ; 10(1): 9239, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514046

RESUMO

Despite the advantages of neoadjuvant chemotherapy (NACT), associated toxicity is a serious complication that renders monitoring of the patients' response to NACT highly important. Thus, prediction of tumor response to treatment is imperative to avoid exposure of potential non-responders to deleterious complications. We have performed genome-wide analysis of DNA methylation by XmaI-RRBS and selected CpG dinucleotides differential methylation of which discriminates luminal B breast cancer samples with different sensitivity to NACT. With this data, we have developed multiplex methylation sensitive restriction enzyme PCR (MSRE-PCR) protocol for determining the methylation status of 10 genes (SLC9A3, C1QL2, DPYS, IRF4, ADCY8, KCNQ2, TERT, SYNDIG1, SKOR2 and GRIK1) that distinguish BC samples with different NACT response. Analysis of these 10 markers by MSRE-PCR in biopsy samples allowed us to reveal three top informative combinations of markers, (1) IRF4 and C1QL2; (2) IRF4, C1QL2, and ADCY8; (3) IRF4, C1QL2, and DPYS, with the areas under ROC curves (AUCs) of 0.75, 0.78 and 0.74, respectively. A classifier based on IRF4 and C1QL2 better meets the diagnostic panel simplicity requirements, as it consists of only two markers. Diagnostic accuracy of the panel of these two markers is 0.75, with the sensitivity of 75% and specificity of 75%.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Metilação de DNA , Terapia Neoadjuvante , Área Sob a Curva , Neoplasias da Mama/patologia , Ilhas de CpG , Feminino , Humanos , Fatores Reguladores de Interferon/genética , Canal de Potássio KCNQ2/genética , Modelos Logísticos , Pessoa de Meia-Idade , Curva ROC , Trocador 3 de Sódio-Hidrogênio/genética
11.
Brain Dev ; 42(8): 612-616, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32532640

RESUMO

AIM: To describe beneficial effects of callosotomy on KCNQ2-related intractable epilepsy. CASE REPORT: Our patient was a 10-year-old girl who had developed epilepsy during the neonatal period, accompanied by a suppression-burst pattern on the electroencephalography (EEG). The patient showed profound psychomotor developmental delay since early infancy. Daily seizures of versive posturing and ocular deviation were transiently controlled by carbamazepine and valproate at the age of 1 year; however, the seizures gradually increased to up to 50 times per day. Ictal EEG and positron emission tomography revealed an epileptic focus in the left frontal lobe at age 5 years. Total callosotomy resulted in marked reduction of epileptic seizures thereafter, as well as improved responses to external auditory and visual stimuli. Whole exome sequencing at age 9 identified a de novo missense variant in KCNQ2 (NM_172107.3:c.563A > C:p.(Gln188Pro)). CONCLUSION: This case supports that epilepsy surgery could benefit children with epileptic encephalopathy, even with the etiology of channelopathy.


Assuntos
Corpo Caloso/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Canal de Potássio KCNQ2/genética , Carbamazepina/uso terapêutico , Criança , Epilepsia Resistente a Medicamentos/genética , Eletroencefalografia , Feminino , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico , Mutação de Sentido Incorreto , Ácido Valproico/uso terapêutico
12.
J Pharmacol Toxicol Methods ; 103: 106693, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32276047

RESUMO

INTRODUCTION: Development of agonistic analgesic drugs requires proof of selectivity in vivo attainable by selective antagonists or several knockdown strategies. The Kv7.2 potassium channel encoded by the KCNQ2 gene regulates neuronal excitability and its activation inhibits nociceptive transmission. Although it is a potentially attractive target for analgesics, no clinically approved Kv7.2 agonists are currently available and selectivity of drug candidates is hard to demonstrate in vivo due to the expenditure to generate KCNQ2 knockout animals and the lack of Kv7.2 selective antagonists. The present study describes the set-up of an RNA interference-based model that allows studying the selectivity of Kv7.2 openers. METHODS: Adeno-associated virus (AAV) vectors were used to deliver the expression cassette for a short hairpin RNA targeting KCNQ2. Heat nociception was tested in rats after intrathecal AAV treatment. RESULTS: Surprisingly, screening of AAV serotypes revealed serotype 7, which has rarely been explored, to be best suited for transduction of dorsal root ganglia neurons following intrathecal injection. Knockdown of the target gene was confirmed by qRT-PCR and the anti-nociceptive effect of a Kv7.2 agonist was found to be completely abolished by the treatment. DISCUSSION: We consider this approach not only to be suitable to study the selectivity of novel analgesic drugs targeting Kv7.2, but rather to serve as a general fast and simple method to generate functional and phenotypic knockdown animals during drug discovery for central and peripheral pain targets.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Analgésicos , Animais , Benzamidas , Técnicas de Silenciamento de Genes , Masculino , Neurônios , Nociceptores , Piridinas , Interferência de RNA , Ratos , Ratos Sprague-Dawley
13.
Neuropharmacology ; 163: 107863, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778691

RESUMO

Anxiety disorders often co-occur with alcohol use disorders, but the mechanisms underlying this comorbidity remain elusive. Previously, we reported that rats withdrawn from chronic alcohol consumption (Post-EtOH rats) exhibited robust anxiety-like behaviors (AB), which were accompanied by neuronal hyperexcitability, and the downregulation of M-type potassium channels (M-channels) in the lateral habenula (LHb); and that serotonin (5-HT) stimulated LHb neurons via type 2C receptors (5-HT2CRs). Also, 5-HT2CR activation is known to inhibit M-current in mouse hypothalamic neurons. The present study investigated whether LHb 5-HT2CRs and M-channels contribute to AB in adult male Long-Evans rats. We used the intermittent-access to 20% ethanol two-bottle free-choice drinking paradigm to induce dependence. We measured AB with the elevated plus-maze, open-field, and marble-burying tests at 24 h withdrawal. We found that intra-LHb infusion of SB242084, a selective 5-HT2CR antagonist alleviated AB and reduced the elevated c-Fos expression in the LHb of Post-EtOH rats. By contrast, intra-LHb infusion of the selective 5-HT2CR agonist WAY161503 induced AB and increased c-Fos expression in the LHb in alcohol-naive but not Post-EtOH rats. Also, intra-LHb SB242084 significantly reduced self-administration of alcohol intake in the operant chambers. Furthermore, both 5-HT2CR protein levels and 5-HIAA/5-HT ratio was increased in the LHb of Post-EtOH rats. Finally, intra-LHb SB242084 increased LHb KCNQ2/3 membrane protein expression in Post-EtOH rats. Collectively, these results suggest that enhanced LHb 5-HT2CR signaling that interacted with M-channels triggers AB in Post-EtOH rats and that 5-HT2CRs may be a promising target for treating comorbid anxiety disorders in alcoholics.


Assuntos
Ansiedade/metabolismo , Etanol/efeitos adversos , Habenula/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Síndrome de Abstinência a Substâncias/psicologia , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Aminopiridinas/farmacologia , Animais , Ansiedade/induzido quimicamente , Indóis/farmacologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Autoadministração
14.
Epilepsia ; 59(10): 1908-1918, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30146722

RESUMO

OBJECTIVES: The M-current is a low-threshold voltage-gated potassium current generated by Kv7 subunits that regulates neural excitation. It is important to note that M-current suppression, induced by activation of Gq-coupled neurotransmitter receptors, can dynamically regulate the threshold of action-potential firing and firing frequency. Here we sought to directly examine whether M-current suppression is involved in seizures and epileptogenesis. METHODS: Kv7.2 knock-in mice lacking the key protein kinase C (PKC) phosphorylation acceptor site for M-current suppression were generated by introducing an alanine substitution at serine residue 559 of mouse Kv7.2, mKv7.2(S559A). Basic electrophysiologic properties of the M-current between wild-type and Kv7.2(S559A) knock-in mice were analyzed in primary cultured neurons. Homozygous Kv7.2(S559A) knock-in mice were used to evaluate the protective effect of mutant Kv7.2 channel against chemoconvulsant-induced seizures. In addition, pilocarpine-induced neuronal damage and spontaneously recurrent seizures were evaluated after equivalent chemoconvulsant-induced status epilepticus was achieved by coadministration of the M-current-specific channel inhibitor, XE991. RESULT: Neurons from Kv7.2(S559A) knock-in mice showed normal basal M-currents. Knock-in mice displayed reduced M-current suppression when challenged by a muscarinic agonist, oxotremorine-M. Kv7.2(S559A) mice were resistant to chemoconvulsant-induced seizures with no mortality. Administration of XE991 transiently exacerbated seizures in knock-in mice equivalent to those of wild-type mice. Valproate, which disrupts neurotransmitter-induced M-current suppression, showed no additional anticonvulsant effect in Kv7.2(S559A) mice. After experiencing status epilepticus, Kv7.2(S559A) knock-in mice did not show seizure-induced cell death or spontaneous recurring seizures. SIGNIFICANCE: This study provides evidence that neurotransmitter-induced suppression of M-current generated by Kv7.2-containing channels exacerbates behavioral seizures. In addition, prompt recovery of M-current after status epilepticus prevents subsequent neuronal death and the development of spontaneously recurrent seizures. Therefore, prompt restoration of M-current activity may have a therapeutic benefit for epilepsy.


Assuntos
Regulação da Expressão Gênica/genética , Canal de Potássio KCNQ2/genética , Potenciais da Membrana/genética , Mutação/genética , Estado Epiléptico , Animais , Anticonvulsivantes/uso terapêutico , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Canal de Potássio KCNQ2/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agonistas Muscarínicos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Pilocarpina/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Estado Epiléptico/prevenção & controle
15.
Cell Tissue Res ; 372(3): 457-468, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29488002

RESUMO

M-type K+ channels contribute to the resting membrane potential in the sympathetic ganglion neurons of various animals, whereas their expression in adrenal medullary (AM) cells has been controversial. The present experiment aims to explore the expression of M channels comprising the KCNQ2 subunit in the rat AM cell and its immortalized cell line PC12 cells at the protein level and how its expression in PC12 cells is regulated. The KCNQ2 isoform was recognized in homogenates of PC12 cells but not the rat adrenal medullae by immunoblotting and KCNQ2-like immunoreactivity (IR) was detected in PC12 cells but not in rat AM cells. When the PC12 cells were maintained in a dexamethasone-containing medium, KCNQ2-like IR in the cells was suppressed, whereas the removal of fetal bovine serum from the culture medium for 1 day resulted in an increase in KCNQ2-like IR. A similar enhancement occurred when PC12 cells were cultured under conditions where glucocorticoid receptor (GR) and/or mineralocorticoid receptor (MR) activities were suppressed. These morphological findings were confirmed in functional analysis. The cells cultured in the presence of an inhibitor of either GR or MR exhibited larger amplitudes of Ca2+ signal in response to an M channel inhibitor than did the cells in its absence, whereas the resting Ca2+ level in the former was lower than that in the latter. These results indicate that the M channel is not expressed in rat AM cells and this absence of expression may be ascribed to the suppression by glucocorticoid activity.


Assuntos
Medula Suprarrenal/citologia , Medula Suprarrenal/metabolismo , Canal de Potássio KCNQ2/metabolismo , Animais , Glucocorticoides/sangue , Proteínas de Fluorescência Verde/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Células PC12 , Ratos , Ratos Wistar , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo
16.
Mol Pain ; 14: 1744806917749669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29212407

RESUMO

Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.


Assuntos
Dependovirus/metabolismo , Gânglios Espinais/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Vetores Genéticos/metabolismo , Canal de Potássio KCNQ2/metabolismo , Neurônios/metabolismo , Interferência de RNA , Potenciais de Ação/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Células Cultivadas , Fluorescência , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Neurônios/efeitos dos fármacos , Piridinas/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Sorotipagem , Fatores de Tempo
17.
Mol Pain ; 13: 1744806917724715, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741430

RESUMO

Abstract: Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.


Assuntos
Carbamatos/farmacologia , Dor Facial/tratamento farmacológico , Canal de Potássio KCNQ2/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Fenilenodiaminas/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , Animais , Regulação para Baixo , Dor Facial/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Masculino , Neuralgia/patologia , Neurônios/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Ratos Sprague-Dawley , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/patologia , Gânglio Trigeminal/patologia
18.
Epilepsia ; 58(3): 436-445, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28139826

RESUMO

OBJECTIVE: To analyze whether KCNQ2 R201C and R201H variants, which show atypical gain-of-function electrophysiologic properties in vitro, have a distinct clinical presentation and outcome. METHODS: Ten children with heterozygous, de novo KCNQ2 R201C or R201H variants were identified worldwide, using an institutional review board (IRB)-approved KCNQ2 patient registry and database. We reviewed medical records and, where possible, interviewed parents and treating physicians using a structured, detailed phenotype inventory focusing on the neonatal presentation and subsequent course. RESULTS: Nine patients had encephalopathy from birth and presented with prominent startle-like myoclonus, which could be triggered by sound or touch. In seven patients, electroencephalography (EEG) was performed in the neonatal period and showed a burst-suppression pattern. However, myoclonus did not have an EEG correlate. In many patients the paroxysmal movements were misdiagnosed as seizures. Seven patients developed epileptic spasms in infancy. In all patients, EEG showed a slow background and multifocal epileptiform discharges later in life. Other prominent features included respiratory dysfunction (perinatal respiratory failure and/or chronic hypoventilation), hypomyelination, reduced brain volume, and profound developmental delay. One patient had a later onset, and sequencing indicated that a low abundance (~20%) R201C variant had arisen by postzygotic mosaicism. SIGNIFICANCE: Heterozygous KCNQ2 R201C and R201H gain-of-function variants present with profound neonatal encephalopathy in the absence of neonatal seizures. Neonates present with nonepileptic myoclonus that is often misdiagnosed and treated as seizures. Prognosis is poor. This clinical presentation is distinct from the phenotype associated with loss-of-function variants, supporting the value of in vitro functional screening. These findings suggest that gain-of-function and loss-of-function variants need different targeted therapeutic approaches.


Assuntos
Canal de Potássio KCNQ2/genética , Mioclonia/genética , Polimorfismo de Nucleotídeo Único/genética , Espasmos Infantis/genética , Anticonvulsivantes/uso terapêutico , Arginina/genética , Pré-Escolar , Cisteína/genética , Eletroencefalografia , Feminino , Histidina/genética , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mioclonia/diagnóstico por imagem , Mioclonia/tratamento farmacológico , Mioclonia/fisiopatologia , Fenótipo , Sistema de Registros , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/genética
19.
J Formos Med Assoc ; 116(9): 711-719, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28038823

RESUMO

BACKGROUND/PURPOSE: Pediatric epilepsy caused by a KCNQ2 gene mutation usually manifests as benign familial neonatal seizures (BFNS) during the 1st week of life. However, the exact mechanism, phenotype, and genotype of the KCNQ2 mutation are unclear. METHODS: We studied the KCNQ2 genotype from 75 nonconsanguineous patients with childhood epilepsy without an identified cause (age range: from 2 days to 18 years) and from 55 healthy adult controls without epilepsy. KCNQ2 mutation variants were transfected into HEK293 cells to investigate what functional changes they induced. RESULTS: Four (5%) of the patients had the E515D KCNQ2 mutation, which the computer-based PolyPhen algorithm predicted to be deleterious. Their seizure outcomes were favorable, but three had an intellectual disability. Two patients with E515D presented with continuous spikes and waves during slow-wave sleep (CSWS), and the other two presented with BFNS. We also analyzed 10 affected family members with the same KCNQ2 mutation: all had epilepsy (8 had BFNS and 2 had CSWS). A functional analysis showed that the recordings of the E515D currents were significantly different (p<0.05), which suggested that channels with KCNQ2 E515D variants are less sensitive to voltage and require stronger depolarization to reach opening probabilities than those with the wild type or N780T (a benign polymorphism). CONCLUSION: KCNQ2 mutations can cause various phenotypes in children: they lead to BFNS and CSWS. We hypothesize that patients with the KCNQ2 E515D mutation are susceptible to seizures.


Assuntos
Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética , Mutação , Sono/fisiologia , Adolescente , Criança , Eletroencefalografia , Epilepsia Neonatal Benigna/fisiopatologia , Células HEK293 , Humanos , Lactente
20.
Gastroenterology ; 152(1): 206-217.e2, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693347

RESUMO

BACKGROUND & AIMS: The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn's disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. METHODS: We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P < 5.0 × 10-8 in meta-analysis with a nominal evidence (P < .05) in each scan were considered to have genome-wide significance. RESULTS: We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P < 1.6 × 10-6): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B,PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. CONCLUSIONS: We performed a genome-wide association study of African Americans with IBD and identified loci associated with UC in only this population; we also replicated IBD, CD, and UC loci identified in European populations. The detection of variants associated with IBD risk in only people of African descent demonstrates the importance of studying the genetics of IBD and other complex diseases in populations beyond those of European ancestry.


Assuntos
Negro ou Afro-Americano/genética , Moléculas de Adesão Celular Neuronais/genética , Colite Ulcerativa/genética , Doença de Crohn/genética , Predisposição Genética para Doença/genética , Cadeias HLA-DRB1/genética , Proteínas Repressoras/genética , Ubiquitina Tiolesterase/genética , Adenilil Ciclases/genética , Estudos de Casos e Controles , Proteínas Ligadas por GPI/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Cadeias alfa de HLA-DQ/genética , Humanos , Subunidade p40 da Interleucina-12/genética , Canal de Potássio KCNQ2/genética , Polimorfismo de Nucleotídeo Único , Receptores CXCR6 , Receptores de Quimiocinas/genética , Receptores de Interleucina/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores Virais/genética , Nexinas de Classificação/genética , Tenascina/genética , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA