Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Jpn J Clin Oncol ; 54(4): 386-394, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38251773

RESUMO

Transient receptor potential cation channel subfamily V member 1 (TRPV1) was identified using capsaicin, a pungent compound that is present in red pepper. The activation of TRPV1 induces an influx of calcium ions into cells and causes excitation of sensory neurons, associating with thermal sensing, sweating and pain. TRPV1 is also identified in various types of cancer cells. The expression of TRPV1 in cancer cells depends on the type of cancer and the stage of the disease. Therefore, TRPV1 has been considered a potential target of medicinal chemistry for drug development, and blocking its activation may lead to cancer therapy and pain relief. However, the details of the pathophysiological function of TRPV1 in vivo are still unclear. To explore practical use of TRPV1, we focused on positron emission tomography imaging and developed a 11C-radiolabeled tracer to visualize TRPV1.


Assuntos
Tomografia por Emissão de Pósitrons , Canais de Cátion TRPV , Humanos , Capsaicina/metabolismo , Dor/tratamento farmacológico , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
2.
J Insect Physiol ; 152: 104597, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072185

RESUMO

Insects' thermoregulatory processes depend on thermosensation and further processing of thermal information in the nervous system. It is commonly known that thermosensation involves thermoreceptors, including members of the TRP receptor family, but the involvement of neurotransmitters in thermoregulatory pathways remains unstudied. We conducted test to determine whether octopamine, a biogenic amine that acts as a neurotransmitter and neurohormone in insects, is involved in TRP-induced thermoregulatory responses in Periplaneta americana. We used capsaicin, an activator of the heat-sensitive TRP channel, Painless, to induce thermoregulatory response in cockroaches. Then, we evaluated the behavioural (thermal preferences and grooming), physiological (heart rate) and biochemical responses of insects to capsaicin, octopamine and phentolamine - octopaminergic receptor blocker. Capsaicin, similar to octopamine, increased cockroaches' grooming activity and heart rate. Moreover, octopamine level and protein kinase A (PKA) activity significantly increased after capsaicin treatment. Blocking octopaminergic receptors with phentolamine diminished cockroaches' response to capsaicin - thermoregulatory behaviour, grooming and heart rate were abolished. The results indicate that octopamine is a neurotransmitter secreted in insects after the activation of heat receptors.


Assuntos
Baratas , Periplaneta , Animais , Periplaneta/fisiologia , Capsaicina/metabolismo , Capsaicina/farmacologia , Octopamina/farmacologia , Octopamina/metabolismo , Fentolamina/farmacologia , Baratas/metabolismo , Neurotransmissores/metabolismo
3.
Aging (Albany NY) ; 15(21): 11845-11859, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916995

RESUMO

BACKGROUND: Capsaicin (CAP), a frequently occurring alkaloid component found in spicy peppers, has demonstrated therapeutic potential against tumors, metabolic disease, and cardiovascular disorders. Doxorubicin (DOX), a widely used anthracycline drug in chemotherapy, is notorious for its cardiotoxicity. This study aimed to investigate the potential of CAP in mitigating DOX toxicity in mouse hearts and H9C2 cells, as well as to explore the underlying mechanisms. METHODS: In our study, we conducted experiments on both mice and H9C2 cells. The mice were divided into four groups and treated with different substances: normal saline, CAP, DOX and CAP+DOX. We evaluated the induction of ferroptosis by DOX and the remission of ferroptosis by CAP using various methods, including echocardiography, Hematoxylin and Eosin (H&E) staining, Masson's trichrome staining, and determination of ferroptosis metabolites, genes and proteins. Additionally, we employed RNA-seq to identify the inhibitory effect of CAP on DOX-induced myocardial apoptosis, which was further confirmed through western blotting. Similar approaches were applied to H9C2 cells, yielding reliable results. RESULTS: Our study demonstrated that treatment with CAP improved the survival rate of DOX-treated mice and reduced myocardial injury. Mechanistically, CAP downregulated transferrin (Trf) and upregulated solute carrier family 40 member 1 (SLC40A1), which helped maintain iron levels in the cells and prevent ferroptosis. Furthermore, CAP inhibited DOX-induced apoptosis by modulating the phosphoinositide 3-kinase (PI3K)- protein kinase B (Akt) signaling pathway. Specifically, CAP activated the PI3K-Akt pathway and regulated downstream BCL2 and BAX to mitigate DOX-induced apoptosis. Therefore, our results suggest that CAP effectively alleviates acute myocardial injury induced by DOX. CONCLUSION: Our findings demonstrate that CAP has the potential to alleviate DOX-induced ferroptosis by regulating iron homeostasis. Additionally, it can inhibit DOX-induced apoptosis by activating PI3K-Akt signaling pathway.


Assuntos
Traumatismos Cardíacos , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Capsaicina/metabolismo , Capsaicina/farmacologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Doxorrubicina/toxicidade , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/tratamento farmacológico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/patologia , Apoptose , Homeostase , Ferro/metabolismo
4.
Environ Geochem Health ; 45(12): 9653-9667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794280

RESUMO

Respiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.


Assuntos
Asma , Fuligem , Camundongos , Animais , Fuligem/toxicidade , Umidade , Capsaicina/metabolismo , Asma/induzido quimicamente , Pulmão , Vitamina E/farmacologia , Vitamina E/metabolismo
5.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511574

RESUMO

Tear film hyperosmolarity induces dry eye syndrome (DES) through transient receptor potential vanilloid type 1 (TRPV1) activation. L-carnitine is a viable therapeutic agent since it protects against this hypertonicity-induced response. Here, we investigated whether L-carnitine inhibits TRPV1 activation by blocking heat- or capsaicin-induced increases in Ca2+ influx or hyperosmotic stress-induced cell volume shrinkage in a human corneal epithelial cell line (HCE-T). Single-cell fluorescence imaging of calcein/AM-loaded cells or fura-2/AM-labeled cells was used to evaluate cell volume changes and intracellular calcium levels, respectively. Planar patch-clamp technique was used to measure whole-cell currents. TRPV1 activation via either capsaicin (20 µmol/L), hyperosmolarity (≈450 mosmol/L) or an increase in ambient bath temperature to 43 °C induced intracellular calcium transients and augmented whole-cell currents, whereas hypertonicity induced cell volume shrinkage. In contrast, either capsazepine (10 µmol/L) or L-carnitine (1-3 mmol/L) reduced all these responses. Taken together, L-carnitine and capsazepine suppress hypertonicity-induced TRPV1 activation by blocking cell volume shrinkage.


Assuntos
Antineoplásicos , Carnitina , Humanos , Carnitina/farmacologia , Carnitina/metabolismo , Capsaicina/farmacologia , Capsaicina/metabolismo , Cálcio/metabolismo , Antineoplásicos/metabolismo , Células Epiteliais/metabolismo , Canais de Cátion TRPV/metabolismo
6.
Molecules ; 28(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241977

RESUMO

Chili is one of the world's most widely used horticultural products. Many dishes around the world are prepared using this fruit. The chili belongs to the genus Capsicum and is part of the Solanaceae family. This fruit has essential biomolecules such as carbohydrates, dietary fiber, proteins, and lipids. In addition, chili has other compounds that may exert some biological activity (bioactivities). Recently, many studies have demonstrated the biological activity of phenolic compounds, carotenoids, and capsaicinoids in different varieties of chili. Among all these bioactive compounds, polyphenols are one of the most studied. The main bioactivities attributed to polyphenols are antioxidant, antimicrobial, antihyperglycemic, anti-inflammatory, and antihypertensive. This review describes the data from in vivo and in vitro bioactivities attributed to polyphenols and capsaicinoids of the different chili products. Such data help formulate functional foods or food ingredients.


Assuntos
Capsicum , Capsicum/metabolismo , Capsaicina/farmacologia , Capsaicina/metabolismo , Frutas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fenóis/metabolismo , Polifenóis/farmacologia , Polifenóis/metabolismo
7.
Life Sci ; 324: 121704, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075945

RESUMO

BACKGROUND & AIM: Obesity is a worldwide epidemic leading to decreased quality of life, higher medical expenses and significant morbidity. Enhancing energy expenditure and substrate utilization in adipose tissues through dietary constituents and polypharmacological approaches is gaining importance for the prevention and therapeutics of obesity. An important factor in this regard is Transient Receptor Potential (TRP) channel modulation and resultant activation of "brite" phenotype. Various dietary TRP channel agonists like capsaicin (TRPV1), cinnamaldehyde (TRPA1), and menthol (TRPM8) have shown anti-obesity effects, individually and in combination. We aimed to determine the therapeutic potential of such combination of sub-effective doses of these agents against diet-induced obesity, and explore the involved cellular processes. KEY FINDINGS: The combination of sub-effective doses of capsaicin, cinnamaldehyde and menthol induced "brite" phenotype in differentiating 3T3-L1 cells and subcutaneous white adipose tissue of HFD-fed obese mice. The intervention prevented adipose tissue hypertrophy and weight gain, enhanced the thermogenic potential, mitochondrial biogenesis and overall activation of brown adipose tissue. These changes observed in vitro as well as in vivo, were linked to increased phosphorylation of kinases, AMPK and ERK. In the liver, the combination treatment enhanced insulin sensitivity, improved gluconeogenic potential and lipolysis, prevented fatty acid accumulation and enhanced glucose utilization. SIGNIFICANCE: We report on the discovery of therapeutic potential of TRP-based dietary triagonist combination against HFD-induced abnormalities in metabolic tissues. Our findings indicate that a common central mechanism may affect multiple peripheral tissues. This study opens up avenues of development of therapeutic functional foods for obesity.


Assuntos
Capsaicina , Mentol , Animais , Camundongos , Capsaicina/farmacologia , Capsaicina/metabolismo , Mentol/metabolismo , Mentol/farmacologia , Mentol/uso terapêutico , Qualidade de Vida , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Fenótipo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Camundongos Endogâmicos C57BL
8.
Am J Chin Med ; 51(4): 1041-1066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120706

RESUMO

Metastasis of osteosarcoma is an important adverse factor affecting patients' survival, and cancer stemness is the crucial cause of distant metastasis. Capsaicin, the main component of pepper, has been proven in our previous work to inhibit osteosarcoma proliferation and enhance its drug sensitivity to cisplatin at low concentrations. This study aims to further explore the anti-osteosarcoma effect of capsaicin at low concentrations (100[Formula: see text][Formula: see text]M, 24[Formula: see text]h) on stemness and metastasis. The stemness of human osteosarcoma (HOS) cells was decreased significantly by capsaicin treatment. Additionally, the capsaicin treatment's inhibition of cancer stem cells (CSCs) was dose-dependent on both sphere formation and sphere size. Meanwhile, capsaicin inhibited invasion and migration, which might be associated with 25 metastasis-related genes. SOX2 and EZH2 were the most two relevant stemness factors for capsaicin's dose-dependent inhibition of osteosarcoma. The mRNAsi score of HOS stemness inhibited by capsaicin was strongly correlated with most metastasis-related genes of osteosarcoma. Capsaicin downregulated six metastasis-promoting genes and up-regulated three metastasis-inhibiting genes, which significantly affected the overall survival and/or disease-free survival of patients. In addition, the CSC re-adhesion scratch assay demonstrated that capsaicin inhibited the migration ability of osteosarcoma by inhibiting its stemness. Overall, capsaicin exerts a significant inhibitory effect on the stemness expression and metastatic ability of osteosarcoma. Moreover, it can inhibit the migratory ability of osteosarcoma by suppressing its stemness via downregulating SOX2 and EZH2. Therefore, capsaicin is expected to be a potential drug against osteosarcoma metastasis due to its ability to inhibit cancer stemness.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Capsaicina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/farmacologia
9.
PLoS One ; 18(2): e0281191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787302

RESUMO

We showed previously that capsaicin, an active compound of chili peppers, can inhibit platelet-derived growth factor-induced proliferation in primary rat vascular smooth muscle cells (VSMCs). The inhibition of BrdU incorporation by capsaicin in these cells was revoked by BCTC, which might be explained by a role of TRPV1 in VSMCs proliferation. To further pursue the hypothesis of a TRPV1-dependent effect of capsaicin, we investigated TRPV1 expression and function. Commercially available antibodies against two different TRPV1 epitopes (N-terminus and C-terminus) were rendered invalid in detecting TRPV1, as shown: i) in western blot experiments using control lysates of TRPV1-expressing (PC-12 and hTRPV1 transfected HEK293T) and TRPV1-downregulated (CRISPR/Cas gene edited A10) cells, and ii) by substantial differences in staining patterns between the applied antibodies using fluorescence confocal microscopy. The TRPV1 agonists capsaicin, resiniferatoxin, piperine and evodiamine did not increase intracellular calcium levels in primary VSMCs and in A10 cells. Using RT qPCR, we could detect a rather low TRPV1 expression in VSMCs at the mRNA level (Cp value around 30), after validating the primer pair in NGF-stimulated PC-12 cells. We conclude that rat vascular smooth muscle cells do not possess canonical TRPV1 channel activity, which could explain the observed antiproliferative effect of capsaicin.


Assuntos
Capsaicina , Músculo Liso Vascular , Ratos , Humanos , Animais , Capsaicina/farmacologia , Capsaicina/metabolismo , Músculo Liso Vascular/metabolismo , Células HEK293 , Aorta/metabolismo , Canais de Cátion TRPV/metabolismo , Células Cultivadas , Cálcio/metabolismo
10.
Lipids Health Dis ; 22(1): 17, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717943

RESUMO

BACKGROUND: Nonalcoholic fatty liver, or NAFLD, is the most common chronic liver ailment. It is characterized by excessive fat deposition in hepatocytes of individuals who consume little or no alcohol and are unaffected by specific liver damaging factors. It is also associated with extrahepatic manifestations such as chronic kidney disease, cardiovascular disease, and sleep apnea. The global burden of NAFLD is increasing at an alarming rate. However, no pharmacologically approved drugs against NAFLD are available owing to their complex pathophysiology. Genome-wide association studies have uncovered SNPs in the fat mass and obesity-associated gene (FTO) that are robustly associated with obesity and higher BMI. The prevalence of NAFLD increases in parallel with the increasing prevalence of obesity. Since FTO might play a crucial role in NAFLD development, the current study identified five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. METHODS: This study aims to identify potentially deleterious nonsynonymous SNPs (ns-SNPs) employing various in silico tools. Additionally, molecular modeling approaches further studied the structural changes caused by identified SNPs. Moreover, molecular dynamics studies finally investigated the binding potentials of the phytochemicals resveratrol, rosmarinic acid, and capsaicin with different mutant forms of FTO. RESULTS: The current investigation has five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. The present study identified five nsSNPs of the human gene FTO, Gly103Asp, Arg96Pro, Tyr295Cys, and Arg322Gln, with an apparent connection to the disease condition. Modulation of demethylation activity by phytomolecule scanning explains the hepatoprotective action of molecules. The current investigation also suggested that predicted mutations did not affect the binding ability of three polyphenols: rosamarinic acid, resveratrol, and capsaicin. CONCLUSION: This study showed that the predicted mutations in FTO did not affect the binding of three polyphenols. Thus, these three molecules can significantly aid drug development against FTO and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Resveratrol/farmacologia , Estudo de Associação Genômica Ampla , Capsaicina/metabolismo , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
11.
Parasit Vectors ; 15(1): 458, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510333

RESUMO

BACKGROUND: Mosquito-borne diseases threaten human health, but mosquito control faces various challenges, such as resistance to chemical insecticides. Thus, there is an urgent need for more effective and environment-friendly control agents. Capsaicin can downregulate the mTOR signaling pathway of tumor cells. The TOR signaling pathway can mediate the expression of vitellogenin (Vg) to regulate the fecundity of insects. Whether capsaicin has the potential to inhibit fecundity of mosquitoes by regulating TOR pathway and Vg expression is currently unclear. METHODS: Anopheles stephensi were fed with blood of mice administered capsaicin by gavage or sugar containing capsaicin followed by a blood feeding with normal mice. Then, the engorged female mosquitoes were tubed individually and underwent oviposition. The eggs and individuals in the subsequent development stages, including larvae, pupae, and emerging adults, were counted and compared between the capsaicin treatment and control groups. Additionally, total RNA and protein were extracted from the engorged mosquitoes at 24 h post blood feeding. Real-time PCR and western blot were performed to detect the transcriptional level and protein expression of the key fecundity-related molecules of mosquitoes. Finally, TOR signaling pathway was inhibited via rapamycin treatment, and changes in fecundity and the key molecule transcription and protein expression levels were examined to verify the role of TOR signaling pathway in the effect of capsaicin on mosquito fecundity. RESULTS: The laid and total eggs (laid eggs plus retained eggs) of An. stephensi were significantly reduced by feeding on the blood of capsaicin-treated mice (P < 0.01) or capsaicin-containing sugar (P < 0.01) compared with those in the control group. Moreover, the transcription and protein expression or phosphorylation levels of fecundity-related molecules, such as Akt, TOR, S6K, and Vg, were significantly decreased by capsaicin treatment. However, the effects disappeared between control group and CAP group after the TOR signaling pathway was inhibited by rapamycin. CONCLUSIONS: Capsaicin can decrease the fecundity of An. stephensi by inhibiting the TOR signaling pathway. These data can help us to not only understand the effect of capsaicin on the reproductive ability of An. stephensi and its underlying mechanism, but also develop new efficient, safe, and pollution-free mosquito vector control agents.


Assuntos
Anopheles , Malária , Feminino , Humanos , Camundongos , Animais , Anopheles/fisiologia , Mosquitos Vetores , Sirolimo , Capsaicina/metabolismo , Transdução de Sinais , Vitelogeninas/metabolismo , Açúcares
12.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499530

RESUMO

Lipoxygenases (LOXs) catalyze the insertion of molecular oxygen into polyunsaturated fatty acids (PUFA) such as linoleic and linolenic acids, being the first step in the biosynthesis of a large group of biologically active fatty acid (FA)-derived metabolites collectively named oxylipins. LOXs are involved in multiple functions such as the biosynthesis of jasmonic acid (JA) and volatile molecules related to the aroma and flavor production of plant tissues, among others. Using sweet pepper (Capsicum annuum L.) plants as a model, LOX activity was assayed by non-denaturing polyacrylamide gel electrophoresis (PAGE) and specific in-gel activity staining. Thus, we identified a total of seven LOX isozymes (I to VII) distributed among the main plant organs (roots, stems, leaves, and fruits). Furthermore, we studied the FA profile and the LOX isozyme pattern in pepper fruits including a sweet variety (Melchor) and three autochthonous Spanish varieties that have different pungency levels (Piquillo, Padrón, and Alegría riojana). It was observed that the number of LOX isozymes increased as the capsaicin content increased in the fruits. On the other hand, a total of eight CaLOX genes were identified in sweet pepper fruits, and their expression was differentially regulated during ripening and by the treatment with nitric oxide (NO) gas. Finally, a deeper analysis of the LOX IV isoenzyme activity in the presence of nitrosocysteine (CysNO, a NO donor) suggests a regulatory mechanism via S-nitrosation. In summary, our data indicate that the different LOX isozymes are differentially regulated by the capsaicin content, fruit ripening, and NO.


Assuntos
Capsicum , Capsicum/metabolismo , Frutas/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Óxido Nítrico/metabolismo , Capsaicina/metabolismo , Regulação da Expressão Gênica de Plantas
13.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36222136

RESUMO

Capsicum chinense is the chilli species containing the highest amount of capsaicin, and is an important traditional spice crop of Northeast India. Capsaicinoids derived from C. chinense are used in anticancer and anti-obesity treatments, as temperature regulators, in pain therapy, and as antioxidants. The current production and yield are very low due to the lack of organized cultivation and scientific inputs, and various plant diseases. Synthetic pesticides are frequently applied to boost yields, which creates potential risks to the environment, crops, and humans. The use of plant growth-promoting rhizobacteria is an alternative strategy in crop disease management to reduce the dependency on agrochemicals, which have detrimental effects on the environment. Lysinibacillus xylanilyticus t26 isolated from the C. chinense rhizosphere has shown good prospects in plant growth promotion and biocontrol. It showed strong antagonistic activity against Pythium ultimum ITCC 1650, Rhizoctonia solani ITCC 6491, and Fusarium oxysporum ITCC 6246. The draft genome sequencing of L. xylanilyticus t26 yielded a total of 5.69 Mbp with a G+C content of 36.80%. Genome analysis revealed that L. xylanilyticus t26 is very similar to L. xylanilyticus MH683160.1, and is phylogenetically related to L. xylanilyticus IBBPo7. Bioinformatics analysis predicted that it harbored type III polyketides, non-ribosomal peptides, terpenes, and lantibiotics including cerecidin, bacteriocins, siderophores, and thiopeptides, which are important traits of rhizobacteria for the utilization of minerals and to compete with other microbes for food. The strain t26 is a potential biocontrol agent for soil-borne fungal diseases. In this study, we derived the possible siderophore production pathways through the analysis of L. xylanilyticus t26 draft genome and plant growth response bioassays. The availability of genome data provides information that this draft genome harbored a siderophore BGC, which is 33% similar to petrobactin.


Assuntos
Bacteriocinas , Capsicum , Praguicidas , Policetídeos , Agroquímicos/metabolismo , Bacillaceae , Bactérias/genética , Bacteriocinas/metabolismo , Capsaicina/metabolismo , Capsicum/metabolismo , Humanos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Policetídeos/metabolismo , Rizosfera , Sideróforos , Solo , Microbiologia do Solo , Terpenos/metabolismo
14.
Redox Biol ; 56: 102460, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088760

RESUMO

BACKGROUND: Oxidative stress and the resultant hyperpermeability play a vital role in the pathogenesis of diabetic retinopathy (DR). Poldip2 has been implicated in H2O2 production, but the effects of capsaicin on poldip2 have not been reported. METHODS: Diabetic Sprague-Dawley (SD) rats induced with STZ were treated with capsaicin or AAV9-poldip2-shRNA, and human retinal microvascular endothelial cells (HRMECs) were treated with capsaicin or poldip2 siRNA. RESULTS: Current data indicated that the expression of PPARγ, poldip2, Nox4, VCAM-1, HIF-1α, and VEGF increased in rat retinas with DR and in HRMECs treated with high glucose. The production of ROS or H2O2 in the tissues, serum, and cells increased, and the paracellular permeability of cultured HRMECs with high glucose significantly increased. In addition, overt hyperpermeability of retinal microvessels and increased retinal neovascularization in diabetic rats were observed. However, capsaicin treatment inhibited these increases and suppressed the expression of PPARγ by enhancing its phosphorylation and ubiquitination in the retinas of DR rats. Poldip2 knockdown in HRMECs or its silencing in the retina of DR rats concomitantly led to reduced levels of Nox4, VCAM-1, HIF-1α, VEGF, ROS, and H2O2, and the paracellular permeability of HRMECs or the hyperpermeability of retinal microvessels in diabetic rat retinas decreased. Similarly, after PPARγ knockdown in HRMECs, poldip2, Nox4, HIF-1α, VEGF, ROS, and H2O2 decreased, and the monolayer paracellular permeability was reduced accordingly. CONCLUSION: Capsaicin may ameliorate diabetic retinopathy by activating TRPV1 and suppressing the PPARγ-poldip2-Nox4 pathway.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Capsaicina/metabolismo , Capsaicina/farmacologia , Proteínas de Transporte , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Proteínas Nucleares , Estresse Oxidativo , PPAR gama/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Phytochemistry ; 202: 113365, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35940425

RESUMO

Capsaicin widely exists in the Capsicum genus (e.g., hot peppers) and is commonly used as a food additive or medicinal material. In this work, microbial transformation of capsaicin was performed based on the three cultivated human intestinal fungi. Fourteen metabolites were obtained, and their chemical structures were elucidated by spectroscopic data analysis, including 13 compounds with undescribed structures. Hydroxylation, lactylation, succinylation, citric acylation, and acetylation were observed for these microbial metabolites derived from capsaicin, which indicated diverse catalytic characteristics of human intestinal fungi. In an in vitro bioassay, four metabolites and capsaicin inhibited the activity of lysine-specific demethylase 1 (LSD1) with a more than 70% inhibitory rate at 10 µM. In particular, 9,5'-dihydroxycapsaicin displayed the strongest inhibitory effect with an IC50 of 1.52 µM. Therefore, capsaicin analogs displayed potential application as LSD1 inhibitors against the invasion and migration of cancer cells.


Assuntos
Capsaicina , Capsicum , Capsaicina/metabolismo , Capsaicina/farmacologia , Capsicum/química , Capsicum/metabolismo , Capsicum/microbiologia , Fungos/metabolismo , Histona Desmetilases/metabolismo , Humanos , Lisina/metabolismo
16.
Metab Brain Dis ; 37(7): 2291-2304, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35776390

RESUMO

Glia are essential neurons of the immune system in the central nervous system. The effective mission of glia depends on their activation, release of cytokines, and oxidative cleaning of debris material from neuronal cells. Accumulating evidence indicates that microglia activation-induced oxidative stress via the activation Ca2+ permeable TRPV1 channel has an essential role in the pathophysiology of neurodegenerative diseases. However, there is scarce information on the cytosolic localization of TRPV1 and the induction of oxidative cytotoxicity in the glia. Hence, we investigated the interactions between cytosolic TRPV1 expression levels and oxidative neurotoxicity in the BV2, C8-D1A, N9 glia, and DBTRG glioblastoma cells. We observed TRPV1 expression in the perinuclear area but not in the cell membrane in the BV2, C8-D1A, and N9 cells. Hence, we observed no activation of TRPV1 on the increase of mitochondrial free reactive oxygen species (mROS) and apoptosis in the cells after the capsaicin stimulation. However, we observed TRPV1 channel expression in the positive control (DBTRG) cell membranes. Hence, the Ca2+ influx, TRPV1 current density, apoptosis, and mROS levels were increased in the DBTRG cells after the capsaicin stimulation, although their levels were diminished by the treatment of the TRPV1 blocker (capsazepine). In conclusion, the presence of TRPV1 in the cell membrane of DBTRG cells induced excessive generation of mROS and apoptosis actions, although the presence of TRPV1 in the perinuclear area did not cause the actions. It seems that there is a subtype of TRPV1 in the perinuclear area, and it is not activated by the capsaicin.


Assuntos
Capsaicina , Canais de Cátion TRPM , Capsaicina/farmacologia , Capsaicina/metabolismo , Canais de Cátion TRPV/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Gânglios Espinais/metabolismo , Hipocampo/metabolismo , Cálcio/metabolismo , Apoptose , Estresse Oxidativo , Neuroglia/metabolismo , Membrana Celular/metabolismo , Citocinas/metabolismo
17.
Sci Rep ; 12(1): 4121, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260737

RESUMO

Oral cancer patients report sensitivity to spicy foods and liquids. The mechanism responsible for chemosensitivity induced by oral cancer is not known. We simulate oral cancer-induced chemosensitivity in a xenograft oral cancer mouse model using two-bottle choice drinking and conditioned place aversion assays. An anatomic basis of chemosensitivity is shown in increased expression of TRPV1 in anatomically relevant trigeminal ganglion (TG) neurons in both the xenograft and a carcinogen (4-nitroquinoline 1-oxide)-induced oral cancer mouse models. The percent of retrograde labeled TG neurons that respond to TRPV1 agonist, capsaicin, is increased along with the magnitude of response as measured by calcium influx, in neurons from the cancer models. To address the possible mechanism of TRPV1 sensitivity in tongue afferents, we study the role of PAR2, which can sensitize the TRPV1 channel. We show co-expression of TRPV1 and PAR2 on tongue afferents and using a conditioned place aversion assay, demonstrate that PAR2 mediates oral cancer-induced, TRPV1-evoked sensitivity in an oral cancer mouse model. The findings provide insight into oral cancer-mediated chemosensitivity.


Assuntos
Neoplasias Bucais , Microambiente Tumoral , Animais , Capsaicina/metabolismo , Capsaicina/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias Bucais/metabolismo , Neurônios Aferentes/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
18.
Life Sci ; 291: 120305, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016880

RESUMO

BACKGROUND: Inactivation of sensory neurons expressing transient receptor potential vanilloid 1 (TRPV1) enhances breast cancer metastasis. Sensory neurons have profound effects on immune response to a wide range of diseases including cancer. Hence, activation of sensory nerves using feasible approaches such as specific TRPV1 agonists may inhibit breast cancer metastasis through neuroimmune pathways. TRPV1 agonists are considered for the treatment of pain and inflammatory diseases. METHODS: We here first determined the effects of four different TRPV1 agonists on proliferation of three different metastatic breast carcinoma cells since TRPV1 is also expressed in cancer cells. Based on the results obtained under in-vitro conditions, brain metastatic breast carcinoma cells (4TBM) implanted orthotopically into the mammary-pad of Balb-c mice followed by olvanil treatment (i.p.). Changes in tumor growth, metastasis and immune response to cancer cells were determined. RESULTS: Olvanil dose-dependently activated sensory nerve fibers and markedly suppressed lung and liver metastasis without altering the growth of primary tumors. Olvanil (5 mg/kg) systemically increased T cell count, enhanced intra-tumoral recruitment of CD8+ T cells and increased IFN-γ response to irradiated cancer cells and Con-A. Anti-inflammatory changes such as increased IL-10 and decrease IL-6 as well as S100A8+ cells were observed following olvanil treatment. CONCLUSIONS: Our results show that anti-metastatic effects of olvanil is mainly due to activation of neuro-immune pathways since olvanil dose used here is not high enough to directly activate immune cells. Furthermore, olvanil effectively depletes sensory neuropeptides; hence, olvanil is a good non-pungent alternative to capsaicin.


Assuntos
Neoplasias da Mama/metabolismo , Capsaicina/análogos & derivados , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Capsaicina/metabolismo , Capsaicina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica/tratamento farmacológico , Fibras Nervosas/efeitos dos fármacos , Dor , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV
19.
Biochim Biophys Acta Biomembr ; 1864(1): 183782, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555418

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is a voltage-dependent non-selective cation channel activated by capsaicin, the main pungent ingredient of chili peppers, and noxious heat. Although TRPV1 channels produce outwardly rectifying currents even in the absence of capsaicin, little is known about the regulation mechanism of the TRPV1 currents. In the present study, we found that intracellular ATP regulates the basal activities of TRPV1 channels in a concentration-dependent manner. The ATP-dependent regulation of TRPV1 channels was mediated by phosphoinositides. Moreover, an increase in intracellular ATP concentration negatively shifted voltage-dependent activation of TRPV1 channels. These results suggest that the ATP-dependent production of phosphoinositides regulates the voltage-dependent gating of the basal TRPV1 channel activities in the absence of capsaicin.


Assuntos
Capsaicina/metabolismo , Fosfatidilinositóis/química , Canais de Cátion TRPV/química , Trifosfato de Adenosina/metabolismo , Capsicum/química , Fosfatidilinositóis/genética , Canais de Cátion TRPV/genética
20.
Biomolecules ; 11(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806914

RESUMO

Phosphodiesterase 4 (PDE4), mainly present in immune, epithelial, and brain cells, represents a family of key enzymes for the degradation of cyclic adenosine monophosphate (cAMP), which modulates inflammatory response. In recent years, the inhibition of PDE4 has been proven to be an effective therapeutic strategy for the treatment of neurological disorders. PDE4D constitutes a high-interest therapeutic target primarily for the treatment of Alzheimer's disease, as it is highly involved in neuroinflammation, learning ability, and memory dysfunctions. In the present study, a thorough computational investigation consisting of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations based on the linear response approximation (LRA) method was performed to study dietary polyphenols as potential PDE4D inhibitors. The obtained results revealed that curcumin, 6-gingerol, capsaicin, and resveratrol represent potential PDE4D inhibitors; however, the predicted binding free energies of 6-gingerol, capsaicin, and resveratrol were less negative than in the case of curcumin, which exhibited the highest inhibitory potency in comparison with a positive control rolipram. Our results also revealed that the electrostatic component through hydrogen bonding represents the main driving force for the binding and inhibitory activity of curcumin, 6-gingerol, and resveratrol, while the van der Waals component through shape complementarity plays the most important role in capsaicin's inhibitory activity. All investigated compounds form hydrophobic interactions with residues Gln376 and Asn602 as well as hydrogen bonds with nearby residues Asp438, Met439, and Ser440. The binding mode of the studied natural compounds is consequently very similar; however, it significantly differs from the binding of known PDE4 inhibitors. The uncovered molecular inhibitory mechanisms of four investigated natural polyphenols, curcumin, 6-gingerol, capsaicin, and resveratrol, form the basis for the design of novel PDE4D inhibitors for the treatment of Alzheimer's disease with a potentially wider therapeutic window and fewer adverse side effects.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Polifenóis/farmacologia , Doença de Alzheimer/metabolismo , Capsaicina/metabolismo , Catecóis/farmacologia , Curcumina/farmacologia , Álcoois Graxos/farmacologia , Humanos , Simulação de Dinâmica Molecular , Resveratrol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA