RESUMO
In this article, we have studied the potential of flexible microtube plasma (FµTP) as ionization source for the liquid chromatography high-resolution mass spectrometry detection of non-easily ionizable pesticides (viz. nonpolar and non-ionizable by acid/basic moieties). Phthalimide-related compounds such as dicofol, dinocap, o-phenylphenol, captan, captafol, folpet and their metabolites were studied. Dielectric barrier discharge ionization (DBDI) was examined using two electrode configurations, including the miniaturized one based on a single high-voltage (HV) electrode and a virtual ground electrode configuration (FµTP), and also the two-ring electrode DBDI configuration. Different ionization pathways were observed to ionize these challenging, non-easily ionizable nonpolar compounds, involving nucleophilic substitutions and proton abstraction, with subtle differences in the spectra obtained compared with APCI. An average sensitivity increase of 5-fold was attained compared with the standard APCI source. In addition, more tolerance with matrix effects was observed in both DBDI sources. The importance of the data reported is not just limited to the sensitivity enhancement compared to APCI, but, more notably, to the ability to effectively ionize nonpolar, late-eluting (in reverse-phase chromatography) non-ionizable compounds. Besides o-phenylphenol ([M - H]-), all the parent species were efficiently ionized through different mechanisms involving bond cleavages through the effect of plasma reagent species or its combination with thermal degradation and subsequent ionization. This tool can be used to figure out overlooked nonpolar compounds in different environmental samples of societal interest through non-target screening (NTS) strategies.
Assuntos
Espectrometria de Massas , Praguicidas , Praguicidas/análise , Praguicidas/química , Praguicidas/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Ftalimidas/química , Ftalimidas/análise , Contaminação de Alimentos/análise , Miniaturização , Captana/análise , Captana/sangue , Captana/química , Análise de Alimentos/métodosRESUMO
To seek new protoporphyrinogen oxidase (PPO) inhibitors with better biological activity, a series of novel diphenyl ether derivatives containing tetrahydrophthalimide were designed based on the principle of substructure splicing and bioisomerization. PPO inhibition experiments exhibited that 6c is the most potential compound, with the half-maximal inhibitory concentration (IC50) value of 0.00667 mg/L, showing 7 times higher activity than Oxyfluorfen (IC50 = 0.0426 mg/L) against maize PPO and similar herbicidal activities to Oxyfluorfen in weeding experiments in greenhouses and field weeding experiments. In view of the inspected bioactivities, the structure-activity relationship (SAR) of this series of compounds was also discussed. Crop selection experiments demonstrate that compound 6c is safe for soybeans, maize, rice, peanuts, and cotton at a dose of 300 g ai/ha. Accumulation analysis experiments showed that the accumulation of 6c in some crops (soybeans, peanuts, and cotton) was significantly lower than Oxyfluorfen. Current work suggests that compound 6c may be developed as a new herbicide candidate in fields.
Assuntos
Herbicidas/química , Herbicidas/toxicidade , Éteres Fenílicos/química , Éteres Fenílicos/toxicidade , Plantas Daninhas/efeitos dos fármacos , Captana/síntese química , Captana/química , Captana/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/fisiologia , Éteres Difenil Halogenados/toxicidade , Herbicidas/síntese química , Simulação de Acoplamento Molecular , Éteres Fenílicos/síntese química , Ftalimidas/síntese química , Ftalimidas/química , Ftalimidas/toxicidade , Plantas Daninhas/enzimologia , Plantas Daninhas/fisiologia , Protoporfirinogênio Oxidase/antagonistas & inibidoresRESUMO
Thermally labile pesticides (captafol, captan, dicofol, and folpet) are highly prone to suffer thermal degradation during sample introduction into a gas chromatograph (GC) to tetrahydrophthalimide (THPI), 4,4'-dichlorobenzophenone (DCBP), and phthalimide (PI), respectively, mainly produced in the glass liner of the injector. This undesired behavior leads to inaccurate qualitative and quantitative results. Direct on-column injection (OCI) technique is evaluated as an alternative to avoid or minimize compound alteration during the analysis. This configuration was studied and evaluated for the determination of this group of thermally troublesome pesticides. The OCI inlet was operated in "track oven" temperature and connected to a wide-bore deactivated guard column that is itself connected to a capillary GC analytical column. This technique has demonstrated to be useful for avoiding degradation generated in the hot inlet. Limitations observed for OCI in routine analysis were injection volume, guard column length, and maintenance issues. Analytical standards spiked in vegetable solutions were injected in OCI, not observing any thermal degradation rate. On the contrary, classical splitless injection (SLI) produced high degradation rates in all cases. This OCI approach was validated in citrate QuEChERS extracts of tomato, apple, and orange matrices for these four compounds and their corresponding transformation products (THPI, DCBP, and PI), evaluating recoveries, repeatability, linearity, and matrix effect. This set-up enabled the correct identification and quantitation for most compounds at LOQs of 0.010 mg/kg in fruit and vegetable samples. The OCI grants evident differentiation between metabolites naturally occurring in food and thermal degradation products created during the analysis. Graphical abstract á .
Assuntos
Cromatografia Gasosa/métodos , Frutas/química , Praguicidas/análise , Verduras/química , Benzofenonas/química , Captana/química , Limite de Detecção , Ftalimidas/química , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , TemperaturaRESUMO
A novel bio-analytical method has been devised based on the change in catalytic activity of acetylcholinesterase (AChE) enzyme induced by captan, carbosulfan, 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and pentachlorophenol (PCP) for the investigation of inhibition efficiency and sensitivity using Pt/ZnO/AChE/Chitosan bioelectrode. The inhibition curves of captan, carbosulfan, TCDD and PCP were similar to Michaelis-Menten curve. TCDD held the minimum inhibitor Michaelis-Menten constant ([Formula: see text]) value (10.2 nM) in comparison with PCP (10.9 nM), carbosulfan (14.5 nM) and captan (7.9 × 10(3) nM). The maximum inhibition of AChE enzyme by captan was about 100 %, which was much higher than that of TCDD (72.7 %), PCP (68.1 %) and carbosulfan (47.7 %). The calculated theoretical sensitivity was in the order of TCDD > PCP > carbosulfan > captan. Comparing with TCDD (35.3 %), PCP (47.8 %) and carbosulfan (20.9 %), only the inhibition efficiency of captan (55.0 %) was the maximum. The developed bioelectrode exhibited high recovery and low relative standard deviation in local tap water samples.
Assuntos
Técnicas Biossensoriais , Captana/análise , Carbamatos/análise , Pentaclorofenol/análise , Resíduos de Praguicidas/análise , Dibenzodioxinas Policloradas/análise , Água/química , Acetilcolinesterase/química , Captana/química , Carbamatos/química , Pentaclorofenol/química , Dibenzodioxinas Policloradas/químicaAssuntos
Captana/análogos & derivados , Carcinógenos/toxicidade , Cicloexenos/efeitos adversos , Fungicidas Industriais/efeitos adversos , Animais , Captana/efeitos adversos , Captana/química , Carcinógenos/química , Cicloexenos/química , Fungicidas Industriais/química , Humanos , Neoplasias/induzido quimicamenteRESUMO
This study investigates the thermal decomposition of a widely used fungicide, captan, under gas phase conditions, similar to those occurring in fires, cigarette burning, and combustion of biomass treated or contaminated with pesticides. The laboratory-scale apparatus consisted of a plug flow reactor equipped with sampling trains for gaseous, volatile organic compounds (VOC) and condensed products, with analysis performed by Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS), respectively. Under oxidative conditions, the thermal decomposition of captan generated gaseous pollutants including carbon disulfide, thiophosgene, phosgene, and hydrogen cyanide. The VOC analysis revealed the formation of tetrachloroethylene, hexachloroethane, and benzonitrile. Quantum chemical calculations indicated that captan decomposes unimolecularly, via fission of the C-S bond, with the ensuing radicals reacting with O(2). The results of the present study provide an improved understanding of the formation pathways of toxic air pollutants in the accidental or deliberate combustion of captan.