Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38737299

RESUMO

Background: Tremor disorders have various genetic causes. Case report: A 60-year-old female with a family history of tremor presented a combined tremor syndrome, transient episodes of loss of contact and speech disturbances, as well as distal painful symptoms. Genetic screening revealed a novel heterozygous missense variant in the KCNQ2 gene. Discussion: The KCNQ2 protein regulates action potential firing, and mutations in its gene are associated with epilepsy and neuropathic pain. The identified variant, although of uncertain significance, may disrupt KCNQ2 function and also play a role in tremor pathogenesis. This case highlights the importance of genetic screening in combined tremor disorders.


Assuntos
Canal de Potássio KCNQ2 , Tremor , Feminino , Humanos , Pessoa de Meia-Idade , Canal de Potássio KCNQ2/genética , Mutação de Sentido Incorreto , Tremor/genética , Tremor/fisiopatologia
2.
Elife ; 112022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642783

RESUMO

Neuronal KCNQ channels mediate the M-current, a key regulator of membrane excitability in the central and peripheral nervous systems. Mutations in KCNQ2 channels cause severe neurodevelopmental disorders, including epileptic encephalopathies. However, the impact that different mutations have on channel function remains poorly defined, largely because of our limited understanding of the voltage-sensing mechanisms that trigger channel gating. Here, we define the parameters of voltage sensor movements in wt-KCNQ2 and channels bearing epilepsy-associated mutations using cysteine accessibility and voltage clamp fluorometry (VCF). Cysteine modification reveals that a stretch of eight to nine amino acids in the S4 becomes exposed upon voltage sensing domain activation of KCNQ2 channels. VCF shows that the voltage dependence and the time course of S4 movement and channel opening/closing closely correlate. VCF reveals different mechanisms by which different epilepsy-associated mutations affect KCNQ2 channel voltage-dependent gating. This study provides insight into KCNQ2 channel function, which will aid in uncovering the mechanisms underlying channelopathies.


Assuntos
Epilepsia , Canal de Potássio KCNQ2 , Transtornos do Neurodesenvolvimento , Cisteína/genética , Epilepsia/genética , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/genética
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785595

RESUMO

MicroRNAs (miRNAs) have recently emerged as important regulators of ion channel expression. We show here that select miR-106b family members repress the expression of the KCNQ2 K+ channel protein by binding to the 3'-untranslated region of KCNQ2 messenger RNA. During the first few weeks after birth, the expression of miR-106b family members rapidly decreases, whereas KCNQ2 protein level inversely increases. Overexpression of miR-106b mimics resulted in a reduction in KCNQ2 protein levels. Conversely, KCNQ2 levels were up-regulated in neurons transfected with antisense miRNA inhibitors. By constructing more specific and stable forms of miR-106b controlling systems, we further confirmed that overexpression of precursor-miR-106b-5p led to a decrease in KCNQ current density and an increase in firing frequency of hippocampal neurons, while tough decoy miR-106b-5p dramatically increased current density and decreased neuronal excitability. These results unmask a regulatory mechanism of KCNQ2 channel expression in early postnatal development and hint at a role for miR-106b up-regulation in the pathophysiology of epilepsy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso , Neurônios , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Regulação para Cima
4.
J Biol Chem ; 297(4): 101183, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509475

RESUMO

Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2)-deficient mice develop spontaneous seizures in early life because of a marked reduction in M currents, which regulate neuronal membrane excitability. We have previously shown that hyper-SUMOylation of the Kv7.2 and Kv7.3 channels is critically involved in the regulation of the M currents conducted by these potassium voltage-gated channels. Here, we show that hyper-SUMOylation of the Kv7.2 and Kv7.3 proteins reduced binding to the lipid secondary messenger PIP2. CaM1 has been shown to be tethered to the Kv7 subunits via hydrophobic motifs in its C termini and implicated in the channel assembly. Mutation of the SUMOylation sites on Kv7.2 and Kv7.3 specifically resulted in decreased binding to CaM1 and enhanced CaM1-mediated assembly of Kv7.2 and Kv7.3, whereas hyper-SUMOylation of Kv7.2 and Kv7.3 inhibited channel assembly. SENP2-deficient mice exhibited increased acetylcholine levels in the brain and the heart tissue because of increases in the vagal tone induced by recurrent seizures. The SENP2-deficient mice develop seizures followed by a period of sinus pauses or atrioventricular conduction blocks. Chronic administration of the parasympathetic blocker atropine or unilateral vagotomy significantly prolonged the life of the SENP2-deficient mice. Furthermore, we showed that retigabine, an M-current opener, reduced the transcription of SUMO-activating enzyme SAE1 and inhibited SUMOylation of the Kv7.2 and Kv7.3 channels, and also prolonged the life of SENP2-deficient mice. Taken together, the previously demonstrated roles of PIP2, CaM1, and retigabine on the regulation of Kv7.2 and Kv7.3 channel function can be explained by their roles in regulating SUMOylation of this critical potassium channel.


Assuntos
Cisteína Endopeptidases/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Sistemas do Segundo Mensageiro , Sumoilação , Motivos de Aminoácidos , Animais , Encéfalo/metabolismo , Cisteína Endopeptidases/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Camundongos , Camundongos Mutantes , Miocárdio/metabolismo , Convulsões/genética , Convulsões/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
5.
Sci Rep ; 10(1): 9239, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514046

RESUMO

Despite the advantages of neoadjuvant chemotherapy (NACT), associated toxicity is a serious complication that renders monitoring of the patients' response to NACT highly important. Thus, prediction of tumor response to treatment is imperative to avoid exposure of potential non-responders to deleterious complications. We have performed genome-wide analysis of DNA methylation by XmaI-RRBS and selected CpG dinucleotides differential methylation of which discriminates luminal B breast cancer samples with different sensitivity to NACT. With this data, we have developed multiplex methylation sensitive restriction enzyme PCR (MSRE-PCR) protocol for determining the methylation status of 10 genes (SLC9A3, C1QL2, DPYS, IRF4, ADCY8, KCNQ2, TERT, SYNDIG1, SKOR2 and GRIK1) that distinguish BC samples with different NACT response. Analysis of these 10 markers by MSRE-PCR in biopsy samples allowed us to reveal three top informative combinations of markers, (1) IRF4 and C1QL2; (2) IRF4, C1QL2, and ADCY8; (3) IRF4, C1QL2, and DPYS, with the areas under ROC curves (AUCs) of 0.75, 0.78 and 0.74, respectively. A classifier based on IRF4 and C1QL2 better meets the diagnostic panel simplicity requirements, as it consists of only two markers. Diagnostic accuracy of the panel of these two markers is 0.75, with the sensitivity of 75% and specificity of 75%.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Metilação de DNA , Terapia Neoadjuvante , Área Sob a Curva , Neoplasias da Mama/patologia , Ilhas de CpG , Feminino , Humanos , Fatores Reguladores de Interferon/genética , Canal de Potássio KCNQ2/genética , Modelos Logísticos , Pessoa de Meia-Idade , Curva ROC , Trocador 3 de Sódio-Hidrogênio/genética
6.
Brain Dev ; 42(8): 612-616, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32532640

RESUMO

AIM: To describe beneficial effects of callosotomy on KCNQ2-related intractable epilepsy. CASE REPORT: Our patient was a 10-year-old girl who had developed epilepsy during the neonatal period, accompanied by a suppression-burst pattern on the electroencephalography (EEG). The patient showed profound psychomotor developmental delay since early infancy. Daily seizures of versive posturing and ocular deviation were transiently controlled by carbamazepine and valproate at the age of 1 year; however, the seizures gradually increased to up to 50 times per day. Ictal EEG and positron emission tomography revealed an epileptic focus in the left frontal lobe at age 5 years. Total callosotomy resulted in marked reduction of epileptic seizures thereafter, as well as improved responses to external auditory and visual stimuli. Whole exome sequencing at age 9 identified a de novo missense variant in KCNQ2 (NM_172107.3:c.563A > C:p.(Gln188Pro)). CONCLUSION: This case supports that epilepsy surgery could benefit children with epileptic encephalopathy, even with the etiology of channelopathy.


Assuntos
Corpo Caloso/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Canal de Potássio KCNQ2/genética , Carbamazepina/uso terapêutico , Criança , Epilepsia Resistente a Medicamentos/genética , Eletroencefalografia , Feminino , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico , Mutação de Sentido Incorreto , Ácido Valproico/uso terapêutico
7.
J Pharmacol Toxicol Methods ; 103: 106693, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32276047

RESUMO

INTRODUCTION: Development of agonistic analgesic drugs requires proof of selectivity in vivo attainable by selective antagonists or several knockdown strategies. The Kv7.2 potassium channel encoded by the KCNQ2 gene regulates neuronal excitability and its activation inhibits nociceptive transmission. Although it is a potentially attractive target for analgesics, no clinically approved Kv7.2 agonists are currently available and selectivity of drug candidates is hard to demonstrate in vivo due to the expenditure to generate KCNQ2 knockout animals and the lack of Kv7.2 selective antagonists. The present study describes the set-up of an RNA interference-based model that allows studying the selectivity of Kv7.2 openers. METHODS: Adeno-associated virus (AAV) vectors were used to deliver the expression cassette for a short hairpin RNA targeting KCNQ2. Heat nociception was tested in rats after intrathecal AAV treatment. RESULTS: Surprisingly, screening of AAV serotypes revealed serotype 7, which has rarely been explored, to be best suited for transduction of dorsal root ganglia neurons following intrathecal injection. Knockdown of the target gene was confirmed by qRT-PCR and the anti-nociceptive effect of a Kv7.2 agonist was found to be completely abolished by the treatment. DISCUSSION: We consider this approach not only to be suitable to study the selectivity of novel analgesic drugs targeting Kv7.2, but rather to serve as a general fast and simple method to generate functional and phenotypic knockdown animals during drug discovery for central and peripheral pain targets.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Analgésicos , Animais , Benzamidas , Técnicas de Silenciamento de Genes , Masculino , Neurônios , Nociceptores , Piridinas , Interferência de RNA , Ratos , Ratos Sprague-Dawley
8.
Epilepsia ; 59(10): 1908-1918, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30146722

RESUMO

OBJECTIVES: The M-current is a low-threshold voltage-gated potassium current generated by Kv7 subunits that regulates neural excitation. It is important to note that M-current suppression, induced by activation of Gq-coupled neurotransmitter receptors, can dynamically regulate the threshold of action-potential firing and firing frequency. Here we sought to directly examine whether M-current suppression is involved in seizures and epileptogenesis. METHODS: Kv7.2 knock-in mice lacking the key protein kinase C (PKC) phosphorylation acceptor site for M-current suppression were generated by introducing an alanine substitution at serine residue 559 of mouse Kv7.2, mKv7.2(S559A). Basic electrophysiologic properties of the M-current between wild-type and Kv7.2(S559A) knock-in mice were analyzed in primary cultured neurons. Homozygous Kv7.2(S559A) knock-in mice were used to evaluate the protective effect of mutant Kv7.2 channel against chemoconvulsant-induced seizures. In addition, pilocarpine-induced neuronal damage and spontaneously recurrent seizures were evaluated after equivalent chemoconvulsant-induced status epilepticus was achieved by coadministration of the M-current-specific channel inhibitor, XE991. RESULT: Neurons from Kv7.2(S559A) knock-in mice showed normal basal M-currents. Knock-in mice displayed reduced M-current suppression when challenged by a muscarinic agonist, oxotremorine-M. Kv7.2(S559A) mice were resistant to chemoconvulsant-induced seizures with no mortality. Administration of XE991 transiently exacerbated seizures in knock-in mice equivalent to those of wild-type mice. Valproate, which disrupts neurotransmitter-induced M-current suppression, showed no additional anticonvulsant effect in Kv7.2(S559A) mice. After experiencing status epilepticus, Kv7.2(S559A) knock-in mice did not show seizure-induced cell death or spontaneous recurring seizures. SIGNIFICANCE: This study provides evidence that neurotransmitter-induced suppression of M-current generated by Kv7.2-containing channels exacerbates behavioral seizures. In addition, prompt recovery of M-current after status epilepticus prevents subsequent neuronal death and the development of spontaneously recurrent seizures. Therefore, prompt restoration of M-current activity may have a therapeutic benefit for epilepsy.


Assuntos
Regulação da Expressão Gênica/genética , Canal de Potássio KCNQ2/genética , Potenciais da Membrana/genética , Mutação/genética , Estado Epiléptico , Animais , Anticonvulsivantes/uso terapêutico , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Canal de Potássio KCNQ2/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agonistas Muscarínicos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Pilocarpina/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Estado Epiléptico/prevenção & controle
9.
Epilepsia ; 58(3): 436-445, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28139826

RESUMO

OBJECTIVE: To analyze whether KCNQ2 R201C and R201H variants, which show atypical gain-of-function electrophysiologic properties in vitro, have a distinct clinical presentation and outcome. METHODS: Ten children with heterozygous, de novo KCNQ2 R201C or R201H variants were identified worldwide, using an institutional review board (IRB)-approved KCNQ2 patient registry and database. We reviewed medical records and, where possible, interviewed parents and treating physicians using a structured, detailed phenotype inventory focusing on the neonatal presentation and subsequent course. RESULTS: Nine patients had encephalopathy from birth and presented with prominent startle-like myoclonus, which could be triggered by sound or touch. In seven patients, electroencephalography (EEG) was performed in the neonatal period and showed a burst-suppression pattern. However, myoclonus did not have an EEG correlate. In many patients the paroxysmal movements were misdiagnosed as seizures. Seven patients developed epileptic spasms in infancy. In all patients, EEG showed a slow background and multifocal epileptiform discharges later in life. Other prominent features included respiratory dysfunction (perinatal respiratory failure and/or chronic hypoventilation), hypomyelination, reduced brain volume, and profound developmental delay. One patient had a later onset, and sequencing indicated that a low abundance (~20%) R201C variant had arisen by postzygotic mosaicism. SIGNIFICANCE: Heterozygous KCNQ2 R201C and R201H gain-of-function variants present with profound neonatal encephalopathy in the absence of neonatal seizures. Neonates present with nonepileptic myoclonus that is often misdiagnosed and treated as seizures. Prognosis is poor. This clinical presentation is distinct from the phenotype associated with loss-of-function variants, supporting the value of in vitro functional screening. These findings suggest that gain-of-function and loss-of-function variants need different targeted therapeutic approaches.


Assuntos
Canal de Potássio KCNQ2/genética , Mioclonia/genética , Polimorfismo de Nucleotídeo Único/genética , Espasmos Infantis/genética , Anticonvulsivantes/uso terapêutico , Arginina/genética , Pré-Escolar , Cisteína/genética , Eletroencefalografia , Feminino , Histidina/genética , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mioclonia/diagnóstico por imagem , Mioclonia/tratamento farmacológico , Mioclonia/fisiopatologia , Fenótipo , Sistema de Registros , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/genética
10.
J Formos Med Assoc ; 116(9): 711-719, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28038823

RESUMO

BACKGROUND/PURPOSE: Pediatric epilepsy caused by a KCNQ2 gene mutation usually manifests as benign familial neonatal seizures (BFNS) during the 1st week of life. However, the exact mechanism, phenotype, and genotype of the KCNQ2 mutation are unclear. METHODS: We studied the KCNQ2 genotype from 75 nonconsanguineous patients with childhood epilepsy without an identified cause (age range: from 2 days to 18 years) and from 55 healthy adult controls without epilepsy. KCNQ2 mutation variants were transfected into HEK293 cells to investigate what functional changes they induced. RESULTS: Four (5%) of the patients had the E515D KCNQ2 mutation, which the computer-based PolyPhen algorithm predicted to be deleterious. Their seizure outcomes were favorable, but three had an intellectual disability. Two patients with E515D presented with continuous spikes and waves during slow-wave sleep (CSWS), and the other two presented with BFNS. We also analyzed 10 affected family members with the same KCNQ2 mutation: all had epilepsy (8 had BFNS and 2 had CSWS). A functional analysis showed that the recordings of the E515D currents were significantly different (p<0.05), which suggested that channels with KCNQ2 E515D variants are less sensitive to voltage and require stronger depolarization to reach opening probabilities than those with the wild type or N780T (a benign polymorphism). CONCLUSION: KCNQ2 mutations can cause various phenotypes in children: they lead to BFNS and CSWS. We hypothesize that patients with the KCNQ2 E515D mutation are susceptible to seizures.


Assuntos
Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética , Mutação , Sono/fisiologia , Adolescente , Criança , Eletroencefalografia , Epilepsia Neonatal Benigna/fisiopatologia , Células HEK293 , Humanos , Lactente
11.
Gastroenterology ; 152(1): 206-217.e2, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693347

RESUMO

BACKGROUND & AIMS: The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn's disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. METHODS: We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P < 5.0 × 10-8 in meta-analysis with a nominal evidence (P < .05) in each scan were considered to have genome-wide significance. RESULTS: We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P < 1.6 × 10-6): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B,PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. CONCLUSIONS: We performed a genome-wide association study of African Americans with IBD and identified loci associated with UC in only this population; we also replicated IBD, CD, and UC loci identified in European populations. The detection of variants associated with IBD risk in only people of African descent demonstrates the importance of studying the genetics of IBD and other complex diseases in populations beyond those of European ancestry.


Assuntos
Negro ou Afro-Americano/genética , Moléculas de Adesão Celular Neuronais/genética , Colite Ulcerativa/genética , Doença de Crohn/genética , Predisposição Genética para Doença/genética , Cadeias HLA-DRB1/genética , Proteínas Repressoras/genética , Ubiquitina Tiolesterase/genética , Adenilil Ciclases/genética , Estudos de Casos e Controles , Proteínas Ligadas por GPI/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Cadeias alfa de HLA-DQ/genética , Humanos , Subunidade p40 da Interleucina-12/genética , Canal de Potássio KCNQ2/genética , Polimorfismo de Nucleotídeo Único , Receptores CXCR6 , Receptores de Quimiocinas/genética , Receptores de Interleucina/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores Virais/genética , Nexinas de Classificação/genética , Tenascina/genética , População Branca/genética
12.
Neuroscience ; 333: 356-67, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27450567

RESUMO

Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function.


Assuntos
Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Antracenos/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo T/metabolismo , Fármacos do Sistema Nervoso Central/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Mibefradil/farmacologia , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Nimodipina/farmacologia , Células PC12 , Potássio/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
13.
J Biol Chem ; 291(36): 19132-45, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27445338

RESUMO

Ubiquitination of the TrkA neurotrophin receptor in response to NGF is critical in the regulation of TrkA activation and functions. TrkA is ubiquitinated, among other E3 ubiquitin ligases, by Nedd4-2. To understand mechanistically how TrkA ubiquitination is regulated, we performed a siRNA screening to identify deubiquitinating enzymes and found that USP36 acts as an important regulator of TrkA activation kinetics and ubiquitination. However, USP36 action on TrkA was indirect because it does not deubiquitinate TrkA. Instead, USP36 binds to Nedd4-2 and regulates the association of TrkA and Nedd4-2. In addition, depletion of USP36 increases TrkA·Nedd4-2 complex formation, whereas USP36 expression disrupts the complex, resulting in an enhancement or impairment of Nedd4-2-dependent TrkA ubiquitination, respectively. Moreover, USP36 depletion leads to enhanced total and surface TrkA expression that results in increased NGF-mediated TrkA activation and signaling that augments PC12 cell differentiation. USP36 actions extend beyond TrkA because the presence of USP36 interferes with Nedd4-2-dependent Kv7.2/3 channel regulation. Our results demonstrate that USP36 binds to and regulates the actions of Nedd4-2 over different substrates affecting their expression and functions.


Assuntos
Diferenciação Celular/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Canal de Potássio KCNQ2/biossíntese , Canal de Potássio KCNQ3/biossíntese , Células-Tronco Neurais/metabolismo , Receptor trkA/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HEK293 , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Células-Tronco Neurais/citologia , Células PC12 , Ligação Proteica , Ratos , Receptor trkA/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética
14.
Bipolar Disord ; 17(2): 150-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25041603

RESUMO

OBJECTIVES: Accumulating evidence implicates the potassium voltage-gated channel, KQT-like subfamily, member 2 and 3 (KCNQ2 and KCNQ3) genes in the etiology of bipolar disorder (BPD). Reduced KCNQ2 or KCNQ3 gene expression might lead to a loss of inhibitory M-current and an increase in neuronal hyperexcitability in disease. The goal of the present study was to evaluate epigenetic and gene expression associations of the KCNQ2 and KCNQ3 genes with BPD. METHODS: DNA methylation and gene expression levels of alternative transcripts of KCNQ2 and KCNQ3 capable of binding the ankyrin G (ANK3) gene were evaluated using bisulfite pyrosequencing and the quantitative real-time polymerase chain reaction in the postmortem prefrontal cortex of subjects with BPD and matched controls from the McLean Hospital. Replication analyses of DNA methylation findings were performed using prefrontal cortical DNA obtained from the Stanley Medical Research Institute. RESULTS: Significantly lower expression was observed in KCNQ3, but not KCNQ2. DNA methylation analysis of CpGs within an alternative exonic region of KCNQ3 exon 11 demonstrated significantly lower methylation in BPD, and correlated significantly with KCNQ3 mRNA levels. Lower KCNQ3 exon 11 DNA methylation was observed in the Stanley Medical Research Institute replication cohort, although only after correcting for mood stabilizer status. Mood stabilizer treatment in rats resulted in a slight DNA methylation increase at the syntenic KCNQ3 exon 11 region, which subsequent analyses suggested could be the result of alterations in neuronal proportion. CONCLUSION: The results of the present study suggest that epigenetic alterations in the KCNQ3 gene may be important in the etiopathogenesis of BPD and highlight the importance of controlling for medication and cellular composition-induced heterogeneity in psychiatric studies of the brain.


Assuntos
Transtorno Bipolar/genética , Metilação de DNA/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Adulto , Idoso , Animais , Antimaníacos/farmacologia , Sequência de Bases , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Compostos de Lítio/farmacologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Córtex Pré-Frontal/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Ácido Valproico/farmacologia
15.
PLoS One ; 9(2): e88549, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586341

RESUMO

Knock-in mouse models have contributed tremendously to our understanding of human disorders. However, generation of knock-in animals requires a significant investment of time and effort. We addressed this problem by developing a novel knock-in system that circumvents several traditional challenges by establishing stem cells with acceptor elements enveloping a particular genomic target. Once established, these acceptor embryonic stem (ES) cells are efficient at directionally incorporating mutated target DNA using modified Cre/lox technology. This is advantageous, because knock-ins are not restricted to one a priori selected variation. Rather, it is possible to generate several mutant animal lines harboring desired alterations in the targeted area. Acceptor ES cell generation is the rate-limiting step, lasting approximately 2 months. Subsequent manipulations toward animal production require an additional 8 weeks, but this delimits the full period from conception of the genetic alteration to its animal incorporation. We call this system a "kick-in" to emphasize its unique characteristics of speed and convenience. To demonstrate the functionality of the kick-in methodology, we generated two mouse lines with separate mutant versions of the voltage-dependent potassium channel Kv7.2 (Kcnq2): p.Tyr284Cys (Y284C) and p.Ala306Thr (A306T); both variations have been associated with benign familial neonatal epilepsy. Adult mice homozygous for Y284C, heretofore unexamined in animals, presented with spontaneous seizures, whereas A306T homozygotes died early. Heterozygous mice of both lines showed increased sensitivity to pentylenetetrazole, possibly due to a reduction in M-current in CA1 hippocampal pyramidal neurons. Our observations for the A306T animals match those obtained with traditional knock-in technology, demonstrating that the kick-in system can readily generate mice bearing various mutations, making it a suitable feeder technology toward streamlined phenotyping.


Assuntos
Técnicas de Introdução de Genes/métodos , Canal de Potássio KCNQ2/genética , Animais , Comportamento Animal , Células-Tronco Embrionárias/metabolismo , Epilepsia Neonatal Benigna/induzido quimicamente , Epilepsia Neonatal Benigna/genética , Epilepsia Neonatal Benigna/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Mutação , Pentilenotetrazol/efeitos adversos , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Tempo
16.
Hum Mol Genet ; 23(12): 3200-11, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463883

RESUMO

In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequential testing of candidate genes known to be associated with specific sub-phenotypes, but the diagnostic yield of this approach can be low. We conducted whole-genome sequencing (WGS) on six patients with severe early-onset epilepsy who had previously been refractory to molecular diagnosis, and their parents. Four of these patients had a clinical diagnosis of Ohtahara Syndrome (OS) and two patients had severe non-syndromic early-onset epilepsy (NSEOE). In two OS cases, we found de novo non-synonymous mutations in the genes KCNQ2 and SCN2A. In a third OS case, WGS revealed paternal isodisomy for chromosome 9, leading to identification of the causal homozygous missense variant in KCNT1, which produced a substantial increase in potassium channel current. The fourth OS patient had a recessive mutation in PIGQ that led to exon skipping and defective glycophosphatidyl inositol biosynthesis. The two patients with NSEOE had likely pathogenic de novo mutations in CBL and CSNK1G1, respectively. Mutations in these genes were not found among 500 additional individuals with epilepsy. This work reveals two novel genes for OS, KCNT1 and PIGQ. It also uncovers unexpected genetic mechanisms and emphasizes the power of WGS as a clinical tool for making molecular diagnoses, particularly for highly heterogeneous disorders.


Assuntos
Epilepsia/genética , Epilepsia/patologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 9 , Epilepsia/diagnóstico , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Canal de Potássio KCNQ2/genética , Masculino , Mutação , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Patologia Molecular , Canais de Potássio Ativados por Sódio , Proteínas Proto-Oncogênicas c-cbl/genética , Dissomia Uniparental , Adulto Jovem
17.
PLoS One ; 8(9): e76085, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086693

RESUMO

KCNQ genes encode five Kv7 K(+) channel subunits (Kv7.1-Kv7.5). Four of these (Kv7.2-Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which regulates neuronal excitability. In this study, we demonstrate that tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits Kv7.2/Kv7.3 currents heterologously expressed in human embryonic kidney HEK-293 cells. Current inhibition by tamoxifen was voltage independent but concentration-dependent. The IC50 for current inhibition was 1.68 ± 0.44 µM. The voltage-dependent activation of the channel was not modified. Tamoxifen inhibited Kv7.2 homomeric channels with a higher potency (IC50 = 0.74 ± 0.16 µM). The mutation Kv7.2 R463E increases phosphatidylinositol- 4,5-bisphosphate (PIP2) - channel interaction and diminished dramatically the inhibitory effect of tamoxifen compared with that for wild type Kv7.2. Conversely, the mutation Kv7.2 R463Q, which decreases PIP2 -channel interaction, increased tamoxifen potency. Similar results were obtained on the heteromeric Kv7.2 R463Q/Kv7.3 and Kv7.2 R463E/Kv7.3 channels, compared to Kv7.2/Kv7.3 WT. Overexpression of type 2A PI(4)P5-kinase (PIP5K 2A) significantly reduced tamoxifen inhibition of Kv7.2/Kv7.3 and Kv7.2 R463Q channels. Our results suggest that tamoxifen inhibited Kv7.2/Kv7.3 channels by interfering with PIP2-channel interaction because of its documented interaction with PIP2 and the similar effect of tamoxifen on various PIP2 sensitive channels.


Assuntos
Canal de Potássio KCNQ2/antagonistas & inibidores , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/antagonistas & inibidores , Canal de Potássio KCNQ3/metabolismo , Tamoxifeno/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Canal de Potássio KCNQ2/genética , Mutação de Sentido Incorreto/genética , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
18.
Epileptic Disord ; 15(2): 158-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23774309

RESUMO

We describe the EEG findings of an infant with early-onset epileptic encephalopathy with mutation of the KCNQ2 gene and a family history of neonatal seizures. The infant presented with multifocal drug-resistant seizures with onset during the third day of life. Family history was positive for early-onset neonatal seizures. Metabolic screening and neuroimaging were negative. Direct sequencing of KCQN2 from both the mother and child revealed a heterozygous cytosine-to-guanine mutation (Dedek et al., 2003). Interictal EEG showed a very discontinuous pattern which evolved towards a defined burst-suppression pattern during sleep and a multifocal, random, attenuation pattern during wakefulness. Focal, tonic seizures with head deviation, sometimes followed by asynchronous and asymmetrical clonic jerks, eyelid myoclonias, and polypnoea, were recorded. Ictal EEG was characterised by focal, low-voltage, fast activity, followed by recruiting theta rhythms and bilateral, focal, spike-wave complexes, alternatively localised to one hemisphere and subsequently diffusing to the other. ACTH therapy was introduced, resulting in a significant improvement in EEG activity and gradual reduction in seizure frequency, with cessation at age 13 weeks. [Published with video sequences].


Assuntos
Epilepsia/fisiopatologia , Hormônio Adrenocorticotrópico/uso terapêutico , Eletroencefalografia , Epilepsia/tratamento farmacológico , Epilepsia/genética , Hormônios/uso terapêutico , Humanos , Lactente , Canal de Potássio KCNQ2/genética , Masculino , Mutação , Gravação em Vídeo
19.
Gene ; 525(1): 107-15, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23644028

RESUMO

OBJECTIVE: The aim of this study was to identify the candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms that contribute to schizophrenia susceptibility and to generate a SNP to gene to pathway hypothesis using an analytical pathway-based approach. METHODS: We used schizophrenia GWAS data of the genotypes of 660,259 SNPs in 1378 controls and 1351 cases of European descent after quality control filtering. ICSNPathway (Identify candidate Causal SNPs and Pathways) analysis was applied to the schizophrenia GWAS dataset. The first stage involved the pre-selection of candidate SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate SNPs using improved-gene set enrichment analysis. RESULTS: ICSNPathway analysis identified fifteen candidate SNPs, ten candidate pathways, and nine hypothetical biological mechanisms. The most strongly associated potential pathways were as follows. First, rs1644731 and rs1644730 to RDH8 to estrogen biosynthetic process (p<0.001, FDR<0.001). The genes involved in this pathway are RDH8 and HSD3B1 (p<0.05). All-trans-retinol dehydrogenase (RDH8) is a visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol in the presence of NADPH. The chemical reactions and pathways involved result in the formation of estrogens, which are C18 steroid hormones that can stimulate the development of female sexual characteristics. Second, rs1146031 to ACVR1 to mesoderm formation and activin binding (p<0.001, FDR=0.032, 0.034). Two of 15 candidate genes are known genes associated with schizophrenia: KCNQ2 and APOL2. One of the 10 candidate pathways, estrogen biosynthetic process, is known to be associated with schizophrenia (p<0.001, FDR<0.001). However, 13 of candidate genes (RDH8, ACVR1, PSMD9, KCNAB1, SLC17A3, ARCN1, COG7, STAB2, LRPAP1, STAB1, CXCL16, COL4A4, EXOSC3) and 9 of candidate pathways were novel. CONCLUSION: By applying ICSNPathway analysis to schizophrenia GWAS data, we identified candidate SNPs, genes like KCNQ2 and APOL2 and pathways involving the estrogen biosynthetic process may contribute to schizophrenia susceptibility. Further analyses are needed to validate the results of this analysis.


Assuntos
Esquizofrenia/genética , Receptores de Ativinas Tipo I/genética , Oxirredutases do Álcool/genética , Apolipoproteínas/genética , Apolipoproteínas L , Estudos de Casos e Controles , Estrogênios/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Canal de Potássio KCNQ2/genética , Desequilíbrio de Ligação , Lipoproteínas HDL/genética , NADP/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/enzimologia , Esquizofrenia/metabolismo , Transdução de Sinais , População Branca/genética
20.
Pain ; 154(3): 434-448, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23352759

RESUMO

Bone cancer pain has a strong impact on the quality of life of patients, but is difficult to treat. Better understanding of the pathogenic mechanisms underlying bone cancer pain will likely lead to the development of more effective treatments. In the present study, we investigated whether inhibition of KCNQ/M channels contributed to the hyperexcitability of primary sensory neurons and to the pathogenesis of bone cancer pain. By using a rat model of bone cancer pain based on intratibial injection of MRMT-1 tumour cells, we documented a prominent decrease in expression of KCNQ2 and KCNQ3 proteins and a reduction of M-current density in small-sized dorsal root ganglia (DRG) neurons, which were associated with enhanced excitability of these DRG neurons and the hyperalgesic behaviours in bone cancer rats. Coincidently, we found that inhibition of KCNQ/M channels with XE-991 caused a robust increase in the excitability of small-sized DRG neurons and produced an obvious mechanical allodynia in normal rats. On the contrary, activation of the KCNQ/M channels with retigabine not only inhibited the hyperexcitability of these small DRG neurons, but also alleviated mechanical allodynia and thermal hyperalgesia in bone cancer rats, and all of these effects of retigabine could be blocked by KCNQ/M-channel antagonist XE-991. These results suggest that repression of KCNQ/M channels leads to the hyperexcitability of primary sensory neurons, which in turn causes bone cancer pain. Thus, suppression of KCNQ/M channels in primary DRG neurons plays a crucial role in the development of bone cancer pain.


Assuntos
Neoplasias Ósseas/fisiopatologia , Carcinoma/fisiopatologia , Gânglios Espinais/fisiopatologia , Hiperalgesia/etiologia , Canal de Potássio KCNQ2/fisiologia , Canal de Potássio KCNQ3/fisiologia , Nociceptividade/fisiologia , Dor/etiologia , Células Receptoras Sensoriais/fisiologia , Animais , Antracenos/farmacologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Carcinoma/patologia , Carcinoma/secundário , Regulação para Baixo , Feminino , Temperatura Alta/efeitos adversos , Hiperalgesia/fisiopatologia , Canal de Potássio KCNQ2/antagonistas & inibidores , Canal de Potássio KCNQ2/biossíntese , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/antagonistas & inibidores , Canal de Potássio KCNQ3/biossíntese , Canal de Potássio KCNQ3/genética , Neoplasias Mamárias Experimentais/patologia , Transplante de Neoplasias , Técnicas de Patch-Clamp , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Estresse Mecânico , Transmissão Sináptica , Tíbia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA