Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 663: 41-46, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119764

RESUMO

Renal cell carcinoma (RCC), also known as kidney cancer, is a common malignant tumor of the urinary system. While surgical treatment is essential, novel therapeutic targets and corresponding drugs for RCC are still needed due to the high relapse rate and low five-year survival rate. In this study, we found that SUV420H2 is overexpressed in renal cancers and that high SUV420H2 expression is associated with a poor prognosis, as evidenced by RCC RNA-seq results derived from the TCGA. SUV420H2 knockdown using siRNA led to growth suppression and cell apoptosis in the A498 cell line. Furthermore, we identified DHRS2 as a direct target of SUV420H2 in the apoptosis process through a ChIP assay with a histone 4 lysine 20 (H4K20) trimethylation antibody. Rescue experiments showed that cotreatment with siSUV420H2 and siDHRS2 attenuated cell growth suppression induced by SUV420H2 knockdown only. Additionally, treatment with the SUV420H2 inhibitor A-196 induced cell apoptosis via upregulation of DHRS2. Taken together, our findings suggest that SUV420H2 may be a potential therapeutic target for the treatment of renal cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Recidiva Local de Neoplasia/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo
2.
Cell Death Dis ; 13(10): 845, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192391

RESUMO

The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.


Assuntos
Colina Quinase , Neoplasias Ovarianas , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Colina/metabolismo , Colina Quinase/genética , Colina Quinase/metabolismo , Regulação para Baixo , Feminino , Glicerilfosforilcolina/metabolismo , Humanos , NAD/metabolismo , NADP/metabolismo , Neoplasias Ovarianas/genética , Oxirredutases/genética , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Anticancer Drugs ; 33(10): 1058-1068, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206098

RESUMO

Long noncoding RNAs (lncRNAs) have been demonstrated to participate in various biological processes and play key roles in tumorigenesis and metastasis. Pituitary adenoma (PA) is one of the most common malignancies in central nervous system. Recently, multiple lncRNAs have been identified to regulate PA initiation, progression and metastasis. we aimed to elucidate the expression pattern and function of lncRNA MYMLR in PA development. The expression of lncRNA MYMLR in PA tissues and cells was examined by real-time quantitative PCR. Knockdown of MYMLR expression was achieved by using shRNA. The function of MYMLR and regulatory network were analyzed using CCK-8 assay, wound-healing assay, migration assay and Annexin V/PI staining. Xenograft tumor model was used to explore the function of MYMLR in vivo . Bioinformatics analysis and luciferase reporter assay were conducted to investigate the interaction between MYMLR and its regulatory network. LncRNA MYMLR was highly expressed in PA tissues compared with that in normal tissues. Knockdown of MYMLR suppressed cell proliferation, migration and invasion, while promoting PA cell apoptosis. Mechanistically, MYMLR functioned as a competing endogenous RNA (ceRNA) sponging microRNA miR-197-3p. Furthermore, miR-197-3p exerted its tumor inhibitory role via negatively regulating carbonyl reductase 1 (CBR1). Overexpression of CBR1 antagonized the inhibitory effect of lncRNA MYMLR knockdown or miR-197-3p overexpression. In addition, xenograft tumor model revealed that knockdown of lncRNA MYMLR suppressed PA tumor development in vivo via regulating CBR1. Our findings suggest a regulatory network of lncRNA MYMLR/miR-197-3p/CBR1, which benefits the understanding of PA development and provides a promising lncRNA-direct therapeutic strategy against PA.


Assuntos
Carbonil Redutase (NADPH) , MicroRNAs , Neoplasias Hipofisárias , RNA Longo não Codificante , Humanos , Anexina A5/genética , Anexina A5/metabolismo , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hipofisárias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno , Animais
4.
J Steroid Biochem Mol Biol ; 215: 106025, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34775032

RESUMO

Nowadays, 17ß-estradiol (E2) biodegradation pathway has still not been identified in bacteria. To bridge this gap, we have described a novel E2 degradation pathway in Rhodococcus sp. P14 in this study, which showed that estradiol could be first transferred to estrone (E1) and thereby further converted into 16-hydroxyestrone, and then transformed into opened estrogen D ring. In order to identify the genes, which may be responsible for the pathway, transcriptome analysis was performed during E2 degradation in strain P14. The results showed that the expression of a short-chain dehydrogenase (SDR) gene and a CYP123 gene in the same gene cluster could be induced significantly by E2. Based on gene analysis, this gene cluster was found to play an important role in transforming E2 to 16-hydroxyestrone. The function of CYP123 was unknown before this study, and was found to harbor the activity of 16-estrone hydratase. Moreover, the global response to E2 in strain P14 was also analyzed by transcriptome analysis. It was observed that various genes involved in the metabolism processes, like the TCA cycle, lipid and amino acid metabolism, as well as glycolysis showed a significant increase in mRNA levels in response to strain P14 that can use E2 as the single carbon source. Overall, this study provides us an in depth understanding of the E2 degradation mechanisms in bacteria and also sheds light about the ability of strain P14 to effectively use E2 as the major carbon source for promoting its growth.


Assuntos
Carbonil Redutase (NADPH)/genética , Sistema Enzimático do Citocromo P-450/genética , Estradiol/metabolismo , Regulação Bacteriana da Expressão Gênica , Rhodococcus/metabolismo , Transcriptoma , Biotransformação , Carbono/metabolismo , Carbonil Redutase (NADPH)/metabolismo , Ciclo do Ácido Cítrico/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Estrona/metabolismo , Ontologia Genética , Hidroxiestronas/metabolismo , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Família Multigênica , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhodococcus/classificação , Rhodococcus/genética
5.
Biochem J ; 478(19): 3597-3611, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34542554

RESUMO

The hetero-oligomeric retinoid oxidoreductase complex (ROC) catalyzes the interconversion of all-trans-retinol and all-trans-retinaldehyde to maintain the steady-state output of retinaldehyde, the precursor of all-trans-retinoic acid that regulates the transcription of numerous genes. The interconversion is catalyzed by two distinct components of the ROC: the NAD(H)-dependent retinol dehydrogenase 10 (RDH10) and the NADP(H)-dependent dehydrogenase reductase 3 (DHRS3). The binding between RDH10 and DHRS3 subunits in the ROC results in mutual activation of the subunits. The molecular basis for their activation is currently unknown. Here, we applied site-directed mutagenesis to investigate the roles of amino acid residues previously implied in subunit interactions in other SDRs to obtain the first insight into the subunit interactions in the ROC. The results of these studies suggest that the cofactor binding to RDH10 subunit is critical for the activation of DHRS3 subunit and vice versa. The C-terminal residues 317-331 of RDH10 are critical for the activity of RDH10 homo-oligomers but not for the binding to DHRS3. The C-terminal residues 291-295 are required for DHRS3 subunit activity of the ROC. The highly conserved C-terminal cysteines appear to be involved in inter-subunit communications, affecting the affinity of the cofactor binding site in RDH10 homo-oligomers as well as in the ROC. Modeling of the ROC quaternary structure based on other known structures of SDRs suggests that its integral membrane-associated subunits may be inserted in adjacent membranes of the endoplasmic reticulum (ER), making the formation and function of the ROC dependent on the dynamic nature of the tubular ER network.


Assuntos
Oxirredutases do Álcool/metabolismo , Carbonil Redutase (NADPH)/metabolismo , Proteínas de Membrana/metabolismo , Retinaldeído/metabolismo , Tretinoína/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Animais , Biocatálise , Carbonil Redutase (NADPH)/química , Carbonil Redutase (NADPH)/genética , Domínio Catalítico , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida/métodos , Estrutura Quaternária de Proteína , Spodoptera/citologia , Relação Estrutura-Atividade
6.
Genomics ; 113(3): 1057-1069, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667649

RESUMO

The Bromodomain and Extra-terminal domain (BET) proteins are promising targets in treating cancers. Although BET inhibitors have been in clinical trials, they are limited by lacking of suitable biomarkers to indicate drug responses in different cancers. Here we identify DHRS2, ETV4 and NOTUM as potential biomarkers to indicate drug resistance in liver cancer cells of a recently discovered BET inhibitor, Hjp-6-171. Furthermore, we confirm that reactivation of WNT pathway, the target of NOTUM, contributes to the drug sensitivity restoration in Hjp-6-171 resistant cells. Specially, combinations of Hjp-6-171 and a GSK3ß inhibitor CHIR-98014 show remarkable therapeutic effects in vitro and in vivo. Integrating RNA-seq and ChIP-seq data, we reveal the expression signature of ß-catenin regulated genes is contrary in sensitive cells to that in resistant cells. We propose WNT signaling molecules such as ß-catenin and ETV4 to be candidate biomarkers to indicate BET inhibitor responses in liver cancer patients.


Assuntos
Neoplasias Hepáticas , Via de Sinalização Wnt , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
7.
Turk J Haematol ; 37(4): 226-233, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32586085

RESUMO

Objective: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease resulting from the accumulation of genetic changes that affect the development of T-cells. The precise role of lymphoid enhancer-binding factor 1 (LEF1) in T-ALL has been controversial since both overexpression and inactivating LEF1 mutations have been reported to date. Here, we investigate the potential gene targets of LEF1 in the Jurkat human T-cell leukemia cell line. Materials and Methods: We used small interfering RNA (siRNA) technology to knock down LEF1 in Jurkat cells and then compared the gene expression levels in the LEF1 knockdown cells with non-targeting siRNA-transfected and non-transfected cells by employing microarray analysis. Results: We identified DHRS2, a tumor suppressor gene, as the most significantly downregulated gene in LEF1 knockdown cells, and we further confirmed its downregulation by real-time quantitative polymerase chain reaction (qRT-PCR) in mRNA and at protein level by western blotting. Conclusion: Our results revealed that DHRS2 is positively regulated by LEF1 in Jurkat cells, which indicates the capability of LEF1 as a tumor suppressor and, together with previous reports, suggests that LEF1 exhibits a regulatory role in T-ALL via not only its oncogenic targets but also tumor suppressor genes.


Assuntos
Carbonil Redutase (NADPH)/genética , Regulação Leucêmica da Expressão Gênica , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Biomarcadores Tumorais , Biologia Computacional/métodos , Humanos , Células Jurkat , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Interferência de RNA , RNA Mensageiro , RNA Interferente Pequeno/genética
8.
Drug Dev Res ; 81(7): 885-892, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32542754

RESUMO

Investigate the effect of flufenamic acid (FFA) on lung injury of sepsis rats. Rat sepsis model was established using cecal ligation and puncture (CLP). The pathomorphology of lung tissue was detected by Hematoxylin-eosin (H&E) staining. The expression levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and high mobility group box-1 (HMGB-1) in serum and TNF-α, IL-6, malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) in lung tissues. The viability of RLE-6TN cells was detected by CCK-8 assay. The expression of carbonyl reductase 1 (CBR1) in RLE-6TN cells was analyzed by Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The inflammatory response was obviously enhanced in CLP-constructed sepsis rats and alleviated by FFA treatment. Sepsis induced the increase of W/D ratio, promoted the levels of TNF-α, IL-6, HMGBR1, and MDA and inhibited the levels of SOD and GSH. FFA could effectively alleviate the sepsis-induced lung injury. The viability of RLE-6TN cells induced by LPS was improved with the treatment of FFA. CBR1 expression in LPS-induced RLE-6TN cells was decreased and FFA could up-regulate the CBR1 expression. In addition, LPS-induced lung injury promoted the inflammatory response in lung tissues, increased the W/D ratio and levels of TNF-α, IL-6, HMGBR1, and MDA while inhibited the levels of SOD and GSH. FFA could effectively improve the LPS-induced lung injury while the effect of FFA on LPS-induced lung injury was alleviated by CBR1 interference. FFA may alleviate sepsis-induced lung injury by up-regulating CBR1.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Carbonil Redutase (NADPH)/metabolismo , Ácido Flufenâmico/uso terapêutico , Sepse/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Carbonil Redutase (NADPH)/genética , Linhagem Celular , Ácido Flufenâmico/farmacologia , Glutationa/metabolismo , Interleucina-6/sangue , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Sepse/complicações , Sepse/metabolismo , Sepse/patologia , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima/efeitos dos fármacos
9.
Epigenetics ; 15(1-2): 122-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31423895

RESUMO

Histone deacetylases (HDACs) have been linked to a variety of cancers, and HDAC inhibitors (HDACi) are a promising class of drugs that have demonstrated anti-cancer effects. However, we have little knowledge regarding the selection and application of HDAC inhibitors to the personalized treatment of ovarian cancer (OC). Here, we report a correlation between the high expression of HDACs and poor outcomes in OC patients, which reveals that HDACi are a class of agents that show great promise for the treatment of OC. Furthermore, we found that HDACi increased both the mRNA and protein levels of DHRS2, which has been shown to be closely linked to HDACi sensitivity when it is highly expressed, especially in ovarian cancer cells. Consistently, we found that suppression of DHRS2 reduced the sensitivity of OC cells to HDAC inhibitors via attenuation of the inhibitory effects of HDAC inhibitors on Mcl-1 in vitro. Our study demonstrated that DHRS2 expression was decreased in OC tissues and that high expression of DHRS2 was correlated with better outcomes in OC patients. In addition, DHRS2 expression was closely related to the effects of chemotherapy. Our study reveals the role of DHRS2 in cell apoptosis induced by HDAC inhibitors and explores the clinical attributes of DHRS2 in OC from a new perspective, suggesting that OC patients with high DHRS2 expression may benefit from treatment with HDAC inhibitors.


Assuntos
Biomarcadores Tumorais/genética , Carbonil Redutase (NADPH)/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/genética , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carbonil Redutase (NADPH)/metabolismo , Linhagem Celular Tumoral , Feminino , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Neoplasias Ovarianas/patologia , Prognóstico
10.
Oncol Rep ; 42(5): 1725-1734, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31436301

RESUMO

Oxaliplatin (Oxa)­based chemotherapy is widely used as the first­line treatment for colorectal cancer (CRC). However, Oxa­resistance is common for many postoperative CRC patients. To explore drug resistance in CRC, an Oxa­resistant cell line, HCT116/Oxa, was established from parental HCT116 cells. These Oxa­resistant cells exhibited characteristics of epithelial­mesenchymal transition (EMT) and a higher migratory capacity than parental cells. Protein profiles of HCT116/Oxa and HCT116 cells were compared using a tandem mass tag­based quantitative proteomics technique. The protein dehydrogenase/reductase SDR family member 2 (DHRS2) was revealed to be highly expressed in HCT116/Oxa cells. Silencing of DHRS2 in HCT116/Oxa cells effectively restored Oxa­sensitivity by suppressing the expression of excision repair cross­complementing group 1 protein via a p53­dependent pathway, and reversed the EMT phenotype. Overall, the suppression of DHRS2 expression may be a promising strategy for the prevention of Oxa­resistance in CRC.


Assuntos
Carbonil Redutase (NADPH)/antagonistas & inibidores , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Endonucleases/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Caderinas/metabolismo , Carbonil Redutase (NADPH)/genética , Movimento Celular/efeitos dos fármacos , Cromatografia Líquida , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células HCT116 , Humanos , Oxaliplatina/farmacologia , Proteômica , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem
11.
J Exp Clin Cancer Res ; 38(1): 300, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291971

RESUMO

BACKGROUND: Cancer is fundamentally a deregulation of cell growth and proliferation. Cancer cells often have perturbed metabolism that leads to the alteration of metabolic intermediates. Dehydrogenase/reductase member 2 (DHRS2) belongs to short-chain alcohol dehydrogenase/reductase (SDR) superfamily, which is functionally involved in a number of intermediary metabolic processes and in the metabolism of lipid signaling molecules. DHRS2 displays closely association with the inhibition of cell proliferation, migration and quiescence in cancers. METHODS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays were applied to evaluate the proliferative ability of nasopharyngeal carcinoma (NPC) cells. We performed lipid metabolite profiling using gas chromatography coupled with mass spectrometry (GC/MS) to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA sequencing technique combined with differentially expressed genes analysis was applied to identify the expression of genes responsible for the anti-tumor effect of trichothecin (TCN), a natural sesquiterpenoid compound isolated from an endophytic fungus. RESULTS: Our current findings reveal that DHRS2 affects lipid metabolite profiling to induce cell cycle arrest and growth inhibition in NPC cells. Furthermore, we demonstrate that TCN is able to induce growth inhibition of NPC in vitro and in vivo by up-regulating DHRS2. CONCLUSIONS: Our report suggests that activating DHRS2 to reprogram lipid homeostasis may be a target for the development of targeted therapies against NPC. Moreover, TCN could be exploited for therapeutic gain against NPC by targeting DHRS2 and it may also be developed as a tool to enhance understanding the biological function of DHRS2.


Assuntos
Carbonil Redutase (NADPH)/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Animais , Carbonil Redutase (NADPH)/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Carcinoma Nasofaríngeo/metabolismo , Tricotecenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Med Rep ; 18(3): 2651-2660, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30015886

RESUMO

The aim of the present study was to explore the candidate genes, chemicals and mechanisms of congenital obstructive nephropathy (CON). The gene expression profiles of GSE48041, including 24 kidney tissue samples from megabladder (mgb­/­) mouse were downloaded from the Gene Expression Omnibus database. Samples were divided into 4 groups: Control, mild, moderate and severe. Differentially expressed genes (DEGs), protein­protein interaction network, Kyoto Encyclopedia of Genes and Genomes pathways and transcription factor (TF)­target gene analyses were performed on Set 1 (mild, moderate and severe groups), while Gene Ontology (GO) function enrichment analysis and chemical investigation were performed on Set 2 (severe group). A total of 187 and 139 DEGs were obtained in Set 1 and Set 2, respectively. Chemical carcinogenesis [enriched by genes such as Carbonyl reductase 1 (CBR1)] was one of the most prominent pathways in Set 1. GO analysis for Set 2 revealed that DEGs were mainly assembled in functions such as cellular response to interleukin­1 and cellular response to tumor necrosis. Furthermore, genes such as Fos Proto­Oncogene (FOS) were co­regulated by TFs including RNA polymerase II subunit A (Polr2a) and serum response factor (Srf). Chemical cyclosporine served the most important role in Set 2 by targeting several DEGs in Set 2. DEGs such as CBR1 and FOS, TFs including Polr2a and Srf, and pathways such as chemical carcinogenesis may serve important roles in the process of CON. Interleukin­1 and tumor necrosis function may be novel targets for CON gene therapy. Furthermore, cyclosporine may be a promising option for future CON therapy.


Assuntos
Biologia Computacional , Nefropatias/patologia , Animais , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Rim/metabolismo , Nefropatias/congênito , Nefropatias/genética , Camundongos , Camundongos Knockout , Mapas de Interação de Proteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA