Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Astrobiology ; 24(7): 669-683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979620

RESUMO

Mars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impacted by galactic cosmic rays (GCRs). In this study, we exposed a diverse set of Mars analog samples to 0.9 Megagray (MGy) of gamma radiation to mimic 15 million years of exposure on the Martian surface. We measured no significant impact of GCRs on the total organic carbon (TOC) and bulk stable C isotopes in samples with initial TOC concentration > 0.1 wt. %; however, diagnostic molecular biosignatures presented a wide range of degradation that didn't correlate to factors like mineralogy, TOC, water content, and surface area. Exposure dating suggests that the surface of Gale crater has been irradiated at more than five times our dose, yet using this relatively low dose and "best-case scenario" geologically recalcitrant biomarkers, large and variable losses were nevertheless evident. Our results empasize the importance of selecting sampling sites at depth or recently exposed at the Martian surface.


Assuntos
Biomarcadores , Argila , Radiação Cósmica , Meio Ambiente Extraterreno , Marte , Argila/química , Biomarcadores/análise , Meio Ambiente Extraterreno/química , Carbonatos/química , Carbonatos/análise , Exobiologia/métodos , Silicatos de Alumínio/química , Isótopos de Carbono/análise
2.
Geobiology ; 22(4): e12608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946067

RESUMO

Methane is a potent greenhouse gas that enters the marine system in large quantities at seafloor methane seeps. At a newly discovered seep site off the coast of Point Dume, CA, ~ meter-scale carbonate chimneys host microbial communities that exhibit the highest methane-oxidizing potential recorded to date. Here, we provide a detailed assessment of chimney geobiology through correlative mineralogical, geochemical, and microbiological studies of seven chimney samples in order to clarify the longevity and heterogeneity of these highly productive systems. U-Th dating indicated that a methane-driven carbonate precipitating system at Point Dume has existed for ~20 Kyr, while millimeter-scale variations in carbon and calcium isotopic values, elemental abundances, and carbonate polymorphs revealed changes in carbon source, precipitation rates, and diagenetic processes throughout the chimneys' lifespan. Microbial community analyses revealed diverse modern communities with prominent anaerobic methanotrophs, sulfate-reducing bacteria, and Anaerolineaceae; communities were more similar within a given chimney wall transect than in similar horizons of distinct structures. The chimneys represent long-lived repositories of methane-oxidizing communities and provide a window into how carbon can be transformed, sequestered, and altered over millennia at the Point Dume methane seep.


Assuntos
Bactérias , Carbonatos , Metano , Metano/metabolismo , Carbonatos/metabolismo , Carbonatos/química , Bactérias/metabolismo , Bactérias/classificação , California , Água do Mar/microbiologia , Água do Mar/química , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Ecossistema , Archaea/metabolismo
3.
Water Res ; 262: 122139, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068730

RESUMO

Membrane distillation (MD) offers promise for recycling shale gas produced water (SGPW), while membrane fouling is still a major obstacle in standalone MD. Herein, sodium percarbonate (SPC) oxidation was proposed as MD pretreatment, and the performance of the single MD, SPC-MD hybrid process and Fe(II)/SPC-MD hybrid process for SGPW treatment were systematically evaluated. Results showed that compared to raw SGPW, the application of SPC and Fe(II)/SPC led to the decrease of the fluorescent organics by 28.54 % and 54.52 %, respectively. The hydrophobic fraction decreased from 52.75 % in raw SGPW to 37.70 % and 27.20 % for SPC and Fe(II)/SPC, respectively, and the MD normalized flux increased from 0.19 in treating raw SGPW to 0.65 and 0.81, respectively. The superiority of SPC oxidation in reducing the deposited membrane foulants and restoring membrane properties was further confirmed through scanning electron microscopy observation, attenuated total reflection fourier transform infrared, water contact angle and surface tension analyses of fouled membranes. Correlation analysis revealed that hydrophobic/hydrophilic matters and fluorescent organics in SGPW took a crucial role in MD fouling. The mechanism of MD fouling mitigation by Fe(II)/SPC oxidation was attributed to the decrease in concentrations and hydrophobicity of organic by synergistic oxidation, coagulation and adsorption.


Assuntos
Carbonatos , Destilação , Membranas Artificiais , Oxirredução , Destilação/métodos , Carbonatos/química , Purificação da Água/métodos , Ferro/química , Interações Hidrofóbicas e Hidrofílicas
4.
Environ Pollut ; 358: 124537, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002746

RESUMO

Microbially induced carbonate precipitation (MICP) is a promising technique for remediating heavy metal-contaminated soils. However, the effectiveness of MICP in immobilizing Cd in alkaline calcareous soils, especially when applied in agricultural soils, remains unclear. Biochar and magnesium oxide are two environmentally friendly passivating materials, and there are few reports on the combined application of MICP with passivating materials for remediating heavy metal-contaminated soils. Additionally, the number of treatments with MICP cement and the concentration of calcium chloride during the MICP process can both affect the effectiveness of heavy metal immobilization by MICP. Therefore, we conducted MICP and MICP-biochar-magnesium oxide treatments on agricultural soils collected from Baiyin, Gansu Province (pH = 8.62), and analyzed the effects of the number of treatments with cement and the concentration of calcium chloride on the immobilization of Cd by MICP and combined treatments. The results showed that early-stage MICP could immobilize exchangeable cadmium and increase the residual cadmium content, especially with high-concentration calcium chloride MICP treatment. However, in the later stage, soil nitrification and exchange processes led to the dissolution of carbonate-bound cadmium and cadmium activation. The fixing effect of MICP influence whether the MICP-MgO-biochar is superior to the MgO-biochar. Four treatments with cement were more effective than single treatment in MICP-biochar-magnesium oxide treatment, and the MICP-biochar-magnesium oxide treatment with four treatments was the most effective, with passivation rates of 40.7% and 46.6% for exchangeable cadmium and bioavailable cadmium, respectively. However, attention should be paid to the increase in soil salinity. The main mechanism of MICP-magnesium oxide-biochar treatment in immobilizing cadmium was the formation of Cd(OH)2, followed by the formation of cadmium carbonate.


Assuntos
Agricultura , Cádmio , Carbonatos , Carvão Vegetal , Óxido de Magnésio , Poluentes do Solo , Solo , Cádmio/metabolismo , Óxido de Magnésio/química , Poluentes do Solo/metabolismo , Carbonatos/química , Solo/química , Agricultura/métodos , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Microbiologia do Solo
5.
Chemosphere ; 363: 142869, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019186

RESUMO

Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO3) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas.


Assuntos
Cádmio , Carbonatos , Desnitrificação , Sulfetos , Cádmio/metabolismo , Sulfetos/metabolismo , Carbonatos/química , Carbonatos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Biodegradação Ambiental , Biofilmes , Poluentes Atmosféricos/metabolismo , Consórcios Microbianos , Sulfatos/metabolismo , Compostos de Cádmio
6.
Mar Drugs ; 22(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921595

RESUMO

Porphyra sensu lato is one of the most economically significant and widely cultured and consumed algae in the world. Porphyra species present excellent nutraceutic properties due to their bioactive compounds (BACs). This research aimed to find the most efficient aqueous extraction method for BACs by examining alkaline and enzymatic hydrolysis. Alkaline hydrolysis with 2.5% sodium carbonate (SC) and at 80 °C proved optimal for extracting all BACs (phycobiliproteins, soluble proteins, polyphenols, and carbohydrates) except mycosporine-like amino acids (MAAs), which were best extracted with water only, and at 80 °C. Enzymatic hydrolysis, particularly with the 'Miura' enzymatic cocktail (cellulase, xylanase, glycoside hydrolase, and ß-glucanase), showed superior results in extracting phycoerythrin (PE), phycocyanin (PC), soluble proteins, and carbohydrates, with increases of approximately 195%, 510%, 890%, and 65%, respectively, compared to the best alkaline hydrolysis extraction (2.5% SC and 80 °C). Phenolic content analysis showed no significant difference between the 'Miura' cocktail and 2.5% SC treatments. Antioxidant activity was higher in samples from alkaline hydrolysis, while extraction of MAAs showed no significant difference between water-only and 'Miura' treatments. The study concludes that enzymatic hydrolysis improves the efficiency of BACs extraction in P. linearis, highlighting its potential for the nutraceutical industry, and especially with respect to MAAs for topical and oral UV-photoprotectors.


Assuntos
Antioxidantes , Suplementos Nutricionais , Porphyra , Porphyra/química , Hidrólise , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Carbonatos/química , Fenóis/isolamento & purificação , Fenóis/química , Carboidratos/química
7.
Environ Sci Pollut Res Int ; 31(31): 43673-43686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38904874

RESUMO

In this comprehensive investigation, we evaluate the efficacy of the Fenton process in degrading basic fuchsin (BF), a resistant dye. Our primary focus is on the utilization of readily available, environmentally benign, and cost-effective reagents for the degradation process. Furthermore, we delve into various operational parameters, including the quantity of sodium percarbonate (SPC), pH levels, and the dimensions of waste iron bars, to optimize the treatment efficiency. In the course of our research, we employed an initial SPC concentration of 0.5 mM, a pH level of 3, a waste iron bar measuring 3.5 cm in length and 0.4 cm in diameter, and a processing time of 10 min. Our findings reveal the successful elimination of the BF dye, even when subjected to treatment with diverse salts and surfactants under elevated temperatures and acidic conditions (pH below 3). This underscores the robustness of the Fenton process in purifying wastewater contaminated with dye compounds. The outcomes of our study not only demonstrate the efficiency of the Fenton process but highlight its adaptability to address dye contamination challenges across various industries. Critically, this research pioneers the application of waste iron bars as a source of iron in the Fenton reaction, introducing a novel, sustainable approach that enhances the environmental and economic viability of the process. This innovative use of recycled materials as catalysts represents a significant advancement in sustainable chemical engineering practices.


Assuntos
Carbonatos , Ferro , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Ferro/química , Poluentes Químicos da Água/química , Carbonatos/química , Catálise , Corantes/química , Eliminação de Resíduos Líquidos/métodos , Peróxido de Hidrogênio/química
8.
Chemosphere ; 356: 141856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582171

RESUMO

Mechanistic investigations of an environmentally friendly and easy-to-implement oxidation method in the remediation of contaminated anoxic waters, i.e. groundwater, through the sole use of oxygen for the oxygen-induced oxidation of pollutants were the focus of this work. This was achieved by the addition of O2 under anoxic conditions in the presence of ferrous iron which initiated the ferrous oxidation and the simultaneous formation of reactive •OH radicals. The involvement of inorganic ligands such as carbonates in the activation of oxygen as part of the oxidation of Fe2+ in water was investigated, too. The formation of •OH radicals, was confirmed in two different, indirect approaches by a fluorescence-based method involving coumarin as •OH scavenger and by the determination of the oxidation products of different aromatic VOCs. In the latter case, the oxidation products of several typical aromatic groundwater contaminants such as BTEX (benzene, toluene, ethylbenzene, xylenes), indane and ibuprofen, were determined. The influence of other ligands in the absence of bicarbonate and the effect of pH were also addressed. The possibility of activation of O2 in carbonate-rich water i.e. groundwater, may also potentially contribute to oxidation of groundwater contaminants and support other primary remediation techniques.


Assuntos
Carbonatos , Recuperação e Remediação Ambiental , Água Subterrânea , Ferro , Oxirredução , Oxigênio , Poluentes Químicos da Água , Oxigênio/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Ferro/química , Água Subterrânea/química , Recuperação e Remediação Ambiental/métodos , Carbonatos/química , Compostos Orgânicos Voláteis/química , Radical Hidroxila/química
9.
J Mater Chem B ; 12(17): 4232-4247, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38601990

RESUMO

The design and synthesis of nano- and microcarriers for preclinical and clinical imaging are highly attractive due to their unique features, for example, multimodal properties. However, broad translation of these carriers into clinical practice is postponed due to the unknown biological reactivity of the new components used for their synthesis. Here, we have developed microcarriers (∼2-3 µm) and  nanocarriers (<200 nm) made of barium carbonate (BaCO3) for multiple imaging applications in vivo. In general, barium in the developed carriers can be used for X-ray computed tomography, and the introduction of a diagnostic isotope (99mTc) into the BaCO3 structure enables in vivo visualization using single-photon emission computed tomography. The bioimaging has shown that the radiolabeled BaCO3 nano- and microcarriers had different biodistribution profiles and tumor accumulation efficiencies after intratumoral and intravenous injections. In particular, in the case of intratumoral injection, all the types of used carriers mostly remained in the tumors (>97%). For intravenous injection, BaCO3 microcarriers were mainly localized in the lung tissues. However, BaCO3 NPs were mainly accumulated in the liver. These results were supported by ex vivo fluorescence imaging, direct radiometry, and histological analysis. The BaCO3-based micro- and nanocarriers showed negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys, and spleen. This study provides a simple strategy for the design and fabrication of the BaCO3-based carriers for the development of dual bioimaging.


Assuntos
Bário , Carbonatos , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Camundongos , Carbonatos/química , Bário/química , Tomografia Computadorizada por Raios X , Tamanho da Partícula , Nanopartículas/química , Humanos , Distribuição Tecidual
10.
J Mater Chem B ; 12(18): 4509-4520, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647022

RESUMO

One of the key challenges in diagnosing thyroid cancer lies in the substantial percentage of indeterminate diagnoses of thyroid nodules that have undergone ultrasound-guided fine-needle aspiration (FNA) biopsy for cytological evaluation. This delays the definitive diagnosis and treatment plans. We recently demonstrated that hydroxyapatite microcalcifications (MCs) aspirated from thyroid nodules may aid nodule diagnosis based on their composition. In particular, Zn-enriched MCs have emerged as potential cancer biomarkers. However, a pertinent question remains: is the elevated Zn content within MCs a consequence of cancer, or do the Zn-enriched MCs encourage tumorigenesis? To address this, we treated the human thyroid cancer cell line MDA-T32 with synthetic MC analogs comprising hydroxyapatite crystals with varied pathologically relevant Zn fractions and assessed the cellular response. The MC analogs exhibited an irregular surface morphology similar to FNA MCs observed in cancerous thyroid nodules. These MC analogs displayed an inverse relationship between Zn fraction and crystallinity, as shown by X-ray diffractometry. The zeta potential of the non-Zn-bearing hydroxyapatite crystals was negative, which decreased once Zn was incorporated into the crystal. The MC analogs were not cytotoxic. The cellular response to exposure to these crystals was evaluated in terms of cell migration, proliferation, the tendency of the cells to form multicellular spheroids, and the expression of cancer markers. Our findings suggest that, if thyroid MCs play a role in promoting cancerous behavior in vivo, it is likely a result of the interplay of crystallinity with Zn and carbonate fractions in MCs.


Assuntos
Calcinose , Neoplasias da Glândula Tireoide , Zinco , Humanos , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Zinco/química , Calcinose/patologia , Calcinose/metabolismo , Carbonatos/química , Cristalização , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Durapatita/química
11.
Environ Pollut ; 348: 123880, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554835

RESUMO

The study aimed to evaluate the potential of a novel isolated ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium bioremoval through MICP. The optimization and modelling of the biotic and abiotic factors affecting the process of mineralization were also performed. In addition, the underlying mechanism of MICP-driven Cd mineralization under microbial-inclusive and cell-free conditions was revealed and supported through the characterization of the bio-precipitates obtained using various characterization techniques. The results indicated that the isolate could remove 97.18% Cd2+ of 11.4 ppm under optimized conditions of 36.86 h, pH 7.63, and biomass dose of 1.75 ml. Besides, the presence and absence of bacterial cells were found to influence both the morphologies and crystalline structures of precipitates. The precipitates obtained under microbial-inclusive conditions showed typical rhombohedral crystalline structures of the composition comprising CaCO3, CdCO3, and 0.67Ca0.33CdCO3. However, the crystalline nature of the precipitate reduced to a nano-sized granular structure in cell-free media. Unlike the cadmium mineralization process under microbial-inclusive media, where bacterial cells serve as nucleation sites for crystallization, the carbonate precipitation effectively captures Cd2+ through co-precipitation, chemisorption, or alternative mechanisms involving interactions between metal ions and CaCO3 under cell-free conditions. The findings presented suggest that using cell-free culture supernatant enriched with carbonate ions provides an avenue that could be harnessed for sustainable metal remediation.


Assuntos
Cádmio , Carbonato de Cálcio , Enterobacter , Carbonato de Cálcio/química , Cádmio/química , Precipitação Química , Carbonatos/química
12.
J Environ Manage ; 353: 120018, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38271885

RESUMO

An overexploitation of earth resources results in acid deposition in soil, which adversely impacts soil ecosystems and biodiversity and affects conventional heavy metal remediation using immobilization. A series of column experiments was conducted in this study to compare the cadmium (Cd) retention stability through biotic and abiotic carbonate precipitation impacted by simulated acid rain (SAR), to build a comprehensive understanding of cadmium speciation and distribution along soil depth and to elucidate the biogeochemical bacteria-soil-heavy metal interfaces. The strain of Sporosarcina pasteurii DSM 33 was used to trigger the biotic carbonate precipitation and cultivated throughout the 60-day column incubation. Results of soil pH, electrical conductivity (EC), and quantitative CdCO3/CaCO3 analysis concluded that the combination of biotic and abiotic soil treatment could reinforce soil buffering capacity as a strong defense mechanism against acid rain disturbance. Up to 1.8 ± 0.04 U/mg urease enzyme activity was observed in combination soil from day 10, confirming the sustained effect of urease-mediated microbial carbonate precipitation. Cadmium speciation and distribution analyses provided new insights into the dual stimulation of carbonate-bound and Fe/Mn-bound phases of cadmium immobilization under microbially induced carbonate precipitation (MICP). As confirmed by the microbial community analysis, outsourcing urea triggered diverse microbial metabolic responses, notably carbonate precipitation and dissimilatory iron metabolism, in both oxygen-rich topsoil and oxygen-depleted subsurface layers. The overall investigation suggests the feasibility of applying MICP for soil Cd remediation under harsh environments and stratagem by selecting microbial functionality to overcome environmental challenges.


Assuntos
Chuva Ácida , Metais Pesados , Cádmio/química , Solo/química , Carbonato de Cálcio/química , Ecossistema , Urease/metabolismo , Carbonatos/química , Bactérias/metabolismo , Oxigênio/metabolismo
13.
Chemosphere ; 346: 140645, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951407

RESUMO

The advantages of microbial induced carbonate precipitation (MICP) as bio-cementation technology for tailings-solidification are under extensive investigation. In order to improve performance of bio-cementation, many strengthening materials were applied to the bio-cementation of tailings. Steel slag (SS) is a kind of industrial solid waste, its chemical composition and mineral composition are similar to cement, and it has a certain application prospect as an auxiliary cementing material. In this study, the properties and mechanism of SS strengthening MICP cementation of cyanide tailings (CT) were investigated. The results showed that Sporosarcina pasteurii growth is not inhibited by SS, and Sporosarcina pasteurii can promote the hydration reaction of SS, providing a suitable alkaline environment and Ca2+, promoting the production of more CaCO3 in the MICP process. When 200 mL of CT leachate was added 1.4 g SS (200-400 mesh), the adsorption of Cu, Pb, Zn, Cd, total cyanide (T-CN), and free cyanide (F-CN) reached 48.05%, 44.28%, 36.25%, 16.67%, 79.05%, and 67.20%, respectively. The maximum unconfined compressive strength(UCS) of the cemented body (with 5%, 150 mesh SS) was 1.97 MPa, which was 3.396 times as high as that without SS. The cemented body with the addition of SS (5%, 150 mesh) contained more carbonate bound Cu (2.75%), Pb (4.89%), Zn (5.37%), and Cd (5.75%), and less exchangeable Cu (3.65%), Pb (6.85%), Zn (2.27%), and Cd (4.42%) than that without SS. In summary, the addition of SS improved the UCS of cemented bodies and the stability of heavy metals and cyanide, reduced the environmental risks existing in the process of CT storage. Meanwhile, it also provides new ideas for resource utilization of industrial solid waste SS and improvement of mine filling materials.


Assuntos
Metais Pesados , Resíduos Sólidos , Aço , Cimentação , Cianetos , Cádmio , Chumbo , Metais Pesados/química , Carbonatos/química , Carbonato de Cálcio
14.
Environ Sci Pollut Res Int ; 31(4): 5319-5330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114705

RESUMO

Cadmium (Cd) presence and bioavailability in soils is a serious concern for cocoa producers. Cocoa plants can bioaccumulate Cd that can reach humans through the food chain, thus posing a threat to human health, as Cd is a highly toxic metal. Currently, microbiologically induced carbonate precipitation (MICP) by the ureolytic path has been proposed as an effective technique for Cd remediation. In this work, the Cd remediation potential and Cd resistance of two ureolytic bacteria, Serratia sp. strains 4.1a and 5b, were evaluated. The growth of both Serratia strains was inhibited at 4 mM Cd(II) in the culture medium, which is far higher than the Cd content that can be found in the soils targeted for remediation. Regarding removal efficiency, for an initial concentration of 0.15 mM Cd(II) in liquid medium, the maximum removal percentages for Serratia sp. 4.1.a and 5b were 99.3% and 99.57%, respectively. Their precipitates produced during Cd removal were identified as calcite by X-ray diffraction. Energy dispersive X-ray spectroscopy analysis showed that a portion of Cd was immobilized in this matrix. Finally, the presence of a partial gene from the czc operon, involved in Cd resistance, was observed in Serratia sp. 5b. The expression of this gene was found to be unaffected by the presence of Cd(II), and upregulated in the presence of urea. This work is one of the few to report the use of bacterial strains of the Serratia genus for Cd remediation by MICP, and apparently the first one to report differential expression of a Cd resistance gene due to the presence of urea.


Assuntos
Cádmio , Serratia , Humanos , Cádmio/metabolismo , Serratia/metabolismo , Carbonatos/química , Carbonato de Cálcio/química , Solo/química , Ureia/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(45): e2306627120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37917794

RESUMO

The elemental composition of coral skeletons provides important information for palaeoceanographic reconstructions and coral biomineralization. Partition of anions and their stable isotopes in coral skeleton enables the reconstruction of past seawater carbonate chemistry, paleo-CO2, and past climates. Here, we investigated the partition of B, S, As, Br, I, and Mo into the skeletons of two corals, Acropora cervicornis and Pocillopora damicornis, as a function of calcium and carbonate concentrations.* Anion-to-calcium ratio in the corals (An/CaCoral) were correlated with the equivalent ratios in the culturing seawater (An/CO32-SW). Negative intercepts of these relationships suggest a higher CO32- concentration in the coral extracellular calcifying fluid (ECF) relative to seawater, from which the skeleton precipitates. The enrichment factor of CO32- at the ECF was 2.5 for A. cervicornis and 1.9 for P. damicornis, consistent with their relative calcification rates. The CO32-ECF concentrations thus calculated are similar to those proposed by previous studies based on B/Ca coupled with δ11B, as well as by direct measurements using microsensors and fluorescent dyes. Rayleigh fractionation modeling demonstrates a uniform Ca utilization at various CaSW concentrations, providing further evidence that coral calcification occurs directly from a semiclosed seawater reservoir as reported previously. The partition coefficients reported in this study for B, S, As, Br, I, and Mo open up wide possibilities for past ocean chemistry reconstructions based on Br having long residence time (~160 Ma) in the ocean. Other elements like S, Mo, B, as well as pCO2 may also be calculated based on these elements in fossil coral.


Assuntos
Antozoários , Calcinose , Animais , Antozoários/metabolismo , Cálcio/metabolismo , Biomineralização , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Carbonatos/química , Água do Mar/química , Calcificação Fisiológica , Recifes de Corais
16.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838569

RESUMO

In cultural heritage, unaesthetic stains on carbonate stones due to their close contacts with metals are of concern for the preservation of sculptures, monumental facades and archeological finds of various origin and antiquities. Rust stains made up of various oxidized iron compounds are the most frequent forms of alteration. The presence of ferric iron on rust-stained marble surfaces was confirmed in previous studies and oriented the choice of the best cleaning method (based on complexing agents specific for ferric ions). However, the composition of rust stains may vary along their extension. As the corrosion of the metallic iron proceeds, if the oxygen levels in the surroundings are low and there are no conditions to favor the oxidation, ferrous ions can also diffuse within the carbonate structure and form a variety of intermediate compounds. In this study, the iron stains on archeological marbles were compared with those artificially produced on Carrara marbles and Travertine samples. The use of integrated techniques (optical and scanning electron microscopy as well as Mössbauer and XPS spectroscopy) with complementary analytical depths, has provided the overall information. Rust formation and diffusion mechanisms in carbonates were revealed together with the evolution of iron speciation and identification of phases such as ferrihydrite, goethite, maghemite, nanomagnetite, and hematite.


Assuntos
Compostos Férricos , Ferro , Compostos Férricos/química , Ferro/química , Metais/química , Carbonatos/química , Oxirredução , Carbonato de Cálcio
17.
Environ Sci Pollut Res Int ; 30(9): 22188-22210, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36282383

RESUMO

Mining waste that is rich in iron-, calcium- and magnesium-bearing minerals can be a potential feedstock for sequestering CO2 by mineral carbonation. This study highlights the utilization of iron ore mining waste in sequestering CO2 under low-reaction condition of a mineral carbonation process. Alkaline iron mining waste was used as feedstock for aqueous mineral carbonation and was subjected to mineralogical, chemical, and thermal analyses. A carbonation experiment was performed at ambient CO2 pressure, temperature of 80 °C at 1-h exposure time under the influence of pH (8-12) and particle size (< 38-75 µm). The mine waste contains Fe-oxides of magnetite and hematite, Ca-silicates of anorthite and wollastonite and Ca-Mg-silicates of diopside, which corresponds to 72.62% (Fe2O3), 5.82% (CaO), and 2.74% (MgO). Fe and Ca carbonation efficiencies were increased when particle size was reduced to < 38 µm and pH increased to 12. Multi-stage mineral transformation was observed from thermogravimetric analysis between temperature of 30 and 1000 °C. Derivative mass losses of carbonated products were assigned to four stages between 30-150 °C (dehydration), 150-350 °C (iron dehydroxylation), 350-700 °C (Fe carbonate decomposition), and 700-1000 °C (Ca carbonate decomposition). Peaks of mass losses were attributed to ferric iron reduction to magnetite between 662 and 670 °C, siderite decarbonization between 485 and 513 °C, aragonite decarbonization between 753 and 767 °C, and calcite decarbonization between 798 and 943 °C. A 48% higher carbonation rate was observed in carbonated products compared to raw sample. Production of carbonates was evidenced from XRD analysis showing the presence of siderite, aragonite, calcite, and traces of Fe carbonates, and about 33.13-49.81 g CO2/kg of waste has been sequestered from the process. Therefore, it has been shown that iron mining waste can be a feasible feedstock for mineral carbonation in view of waste restoration and CO2 emission reduction.


Assuntos
Dióxido de Carbono , Compostos de Ferro , Dióxido de Carbono/química , Óxido Ferroso-Férrico , Minerais/química , Carbonatos/química , Silicatos/química , Carbonato de Cálcio/química , Compostos de Ferro/química , Ferro , Sequestro de Carbono
18.
Environ Sci Technol ; 56(22): 16428-16440, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36301735

RESUMO

Increasing CO2 emission has resulted in pressing climate and environmental issues. While abiotic and biotic processes mediating the fate of CO2 have been studied separately, their interactions and combined effects have been poorly understood. To explore this knowledge gap, an iron-reducing organism, Orenia metallireducens, was cultured under 18 conditions that systematically varied in headspace CO2 concentrations, ferric oxide loading, and dolomite (CaMg(CO3)2) availability. The results showed that abiotic and biotic processes interactively mediate CO2 acidification and sequestration through "chain reactions", with pH being the dominant variable. Specifically, dolomite alleviated CO2 stress on microbial activity, possibly via pH control that transforms the inhibitory CO2 to the more benign bicarbonate species. The microbial iron reduction further impacted pH via the competition between proton (H+) consumption during iron reduction and H+ generation from oxidization of the organic substrate. Under Fe(III)-rich conditions, microbial iron reduction increased pH, driving dissolved CO2 to form bicarbonate. Spectroscopic and microscopic analyses showed enhanced formation of siderite (FeCO3) under elevated CO2, supporting its incorporation into solids. The results of these CO2-microbe-mineral experiments provide insights into the synergistic abiotic and biotic processes that alleviate CO2 acidification and favor its sequestration, which can be instructive for practical applications (e.g., acidification remediation, CO2 sequestration, and modeling of carbon flux).


Assuntos
Compostos Férricos , Ferro , Compostos Férricos/química , Ferro/química , Dióxido de Carbono , Bicarbonatos , Carbonatos/química , Minerais , Oxirredução
19.
J Environ Manage ; 322: 116059, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055096

RESUMO

Bisphenol A(BPA) is a common industrial chemical with significant adverse impacts on Environment and human health. The present work evaluates the efficacy of pulsed light (PL) and Fe2+ ions in activation of sodium percarbonate (SPC) to produce hydroxyl (OH•) and carbonate (CO3•-) radicals for efficient degradation of BPA. The effects of operational parameters such as solution pH, SPC and Fe2+ dose as well as the mixture composition were analyzed and the decomposition pathway of BPA proposed. The BPA was successfully degraded at the initial concentration of 15.0 mg/L and optimized conditions by the PL/Fe2+/SPC process (99.67 ± 0.29%). A rapid reduction in the degradation of BPA was observed with increasing pH due to OH• radicals quenching and also the precipitation of Fe2+. Under the optimized conditions, degradation of BPA by PL/Fe2+/SPC process was five-times faster than the individual process. The quenching experiments revealed that radical and non-radical pathways on BPA degradation was accomplished with OH•, CO3•-, O2•-, and 1O2, while OH• and CO3•- radicals (as a dominant radicals) have the contributions of 80.23% and 8.30%, respectively. Based on the detected byproducts, ring cleavage can be considered as the main transformation mechanism of BPA by the PL/Fe2+/SPC process.


Assuntos
Ferro , Poluentes Químicos da Água , Compostos Benzidrílicos/análise , Carbonatos/química , Humanos , Ferro/química , Oxirredução , Fenóis , Poluentes Químicos da Água/química
20.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806333

RESUMO

The focus of mainstream lithium-ion battery (LIB) research is on increasing the battery's capacity and performance; however, more effort should be invested in LIB safety for widespread use. One aspect of major concern for LIB cells is the gas generation phenomenon. Following conventional battery engineering practices with electrolyte additives, we examined the potential usage of electrolyte additives to address this specific issue and found a feasible candidate in divinyl sulfone (DVSF). We manufactured four identical battery cells and employed an electrolyte mixture with four different DVSF concentrations (0%, 0.5%, 1.0%, and 2.0%). By measuring the generated gas volume from each battery cell, we demonstrated the potential of DVSF additives as an effective approach for reducing the gas generation in LIB cells. We found that a DVSF concentration of only 1% was necessary to reduce the gas generation by approximately 50% while simultaneously experiencing a negligible impact on the cycle life. To better understand this effect on a molecular level, we examined possible electrochemical reactions through ab initio molecular dynamics (AIMD) based on the density functional theory (DFT). From the electrolyte mixture's exposure to either an electrochemically reductive or an oxidative environment, we determined the reaction pathways for the generation of CO2 gas and the mechanism by which DVSF additives effectively blocked the gas's generation. The key reaction was merging DVSF with cyclic carbonates, such as FEC. Therefore, we concluded that DVSF additives could offer a relatively simplistic and effective approach for controlling the gas generation in lithium-ion batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Carbonatos/química , Eletrólitos/química , Gases , Lítio/química , Sulfonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA