Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 62(21): 9618-9641, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31525968

RESUMO

Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.


Assuntos
Amidas/química , Sistema Nervoso Central/metabolismo , Epilepsia/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Bloqueadores dos Canais de Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Cães , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.6/química , Domínios Proteicos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/uso terapêutico , Relação Estrutura-Atividade
2.
Biochim Biophys Acta Biomembr ; 1861(1): 142-150, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463697

RESUMO

To1, previously named Tc49b, is a peptide neurotoxin isolated from venom of the scorpion Tityus obscurus that is responsible for lethal human poisoning cases in the Brazilian Amazonian region. Previously, To1 was shown to be lethal to mice and to change Na+ permeation in cerebellum granular neurons from rat brain. In addition, To1 did not affect Shaker B K+ channels. Based on sequence similarities, To1 was described as a ß-toxin. In the present work, To1 was purified from T. obscurus venom and submitted to an electrophysiological characterization in human and invertebrate NaV channels. The analysis of the electrophysiological experiments reveal that To1 enhances the open probability at more negative potentials of human NaV 1.3 and 1.6, of the insect channel BgNaV1 and of arachnid VdNaV1 channel. In addition, To1 reduces the peak of Na+ currents in some of the NaVs tested. These results support the classification of the To1 as a ß-toxin. A structure and functional comparison to other ß-toxins that share sequence similarity to To1 is also presented.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.3/química , Canal de Sódio Disparado por Voltagem NAV1.6/química , Venenos de Escorpião/química , Escorpiões/química , Canais de Sódio/química , Animais , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Proteínas de Insetos/química , Cinética , Peptídeos , Probabilidade , Ligação Proteica , Sódio/química
3.
J Physiol ; 596(9): 1601-1626, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29441586

RESUMO

KEY POINTS: Na+ current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na+ (NaV ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary ß-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-ß-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary ß-cells, but not in HEK cells, inactivation of a single NaV subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that NaV channels adopt different inactivation behaviours depending on the local membrane environment. ABSTRACT: Pancreatic ß-cells are equipped with voltage-gated Na+ channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na+ current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na+ channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the ß-cell. It has been proposed that the biphasic inactivation reflects the contribution of different NaV α-subunits. We tested this possibility by expression of TTX-resistant variants of the NaV subunits found in ß-cells (NaV 1.3, NaV 1.6 and NaV 1.7) in insulin-secreting Ins1 cells and in non-ß-cells (including HEK and CHO cells). We found that all NaV subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. NaV 1.7 inactivated at 15--20 mV more negative membrane potentials than NaV 1.3 and NaV 1.6 in Ins1 cells but this small difference is insufficient to solely explain the biphasic inactivation in Ins1 cells. In Ins1 cells, but never in the other cell types, widely different components of NaV inactivation (separated by 30 mV) were also observed following expression of a single type of NaV α-subunit. The more positive component exhibited a voltage dependence of inactivation similar to that found in HEK and CHO cells. We propose that biphasic NaV inactivation in insulin-secreting cells reflects insertion of channels in membrane domains that differ with regard to lipid and/or membrane protein composition.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/química , Canal de Sódio Disparado por Voltagem NAV1.6/química , Canal de Sódio Disparado por Voltagem NAV1.7/química , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação , Sequência de Aminoácidos , Animais , Cricetinae , Cricetulus , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulinoma/tratamento farmacológico , Insulinoma/patologia , Potenciais da Membrana , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Ratos , Homologia de Sequência , Sódio/metabolismo
4.
Sci Rep ; 3: 2435, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23942337

RESUMO

The neuronal-voltage gated sodium channel (VGSC), Na(V)1.6, plays an important role in propagating action potentials along myelinated axons. Calmodulin (CaM) is known to modulate the inactivation kinetics of Na(V)1.6 by interacting with its IQ motif. Here we report the crystal structure of apo-CaM:Na(V)1.6IQ motif, along with functional studies. The IQ motif of Na(V)1.6 adopts an α-helical conformation in its interaction with the C-lobe of CaM. CaM uses different residues to interact with Na(V)1.6IQ motif depending on the presence or absence of Ca²âº. Three residues from Na(V)1.6, Arg1902, Tyr1904 and Arg1905 were identified as the key common interacting residues in both the presence and absence of Ca²âº. Substitution of Arg1902 and Tyr1904 with alanine showed a reduced rate of Na(V)1.6 inactivation in electrophysiological experiments in vivo. Compared with other CaM:Na(V) complexes, our results reveal a different mode of interaction for CaM:Na(V)1.6 and provides structural insight into the isoform-specific modulation of VGSCs.


Assuntos
Calmodulina/metabolismo , Ativação do Canal Iônico , Canal de Sódio Disparado por Voltagem NAV1.6/química , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Calmodulina/farmacologia , Calorimetria , Cristalografia por Raios X , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA