Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Metabolomics ; 20(3): 62, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796627

RESUMO

INTRODUCTION: The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant. OBJECTIVES: Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids. METHODS: Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC). RESULTS: The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles. CONCLUSION: These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.


Assuntos
Cannabis , Metabolômica , Folhas de Planta , Cannabis/química , Cannabis/metabolismo , Metabolômica/métodos , Folhas de Planta/metabolismo , Folhas de Planta/química , Flores/metabolismo , Flores/química , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Canabinoides/metabolismo , Canabinoides/análise , Simulação de Acoplamento Molecular , Flavonoides/metabolismo , Flavonoides/análise , Espectrometria de Massas/métodos
2.
Methods Mol Biol ; 2787: 245-253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656494

RESUMO

To properly assess promoter activity, which is critical for understanding biosynthetic pathways in different plant species, we use agroinfiltration-based transient gene expression assay. We compare the activity of several known promoters in Nicotiana benthamiana with their activity in Cannabis sativa (both hemp and medicinal cannabis), which has attracted much attention in recent years for its industrial, medicinal, and recreational properties. Here we describe an optimized protocol for transient expression in Cannabis combined with a ratiometric GUS reporter system that allows more accurate evaluation of promoter activity and reduces the effects of variable infiltration efficiency.


Assuntos
Cannabis , Regulação da Expressão Gênica de Plantas , Nicotiana , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Cannabis/genética , Cannabis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/genética , Genes Reporter , Expressão Gênica/genética , Glucuronidase/genética , Glucuronidase/metabolismo
3.
Food Chem ; 444: 138633, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330607

RESUMO

The present study focused on investigating the stability and in vitro simulation characteristics of oil-in-water (O/W) and oleogel-in-water (Og/W) emulsions. Compared with O/W emulsion, the Og/W emulsion exhibited superior stability, with a more evenly spread droplet distribution, and the Og/W emulsion containing 3 % hemp seed protein (HSP) showed better stability against environmental factors, including heat treatment, ionic strength, and changes in pH. Additionally, the stability of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabinol (CBN) and the in vitro digestion of hemp seed oil (HSO) were evaluated. The half-life of CBN in the Og/W emulsion was found to be 131.82 days, with a degradation rate of 0.00527. The in vitro simulation results indicated that the Og/W emulsion effectively delayed the intestinal digestion of HSO, and the bioaccessibility of Δ9-THC and CBN reached 56.0 % and 58.0 %, respectively. The study findings demonstrated that the Og/W emulsion constructed with oleogel and HSP, exhibited excellent stability.


Assuntos
Cannabis , Extratos Vegetais , Cannabis/metabolismo , Emulsões/metabolismo , Canabinol , Dronabinol , Água , Compostos Orgânicos
4.
Bioorg Chem ; 143: 107030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091718

RESUMO

Here, we present an interesting, previously unreported method for fractionating a particular class of cannabinoids from the crude leaf extract of Cannabis sativa using HP-20 resins. In this study, we report a novel method of divergent synthesis of fractionated Cannabis sativa extract, which allows the generation of multiple cannabinoids C- and O-glycosides which react with the glycosyl donor 2,3,4,6-tetra-O-acetyl-d-mannosyl trichloroacetimidate (TAMTA) to create eight C- and O-ß-d-cannabinoids glycosides (COCG), which are separated by HPLC and whose structures are characterized by 1D, 2D NMR, and mass spectrometry. These glycosides exhibit improved anti-proliferative and anti-metastatic effects against numerous cancer cell lines in vitro and are more water-soluble and stable than their parent cannabinoids. The in vitro testing of the pure cannabinoids (1-4) and their C- & O-glycosides (1a-4a) and 1b-4b exhibited anti-proliferative and anti-metastatic activities against a panel of eight human cancer cell lines in contrast to their respective parent molecules. Different cancer cell lines' IC50 values varied significantly when their cell viability was compared. In addition to the others, compounds 2a, 3a, 4a, and 2b, 3b were highly potent, with IC50values ranging from 0.74 µM (3a) to 51.40 µM (4a).Although2a(1.42 µM) and3a(0.74 µM) exhibited lower IC50values in the MiaPaca-2 cell line than4a(2.58 µM). But, in addition to the comparable anti-clonogenic activity of4ain MiaPaca-2 and Panc-1 cells, it manifested remarkable anti-invasive activity than either 2a or 3a.In contrast to 2a, 2b, 3a, and 3b and their respective parent compounds,4ahad substantial anti-invasive/anti-metastatic capabilities and possessed anti-proliferative activity.The effects of 4a treatment on MiaPaca-2 and Panc-1 cells include a dose-dependent increase in the expression of E-cadherin and a significant decrease in the expression of Zeb-1, Vimentin, and Snail1. Our results demonstrate that divergent synthesis of fractionated Cannabis sativa extract is a feasible and efficient strategy to produce a library of novel cannabinoid glycosides with improved pharmacological properties and potential anticancer benefits.


Assuntos
Canabinoides , Cannabis , Neoplasias , Humanos , Canabinoides/farmacologia , Canabinoides/química , Canabinoides/metabolismo , Cannabis/química , Cannabis/metabolismo , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química
5.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003528

RESUMO

Terpenes in Cannabis sativa exert analgesic effects, but the mechanisms are uncertain. We examined the effects of 10 terpenes on capsaicin responses in an established model of neuronal hypersensitivity. Adult rat DRG neurons cultured with neurotrophic factors NGF and GDNF were loaded with Fura2AM for calcium imaging, and treated with individual terpenes or vehicle for 5 min, followed by 1 µMol capsaicin. In vehicle treated control experiments, capsaicin elicited immediate and sustained calcium influx. Most neurons treated with terpenes responded to capsaicin after 6-8 min. Few neurons showed immediate capsaicin responses that were transient or normal. The delayed responses were found to be due to calcium released from the endoplasmic reticulum, as they were maintained in calcium/magnesium free media, but not after thapsigargin pre-treatment. Terpene inhibition of calcium influx was reversed after washout of medium, in the absence of terpenes, and in the presence of the Na+/K+ ATPase inhibitor ouabain, but not CB1 or CB2 receptor antagonists. Thus, terpenes inhibit capsaicin evoked calcium influx by Na+/K+ ATPase activation. Immunofluorescence showed TRPV1 co-expression with α1ß1 Na+/K+ ATPase in most neurons while others were either TRPV1 or α1ß1 Na+/K+ ATPase positive.


Assuntos
Cannabis , Capsaicina , Ratos , Animais , Capsaicina/farmacologia , Cannabis/metabolismo , Adenosina Trifosfatases , Terpenos/farmacologia , Cálcio/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPV , Gânglios Espinais/metabolismo , Células Cultivadas
6.
PLoS One ; 18(11): e0290730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011195

RESUMO

The abuse of Cannabis is a widespread issue in the Asir region. It has a lot of legal and occupational repercussions. The purpose of this study was to evaluate the health status of cannabis addicts at admission and after treatment using body mass index, glycemic status, liver function, renal function, and oxidative stress. A cross-sectional study was conducted with 120 participants. The study was conducted at Al Amal Hospital for Mental Health in Asir region of Saudi Arabia, with 100 hospitalized patients receiving addiction treatment and 20 healthy volunteers. The participants were divided into two groups: group I, the control group, and group II, the cannabis addicts. The socio-demographic data were gathered. The level of cannabis in the urine and the CWAS [Cannabis Withdrawal Assessment Scale] were determined. In addition, the Body Mass Index [BMI], vital signs [temperature, heart rate, systolic blood pressure, diastolic blood pressure, and respiratory rate], serum levels of albumin, total bilirubin, direct bilirubin, AST, ALT, and ALP, urea, creatinine, Thiobarbituric acid-reactive substances [TBARS], superoxide dismutase [SOD], reduced glutathione [GSH], and catalase [CAT] were analyzed on the first day of admission and after treatment. According to the results, there was no significant change in the body mass index. The vital signs in the cannabis user group were significantly lower than the corresponding admission values. Regarding renal function tests such as urea and creatinine, we found that after treatment, the mean urea and creatinine values in the cannabis user group did not differ significantly from the corresponding admission values. However, after treatment, the mean values of fasting blood glucose levels in the cannabis user group were significantly lower than at admission. Also, the mean values of liver function tests such as albumin, total bilirubin, direct bilirubin, AST, ALT, and ALP in the cannabis user group were significantly lower than the corresponding admission values after treatment. In assessing the antioxidant system, we found that the mean values of TBARS, SOD, GSH, and CAT in the cannabis user group did not differ significantly from the corresponding admission values after treatment. The current findings have revealed that cannabis addiction harms the various body systems and has significant implications for the addict's state of health. The values of oxidative stress biomarkers did not change in this study, but other measured parameters improved after treatment.


Assuntos
Cannabis , Humanos , Cannabis/efeitos adversos , Cannabis/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico , Creatinina , Estudos Transversais , Antioxidantes , Catalase , Estresse Oxidativo , Bilirrubina , Glutationa , Albuminas , Ureia , Nível de Saúde , Superóxido Dismutase/metabolismo , Fígado/metabolismo
7.
J Oleo Sci ; 72(10): 939-955, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37704445

RESUMO

Hemp seed, the dried fruit of Cannabis sativa L. (Moraceae), has been extensively documented as a folk source of food due to its nutritional and functional value. This study evaluated the antidepressant effect of hemp seed oil (HSO) during its estrogen-like effect in Perimenopausal depression (PMD) rats induced by ovariectomy combined with chronic unpredictable mild stress (OVX-CUMS). Female SD rats (SPF, 10 weeks, sham operated group, ovariectomy (OVX) model group, ovariectomy - chronic unpredictable mild stress (OVX-CUMS) group, HSO + OVX-CUMS group, fluoxetine (FLU) + OVX-CUMS group, n=8) were subjected to treatment with HSO (4.32 g/kg) or fluoxetine (10 mg/kg) for 28 days (20 mL/kg by ig). Sucrose preference test (SPT), forced swimming test (FST), open field test (OFT), estrogen receptor α (ERα) and estrogen receptor ß (ERß) expression, estradiol (E2), follicle stimulating hormone (FSH), luteinizing hormone (LH), cortisol (CORT), adrenocorticotropic hormone (ACTH), corticotropin releasing hormone (CRH), norepinephrine (NE), 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5HIAA) levels are measured to evaluate the function of the hypothalamic-pituitary-ovarian (HPO) and hypothalamic-pituitary-adrenal (HPA) axis. The results showed that OVX-CUMS significantly decrease sucrose preference rate in SPT, increase immobility time in FST and OFT, and decrease movement distance and stand-up times in OFT. HSO treatment significantly improves depression-like behaviors, upregulates the expression of ERα and ERß, improves HPO axis function by increasing E2 levels and decreasing FSH and LH levels, reverses HPA axis hyperactivation by decreasing CORT, ACTH, and CRH levels, and upregulates NE, 5-HT, and 5HIAA levels in model rats. The findings suggested that HSO could improve depression-like behavior in OVX-CUMS rats by regulating HPO/HPA axis function and neurotransmitter disturbance.


Assuntos
Cannabis , Depressão , Ratos , Feminino , Animais , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Sistema Hipotálamo-Hipofisário/metabolismo , Cannabis/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Serotonina/metabolismo , Serotonina/farmacologia , Receptor beta de Estrogênio/metabolismo , Perimenopausa , Ratos Sprague-Dawley , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Sacarose , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
8.
Toxicol In Vitro ; 93: 105667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37625625

RESUMO

BACKGROUND: Breast cancer is the highest incidence of all types of cancer in women, and the cancer metastasis process accounts for a majority of cancer deaths. Two major cannabinoids, Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), from Cannabis sativa are expected to have anti-cancer activity. This study aimed to investigate the effects of THC, CBD, and standardized cannabis extracts (F1, F2, and F3) on migration, invasion, and apoptosis of human breast cancer (MCF-7) cells. METHODS: Cell viability, survival, and apoptosis were determined using the MTT, clonogenic, and nuclear staining assays, respectively, while cancer cell migration and invasion were evaluated by the wound healing, trans-well, and filopodia assays. Western blot analysis was used to find out the mechanisms of the cannabinoids against MCF-7 cells. RESULTS: CBD, THC, and F1 inhibited filopodia formation, migration, and invasion of MCF-7 cells through suppressing the expression of the FAK, Akt, ERK1/2, p38MAPKs, and NF-κB upstream pathways, as well as inhibiting the Rac1/Cdc42 downstream pathways. In addition, CBD significantly inhibited the mTOR pathway. Furthermore, CBD and F1 induced apoptosis in MCF-7 cells via the Bcl-2/caspase-3 pathways. CONCLUSION: These results indicate that THC, CBD, and F1 have great abilities for preventing breast cancer cell metastasis in in vitro experiments.


Assuntos
Neoplasias da Mama , Canabidiol , Canabinoides , Cannabis , Feminino , Humanos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Canabidiol/farmacologia , Canabinoides/farmacologia , Cannabis/metabolismo , Células MCF-7 , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
9.
Plant Sci ; 334: 111780, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390920

RESUMO

Lipoxygenase (LOX) enzymes play a pivotal role in the biosynthesis of oxylipins. The phyto-oxilipins have been implicated in diverse aspects of plant biology, from regulating plant growth and development to providing tolerance against biotic and abiotic stresses. C. sativa is renowned for its bioactive secondary metabolites, namely cannabinoids. LOX route is assumed to be involved in the biosynthesis of hexanoic acid, which is one of the precursors of cannabinoids of C. sativa. For obvious reasons, the LOX gene family deserves thorough investigation in the C. sativa. Genome-wide analysis revealed the presence of 21 LOX genes in C. sativa, which can be further grouped into 13-LOX and 9-LOX depending upon their phylogeny as well as the enzyme activity. The promoter regions of the CsLOX genes were predicted to contain cis-acting elements involved in phytohormones responsiveness and stress response. The qRT-PCR-based expression analysis of 21 LOX genes revealed their differential expression in different plant parts (root, stem, young leaf, mature leaf, sugar leaf, and female flower). The majority of CsLOX genes displayed preferential expression in the female flower, which is the primary site for the biosynthesis of cannabinoids. The highest LOX activity and expression level of a jasmonate marker gene were reported in the female flowers among all the plant parts. Several CsLOX genes were found to be upregulated by MeJA treatment. Based on the transient expression in Nicotiana benthamiana and the development of stable Nicotiana tabacum transgenic lines, we demonstrate that CsLOX13 encodes functional lipoxygenase and play an important role in the biosynthesis of oxylipins.


Assuntos
Canabinoides , Cannabis , Cannabis/genética , Cannabis/metabolismo , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas , Folhas de Planta/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
10.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050032

RESUMO

Cannabidiol (CBD) is a major phytocannabinoid present in Cannabis sativa (Linneo, 1753). This naturally occurring secondary metabolite does not induce intoxication or exhibit the characteristic profile of drugs of abuse from cannabis like Δ9-tetrahydrocannabinol (∆9-THC) does. In contrast to ∆9-THC, our knowledge of the neuro-molecular mechanisms of CBD is limited, and its pharmacology, which appears to be complex, has not yet been fully elucidated. The study of the pharmacological effects of CBD has grown exponentially in recent years, making it necessary to generate frequently updated reports on this important metabolite. In this article, a rationalized integration of the mechanisms of action of CBD on molecular targets and pharmacological implications in animal models and human diseases, such as epilepsy, pain, neuropsychiatric disorders, Alzheimer's disease, and inflammatory diseases, are presented. We identify around 56 different molecular targets for CBD, including enzymes and ion channels/metabotropic receptors involved in neurologic conditions. Herein, we compiled the knowledge found in the scientific literature on the multiple mechanisms of actions of CBD. The in vitro and in vivo findings are essential for fully understanding the polypharmacological nature of this natural product.


Assuntos
Canabidiol , Cannabis , Epilepsia , Animais , Humanos , Canabidiol/farmacologia , Canabidiol/metabolismo , Cannabis/metabolismo , Epilepsia/tratamento farmacológico , Agonistas de Receptores de Canabinoides , Dor , Dronabinol/farmacologia
11.
Chemosphere ; 330: 138728, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080470

RESUMO

Phytoremediation is currently a more environmentally friendly and economical measure for the remediation of cadmium (Cd) contaminated soil. Heavy metal-resistant plant species, Cannabis sativa L. was inoculated with Rhizophagus irregularis to investigate the mechanisms of mycorrhizal in improving the Cd remediation ability of C. sativa. The results showed that after inoculation with R. irregularis, C. sativa root Cd contents increased significantly, and leaf Cd enrichment decreased significantly. At the transcriptional level, R. irregularis down-regulated the expression of the ABC transporter family but up-regulated differentially expressed genes regulating low molecular weight organic acids. The levels of malic acid, citric acid, and lactic acid were significantly increased in the rhizosphere soil, and they were significantly and strongly related to oxidizable Cd concentrations. Then citric acid levels were considerably and positively connected to exchangeable Cd concentrations. Our findings revealed that through regulating the movement of root molecules, arbuscular mycorrhizal fungus enhanced the heavy metal tolerance of C. sativa even more, meanwhile, they changed the Cd chemical forms by altering the composition of low molecular weight organic acids, which in turn affected soil Cd bioavailability.


Assuntos
Cannabis , Glomeromycota , Metais Pesados , Micorrizas , Poluentes do Solo , Micorrizas/metabolismo , Cádmio/metabolismo , Cannabis/genética , Cannabis/metabolismo , Glomeromycota/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Solo , Biodegradação Ambiental , Raízes de Plantas/metabolismo
12.
J Agric Food Chem ; 71(23): 9164-9174, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058363

RESUMO

Hemp seed-derived inhibitors of dipeptidyl peptidase IV (DPP-IV) demonstrate potential as novel therapeutics for diabetes; however, their proteome and genome remain uncharacterized. We used multi-omics technology to mine peptides capable of inhibiting DPP-IV. First, 1261 and 1184 proteins were identified in fresh and dry hemp seeds, respectively. Simulated protease cleavage of dry seed proteins yielded 185,446 peptides for virtual screening to select the potential DPP-IV-inhibiting peptides. Sixteen novel peptides were selected according to their DPP-IV-binding affinity determined via molecular docking. In vitro DPP-IV inhibition assays identified the peptides LPQNIPPL, YPYY, YPW, LPYPY, WWW, YPY, YPF, and WS with half-maximal inhibitory concentration (IC50) values lower than 0.5 mM, which were 0.08 ± 0.01, 0.18 ± 0.03, 0.18 ± 0.01, 0.20 ± 0.03, 0.22 ± 0.03, 0.29 ± 0.02, 0.42 ± 0.03, and 0.44 ± 0.09 mM, respectively. The dissociation constants (KD) of the 16 peptides ranged from 1.50 × 10-4 to 1.82 × 10-7 M. Furthermore, Caco2 and INS-1 cell assays showed that all 16 peptides could efficiently inhibit DPP-IV activity and increase insulin and glucagon-like peptide-1 concentrations. These results demonstrate a well-established and efficient method to isolate food-derived therapeutic DPP-IV-inhibiting peptides.


Assuntos
Cannabis , Inibidores da Dipeptidil Peptidase IV , Humanos , Simulação de Acoplamento Molecular , Cannabis/metabolismo , Dipeptidil Peptidase 4/química , Multiômica , Células CACO-2 , Inibidores da Dipeptidil Peptidase IV/química , Peptídeos/química , Sementes/metabolismo
13.
Mol Biol Rep ; 50(5): 4039-4047, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36853473

RESUMO

BACKGROUND: Prostate cancer is the second most frequently occurring carcinoma in males worldwide and one of the leading causes of death in men around the world. Recent studies estimate that over 1.4 million males are diagnosed with prostate cancer on an annual basis, with approximately 375,000 succumbing to the disease annually. With current treatments continuing to show severe side effects, there is a need for new treatments. In this study we looked at the effect of cannabis sativa extract, cannabidiol and cisplatin on prostate cancer cells, PC3. METHODS: In addressing the above questions, we employed the MTT assay to measure the antiproliferative effect on PC3 cells following treatment with varying concentrations of Cannabis sativa extract, cisplatin and cannabidiol. xCELLigence was also used to confirm the IC50 activity in which cells were grown in a 16 well plate coated with gold and monitor cell attachment. Caspase 3/7 activity was also measured using 96 well-plate following treatment. Western-blot and qRT-PCR was also used to measure the gene expression of tumour suppressor genes, p53, Bax and Bcl2. Animal studies were employed to measure the growth of PC3-mouse derived cancer to evaluate the effect of compounds in vivo. RESULTS: From the treatment with varying concentrations of Cannabis sativa extract, cannabidiol and cisplatin, we have observed that the three compounds induced antiproliferation of PC3 cancer cell lines through the activation of caspase 3/7 activity. We also observed induction of apoptosis in these cells following silencing of retinoblastoma binding protein 6 (RBBP6), with upregulation of p53 and bax mRNA expression, and a reduction in Bcl2 gene expression. The growth of tumours in the mouse models were reduced following treatment with cisplatin and cannabidiol. CONCLUSION: We demonstrated that cannabidiol is a viable therapy to treat prostate cancer cells, in combination with silencing of RBBP6. This suggests that cannabidiol rather Cannabis sativa extract may play an important role in reducing cancer progression.


Assuntos
Canabidiol , Cannabis , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Cannabis/metabolismo , Cisplatino/metabolismo , Células PC-3 , Canabidiol/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/genética , Xenoenxertos , Caspase 3/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas de Ligação a DNA/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
WIREs Mech Dis ; 15(4): e1602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36750231

RESUMO

Cannabis sativa (cannabis) has been used as a therapeutic treatment for centuries treating various diseases and disorders. However, racial propaganda led to the criminalization of cannabis in the 1930s preventing opportunities to explore marijuana in therapeutic development. The increase in recreational use of cannabis further grew concern about abuse, and lead to further restrictions and distribution of cannabis in the 1970s when it was declared to be a Schedule I drug in the USA. In the late 1990s in some states, legislation assisted in legalizing the use of cannabis for medical purposes under physician supervision. As it has been proven that cannabinoids and their receptors play an essential role in the regulation of the physiological and biological processes in our bodies. The endocannabinoid system (ECS) is the complex that regulates the cell-signaling system consisting of endogenous cannabinoids (endocannabinoids), cannabinoid receptors, and the enzymes responsible for the synthesis and degradation of the endocannabinoids. The ECS along with phytocannabinoids and synthetic cannabinoids serves to be a beneficial therapeutic target in treating diseases as they play roles in cell homeostasis, cell motility, inflammation, pain-sensation, mood, and memory. Cannabinoids have been shown to inhibit proliferation, metastasis, and angiogenesis and even restore homeostasis in a variety of models of cancer in vitro and in vivo. Cannabis and its receptors have evolved into a therapeutic treatment for cancers. This article is categorized under: Cancer > Molecular and Cellular Physiology.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Neoplasias , Humanos , Receptores de Canabinoides/metabolismo , Endocanabinoides/metabolismo , Canabinoides/uso terapêutico , Cannabis/metabolismo , Agonistas de Receptores de Canabinoides/uso terapêutico , Neoplasias/tratamento farmacológico , Alucinógenos/uso terapêutico
15.
Food Funct ; 14(4): 2096-2111, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734470

RESUMO

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease with few therapeutic options available currently. Hemp seed oil extracted from the seeds of hemp (Cannabis sativa L.) has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, little is known about the beneficial effects and molecular mechanisms of hemp seed oil on NASH. Here, the hepatoprotective effects of hemp seed oil on methionine-choline-deficient (MCD) diet-induced NASH in C57BL/6 mice were explored via integration of transcriptomics and metabolomics. Hemp seed oil could improve hepatic steatosis, inflammation and fibrosis in mice with MCD diet-induced NASH. In a nuclear magnetic resonance (NMR)-based metabonomic study, the hepatic and urinary metabolic profiles of mice supplemented with hemp seed oil showed a tendency to recover to healthy controls compared to those of NASH mice. Eight potential biomarkers associated with NASH in both liver tissue and urine were restored to near normal levels by administration of hemp seed oil. The proposed pathways were mainly involved in pyrimidine metabolism, one-carbon metabolism, amino acid metabolism, glycolysis and the tricarboxylic acid (TCA) cycle. Hepatic transcriptomics based on Illumina RNA-Seq sequencing showed that hemp seed oil exerted anti-NASH activities by regulating multiple signaling pathways, e.g., downregulation of the TNF signaling pathway, the IL-17 signaling pathway, the MAPK signaling pathway and the NF-κB signaling pathway, which played a pivotal role in the pathogenesis of NASH. In particular, integration of metabonomic and transcriptomic results suggested that hemp seed oil could attenuate NASH-related liver fibrosis by inhibition of glutaminolysis. These results provided new insights into the hepatoprotective effects of hemp seed oil against MCD diet-induced NASH and hemp seed oil might have potential as an effective therapy for NASH.


Assuntos
Cannabis , Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Cannabis/metabolismo , Metionina/metabolismo , Colina/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Dieta , Racemetionina/metabolismo , Racemetionina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia
16.
Chem Res Toxicol ; 36(2): 157-161, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36716352

RESUMO

Humans are exposed to furan, a toxicant and possible human carcinogen, through multiple sources including diet and tobacco smoke. The urinary metabolites of furan are derived from the reaction of its toxic metabolite with protein nucleophiles and are biomarkers of exposure and potential harm. An established isotopic dilution liquid-chromatography mass spectrometry method was used to measure these biomarkers in urine from users of e-cigarettes, cannabis, and/or combustible tobacco with/without reduced nicotine levels. Amounts of furan mercapturic acid metabolites were higher in these individuals relative to nonsmokers, indicating that they may be at risk for potential furan-derived toxicities.


Assuntos
Cannabis , Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Humanos , Nicotiana/metabolismo , Cannabis/metabolismo , Furanos/metabolismo , Biomarcadores/urina
17.
Immunol Cell Biol ; 101(2): 156-170, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36510483

RESUMO

Δ9 -Tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) are cannabinoids found in Cannabis sativa. While research supports cannabinoids reduce inflammation, the consensus surrounding receptor(s)-mediated effects has yet to be established. Here, we investigated the receptor-mediated properties of Δ9 -THC and CBD on alveolar macrophages, an important pulmonary immune cell in direct contact with cannabinoids inhaled by cannabis smokers. MH-S cells, a mouse alveolar macrophage cell line, were exposed to Δ9 -THC and CBD, with and without lipopolysaccharide (LPS). Outcomes included RNA-sequencing and cytokine analysis. Δ9 -THC and CBD alone did not affect the basal transcriptional response of MH-S cells. In response to LPS, Δ9 -THC and CBD significantly reduced the expression of numerous proinflammatory cytokines including tumor necrosis factor-alpha, interleukin (IL)-1ß and IL-6, an effect that was dependent on CB2 . The anti-inflammatory effects of CBD but not Δ9 -THC were mediated through a reduction in signaling through nuclear factor-kappa B and extracellular signal-regulated protein kinase 1/2. These results suggest that CBD and Δ9 -THC have potent immunomodulatory properties in alveolar macrophages, a cell type important in immune homeostasis in the lungs. Further investigation into the effects of cannabinoids on lung immune cells could lead to the identification of therapies that may ameliorate conditions characterized by inflammation.


Assuntos
Canabidiol , Canabinoides , Cannabis , Camundongos , Animais , Canabidiol/farmacologia , Dronabinol/farmacologia , Macrófagos Alveolares/metabolismo , Lipopolissacarídeos/farmacologia , Cannabis/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo
18.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232668

RESUMO

Purified cannabinoids have been shown to prevent proliferation and induce apoptosis in colorectal carcinoma cell lines. To assess the cytotoxic effect of cannabinoid extracts and purified cannabinoids on both colorectal polyps and normal colonic cells, as well as their synergistic interaction. Various blends were tested to identify the optimal synergistic effect. Methods: Biopsies from polyps and healthy colonic tissue were obtained from 22 patients undergoing colonic polypectomies. The toxicity of a variety of cannabinoid extracts and purified cannabinoids at different concentrations was evaluated. The synergistic effect of cannabinoids was calculated based on the cells' survival. Isolated cannabinoids illustrated different toxic effects on the viability of cells derived from colorectal polyps. THC-d8 and THC-d9 were the most toxic and exhibited persistent toxicity in all the polyps tested. CBD was more toxic to polypoid cells in comparison to normal colonic cells at a concentration of 15 µM. The combinations of the cannabinoids CBDV, THCV, CBDVA, CBCA, and CBGA exhibited a synergistic inhibitory effect on the viability of cells derived from colon polyps of patients. Isolated cannabinoid compounds interacted synergistically against colonic polyps, and some also possessed a differential toxic effect on polyp and adjacent colonic tissue, suggesting possible future therapeutic value.


Assuntos
Antineoplásicos , Canabidiol , Canabinoides , Cannabis , Pólipos do Colo , Neoplasias Colorretais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Canabinoides/farmacologia , Cannabis/metabolismo , Pólipos do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Dronabinol/farmacologia , Humanos , Extratos Vegetais/farmacologia
20.
J Med Food ; 25(4): 408-417, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35438555

RESUMO

With growing scientific interest in cannabinoids, a number of studies have focused on biological activities of cannabidiol and its major source, inflorescence and leaf of Cannabis sativa plant. However, recent analytical chemistry studies have reported the pharmacological significance of non-cannabinoid phytochemicals that are rich in other parts of the plant. Thus, the objective of this study was to investigate the anti-inflammatory effects of Cannabis extracts from plant parts of shelled seeds, roots, and stems containing no or trace amounts of cannabinoids. Among water and ethanol extracts from three plant parts, Cannabis stem ethanol extract (CSE) had the most potent free radical scavenging activities and suppressive effects on the production of nitric oxide from macrophages. In further studies using macrophages, CSE effectively inhibited lipopolysaccharide (LPS)-induced inflammatory responses by suppressing proinflammatory cytokines, nuclear factor-κB and mitogen-activated protein kinase phosphorylations, and cellular accumulation of reactive oxygen species. Moreover, in mice exposed to LPS, CSE reduced tumor necrosis factor-α production and normalized activations of proapoptotic proteins in the liver, kidney, and spleen. Gas chromatography/mass spectrometry analyses of CSE showed several active compounds that might be associated with its antioxidant and anti-inflammatory effects. Collectively, these findings indicate that CSE counteracts LPS-induced acute inflammation and apoptosis, suggesting pharmaceutical applications for the stem part of C. sativa.


Assuntos
Canabinoides , Cannabis , Animais , Anti-Inflamatórios/uso terapêutico , Canabinoides/efeitos adversos , Cannabis/química , Cannabis/metabolismo , Etanol/efeitos adversos , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , NF-kappa B/genética , Óxido Nítrico/metabolismo , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA