Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Phys Chem B ; 128(24): 5823-5839, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38848492

RESUMO

The reaction of benzylsuccinate synthase, the radical-based addition of toluene to a fumarate cosubstrate, is initiated by hydrogen transfer from a conserved cysteine to the nearby glycyl radical in the active center of the enzyme. In this study, we analyze this step by comprehensive computer modeling, predicting (i) the influence of bound substrates or products, (ii) the energy profiles of forward- and backward hydrogen-transfer reactions, (iii) their kinetic constants and potential mechanisms, (iv) enantiospecificity differences, and (v) kinetic isotope effects. Moreover, we support several of the computational predictions experimentally, providing evidence for the predicted H/D-exchange reactions into the product and at the glycyl radical site. Our data indicate that the hydrogen transfer reactions between the active site glycyl and cysteine are principally reversible, but their rates differ strongly depending on their stereochemical orientation, transfer of protium or deuterium, and the presence or absence of substrates or products in the active site. This is particularly evident for the isotope exchange of the remaining protium atom of the glycyl radical to deuterium, which appears dependent on substrate or product binding, explaining why the exchange is observed in some, but not all, glycyl-radical enzymes.


Assuntos
Biocatálise , Cinética , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Domínio Catalítico , Modelos Moleculares , Cisteína/química , Cisteína/metabolismo , Hidrogênio/química , Radicais Livres/química , Radicais Livres/metabolismo , Carbono-Carbono Liases
2.
Physiol Plant ; 176(3): e14371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837414

RESUMO

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulação da Expressão Gênica de Plantas , Liases , Raízes de Plantas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/biossíntese , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Liases/genética , Liases/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Regiões Promotoras Genéticas/genética , Carbono-Carbono Liases/metabolismo , Carbono-Carbono Liases/genética , Ativação Transcricional/genética
3.
Plant Cell Physiol ; 65(3): 428-446, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174441

RESUMO

Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nymphaea , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nymphaea/metabolismo , Alcanos/metabolismo , Carbono-Carbono Liases/metabolismo
4.
Arthritis Rheumatol ; 75(2): 187-200, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35819819

RESUMO

OBJECTIVE: The etiology underlying cases of palindromic rheumatism (PR) not associated with other rheumatic diseases in patients who are seronegative for rheumatoid factor and anti-cyclic citrullinated peptide (seronegative PR) is unclear. We aimed to investigate the immune cells and genes involved. METHODS: This was a single-center comparative study of 48 patients with seronegative PR and 48 healthy controls. Mass cytometry and RNA sequencing were used to identify distinct immune cell subsets in blood. Among the 48 seronegative PR patients, plasma samples from 40 patients were evaluated by enzyme-linked immunosorbent assay for cytokine levels, and peripheral blood samples from 25 patients were evaluated by flow cytometry for mononuclear cell subsets. Plasma samples from 21 patients were evaluated by real-time polymerase chain reaction for differential gene and protein expression, and samples from 3 patients were analyzed with whole-exome sequencing for gene mutations. RESULTS: Immunophenotyping revealed a markedly increased frequency of CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells in seronegative PR patients with active flares compared with healthy controls (P < 0.0001 for both cell subset comparisons). Gene enrichment analyses of RNA-sequencing data from sorted CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells showed involvement of the inflammatory/stress response, phagocytosis, and regulation of apoptosis functional pathways. Up-regulated expression of CXCL16 and IL10RA was observed in monocytes from PR patients. Up-regulation of PFKFB3, DDIT4, and TGFB1, and down-regulation of PDIA6 were found in monocytes and lymphocytes from PR patients with active flares and PR patients in intercritical periods. Plasma levels of S100A8/A9 and interleukin-1ß were elevated in PR patients. Whole-exome sequencing revealed novel polygenic mutations in HACL1, KDM5A, RASAL1, HAVCR2, PRDM9, MBOAT4, and JRKL. CONCLUSION: In seronegative PR patients, we identified a distinct CD14+CD11b+CD36+ cell subset that can induce an inflammatory response under stress and exert antiinflammatory effects after phagocytosis of apoptotic cells, and a CD4+CD25-CD69+ T cell subset with pro- and antiinflammatory properties. Individuals with genetic mutations involving epigenetic modification, potentiation and resolution of stress-induced inflammation/apoptosis, and a dysregulated endoplasmic reticulum stress response could be predisposed to seronegative PR.


Assuntos
Artrite Reumatoide , Fator Reumatoide , Humanos , Autoanticorpos , Citocinas , Mutação , Proteína 2 de Ligação ao Retinoblastoma , Histona-Lisina N-Metiltransferase , Carbono-Carbono Liases
5.
Artigo em Inglês | MEDLINE | ID: mdl-35100101

RESUMO

An investigation of the diversity of 1-aminocyclopropane-1-carboxylate deaminase producing bacteria associated with camel faeces revealed the presence of a novel bacterial strain designated C459-1T. It was Gram-stain-negative, short-rod-shaped and non-motile. Strain C459-1T was observed to grow optimally at 35 °C, at pH 7.0 and in the presence of 0 % NaCl on Luria-Bertani agar medium. The cells were found to be positive for catalase and oxidase activities. The major fatty acids (>10 %) were identified as iso-C15 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and iso-C17 : 0 3-OH. The predominant menaquinone was MK-7. The major polar lipids consisted of phosphatidylethanolamine, one sphingophospholipid, two unknown aminophospholipids, three unknown glycolipids and five unknown lipids. The genomic DNA G+C content was 40.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain C459-1T was affiliated with the genus Sphingobacterium and had the highest sequence similarity to Sphingobacterium tabacisoli h337T (97.0 %) and Sphingobacterium paucimobilis HER1398T (95.6 %). The average nucleotide identity and digital DNA-DNA hybridization values between strain C459-1T and S. tabacisoli h337T were 83.8 and 33.8 %, respectively. Phenotypic characteristics including enzyme activities and carbon source utilization differentiated strain C459-1T from other Sphingobacterium species. Based on its phenotypic, chemotaxonomic and phylogenetic properties, strain C459-1T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium faecale sp. nov. is proposed, with strain is C459-1T (CGMCC 1.18716T=KCTC 82381T) as the type strain.


Assuntos
Camelus/microbiologia , Filogenia , Sphingobacterium , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Carbono-Carbono Liases , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/classificação , Sphingobacterium/enzimologia , Sphingobacterium/isolamento & purificação
6.
Arch Microbiol ; 203(10): 6215-6229, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609529

RESUMO

The endophytic fungus Phomopsis liquidambaris is characterized as a plant growth-promoting agent under salt stress, but its mechanism is unknown. Herein, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) from the strain was confirmed that it had the ability of utilizing 1-aminocyclopropane-1-carboxylate as the sole nitrogen source. The full-length ACCD gene was 1152 bp, which encodes a mature protein of 384 amino acids with a molecular mass of 41.53 kDa. The ACCD activity was 3.9-fold in 3 mmol L-1 ACC by qRT-PCR under salt stress comparing with no salt tress. Ethylene production was increased to 34.55-70.60% and reduced the growth of rice by 23-69.73% under salt stress. Inoculation of P. liquidambaris increased root-shoot length, fresh and dry weight, and overall growth of stressed rice seedlings. ACC accumulation, ACC synthase and ACC oxidase activities increased in salt-treated rice seedlings, while they were significantly reduced when P. liquidambaris was inoculated into rice by qRT-PCR. It therefore can be concluded that P. liquidambaris can be used as a plant growth promoting fungus against salt stress and other biotic or abiotic stresses.


Assuntos
Oryza , Carbono-Carbono Liases , Etilenos , Phomopsis , Estresse Salino
7.
Microbiol Spectr ; 9(1): e0027921, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34190589

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and biopesticides. We isolated four PGPR (designated n, L, K, and Y) that confer growth-promoting effects on Arabidopsis thaliana. The present study describes the detailed polyphasic characterization of these PGPR. Classical methods of bacterial identification and biochemical test kits (API20E, API20NE, API ZYM, and API 50CH) revealed their metabolic versatility. All rhizobacterial isolates were positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) and indole acetic acid production and phosphorous solubilization. PCR analysis confirmed the presence of the nifH gene in strains n, L, and Y, showing their N2-fixation potential. In vitro dual culture methods and bacterial infestation in planta demonstrated that strains n and L exerted antagonistic effects on Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea 191 and provided protection to Arabidopsis plants against both phytopathogens. Short- or long-term bacterial treatment revealed significant changes in transcript levels of genes annotated to stress response and hormone metabolism in A. thaliana. In particular, the expression of stress-responsive genes in A. thaliana showed an upregulation under salinity stress. MAP kinase 6 (MPK6) was involved in the growth promotion induced by the four bacterial strains. Furthermore, these strains caused a significant increase in root dry weight of maize seedlings under gnotobiotic conditions. We conclude that the four rhizobacteria are good candidates as biofertilizers for enhancing growth of maize, among which strains n and L showed marked plant growth-promoting attributes and the potential to be exploited as functional biostimulants and biopesticides for sustainable agriculture. IMPORTANCE There are pressing needs to reduce the use of agrochemicals, and PGPR are receiving increasing interest in plant growth promotion and disease protection. This study follows up our previous report that the four newly isolated rhizobacteria promote the growth of Arabidopsis thaliana. We test the hypothesis that they have multiple PGP traits and that they can be used as biofertilizers and biopesticides. In vitro assays indicated that these four strains have various PGP properties related to nutrient availability, stress resistance, and/or pest organism antagonism. They significantly influenced the transcript levels of genes involved in stress response and hormone metabolism in A. thaliana. MPK6 is indispensable to the growth stimulation effects. Strains n and L protected A. thaliana seedlings against phytopathogens. Three strains significantly increased maize growth in vitro. In summary, introducing these four strains onto plant roots provides a benefit to the plants. This is the first study regarding the potential mechanism(s) applied by Mucilaginibacter sp. as biostimulants.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Reguladores de Crescimento de Plantas/metabolismo
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(4): 416-419, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33840416

RESUMO

A boy attended the hospital at the age of 1 month due to left hand tremor for 1 week. A blood test showed a reduction in serum uric acid and a cranial MRI showed encephalomalacia, atrophy, and cystic changes. The boy had microcephalus, unusual facial features (long face, long forehead, protruded forehead, long philtrum, low nasal bridge, facial swelling, and thick lower lip), hypertonia of lower extremities, and severe global developmental delay. Whole-exome sequencing performed for the boy detected a homozygous mutation, c.217C > T(p.R73W), in the MOCS1 gene, which came from his parents and was determined as "possibly pathogenic". The boy was diagnosed with molybdenum cofactor deficiency type A based on clinical manifestations and gene test results. This disease is reported for the first time in China.


Assuntos
Erros Inatos do Metabolismo dos Metais , Ácido Úrico , Carbono-Carbono Liases , China , Humanos , Recém-Nascido , Masculino , Mutação
9.
Org Lett ; 23(8): 3162-3166, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33826848

RESUMO

The sesquiterpene cyclases pentalenene synthase (PenA) and two Δ6-protoilludene synthases Omp6 and Omp7 convert a FPP ether into several new tetrahydrofurano terpenoids, one of which is also formed as the main product by the sesquiterpene cyclase BcBOT2. Thus, PenA, Omp6/7, and BcBOT2 follow closely related catalytic pathways and induce similar folding of their diphosphate substrates despite low levels of amino acid sequence similarity. Some of the new terpenoids show pronounced olfactoric properties.


Assuntos
Carbono-Carbono Liases/química , Éter/química , Isomerases/química , Sequência de Aminoácidos , Estrutura Molecular , Sesquiterpenos/química
10.
J Biotechnol ; 331: 53-62, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33727083

RESUMO

Agricultural sustainability is an increasing need considering the challenges posed by climate change and rapid human population growth. The use of plant growth-promoting rhizobacteria (PGPR) may represent an excellent, new agriculture practice to improve soil quality while promoting growth and yield of important crop species subjected to water stress conditions. In this study, two PGPR strains with 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase activity were co-inoculated in velvet bean plants to verify the physiological, biochemical and molecular responses to progressive water stress. The results of our study show that the total biomass and the water use efficiency of inoculated plants were higher than uninoculated plants at the end of the water stress period. These positive effects may be derived from a lower root ACC content (-45 %) in water-stressed inoculated plants than in uninoculated ones resulting in lower root ethylene emission. Furthermore, the ability of inoculated plants to maintain higher levels of both isoprene emission, a priming compound that may help to protect leaves from oxidative damage, and carbon assimilation during water stress progression may indicate the underlining metabolic processes conferring water stress tolerance. Overall, the experimental results show that co-inoculation with ACC deaminase PGPR positively affects tolerance to water deficit, confirming the potential for biotechnological applications in water-stressed agricultural areas.


Assuntos
Mucuna , Butadienos , Carbono-Carbono Liases , Etilenos , Hemiterpenos , Humanos , Fotossíntese , Raízes de Plantas , Microbiologia do Solo , Água
11.
Structure ; 29(3): 292-304.e3, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33296666

RESUMO

The formation of specific protein complexes in a cell is a non-trivial problem given the co-existence of thousands of different polypeptide chains. A particularly difficult case are two glutamine amidotransferase complexes (anthranilate synthase [AS] and aminodeoxychorismate synthase [ADCS]), which are composed of homologous pairs of synthase and glutaminase subunits. We have attempted to identify discriminating interface residues of the glutaminase subunit TrpG from AS, which are responsible for its specific interaction with the synthase subunit TrpEx and prevent binding to the closely related synthase subunit PabB from ADCS. For this purpose, TrpG-specific interface residues were grafted into the glutaminase subunit PabA from ADCS by two different approaches, namely a computational and a data-driven one. Both approaches resulted in PabA variants that bound TrpEx with higher affinity than PabB. Hence, we have accomplished a reprogramming of protein-protein interaction specificity that provides insights into the evolutionary adaptation of protein interfaces.


Assuntos
Antranilato Sintase/química , Carbono-Carbono Liases/química , Proteínas de Escherichia coli/química , Transaminases/química , Substituição de Aminoácidos , Antranilato Sintase/genética , Antranilato Sintase/metabolismo , Sítios de Ligação , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Transaminases/genética , Transaminases/metabolismo
12.
Arch Microbiol ; 203(3): 1131-1148, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33206216

RESUMO

This research aims to isolate and identify Zn- and Cd-tolerant endophytic bacteria from Murdannia spectabilis, identify their properties with and without Zn and Cd stress, and to investigate the effect of bacterial inoculation in an in vitro system. Twenty-four isolates could survive on trypticase soya agar (TSA) supplemented with Zn (250-500 mg L-1) and/or Cd (20-50 mg L-1) that belonged to the genera Bacillus, Pantoea, Microbacterium, Curtobacterium, Chryseobacterium, Cupriavidus, Siphonobacter, and Pseudomonas. Each strain had different indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and siderophore production, nitrogen fixation, phosphate solubilization, and lignocellulosic enzyme characteristics. Cupriavidus plantarum MDR5 and Chryseobacterium sp. MDR7 were selected for inoculation into plantlets that were already occupied by Curtobacterium sp. TMIL due to them have a high tolerance for Zn and Cd while showing no pathogenicity. As determined via an in vitro system, Cupriavidus plantarum MDR5 remained in the plants to a greater extent than Chryseobacterium sp. MDR7, while Curtobacterium sp. TMIL was the dominant species. The Zn plus Cd treatment supported the persistence of Cupriavidus plantarum MDR5. Dual and mixed cultivation showed no antagonistic effects between the endophytes. Although the plant growth and Zn/Cd accumulation were not significantly affected by the Zn-/Cd-tolerant endophytes, the inoculation did not weaken the plants. Therefore, Cupriavidus plantarum MDR5 could be applied in a bioaugmentation process.


Assuntos
Actinomycetales/efeitos dos fármacos , Actinomycetales/fisiologia , Cádmio/farmacologia , Commelinaceae/microbiologia , Cupriavidus/efeitos dos fármacos , Cupriavidus/fisiologia , Zinco/farmacologia , Antibiose , Biodegradação Ambiental , Carbono-Carbono Liases/metabolismo , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/microbiologia , Sideróforos/metabolismo , Poluentes do Solo/farmacologia
13.
Plant Physiol Biochem ; 154: 782-795, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32680726

RESUMO

Salinity-induced ethylene accumulation caused by high production of 1-aminocyclopropane-1-carboxylic acid (ACC) hinders rice plant growth and development. Nevertheless, ACC deaminase may alleviate salt stress and high ethylene production in rice cultivars under salinity stress. Pyridoxal 5'-phosphate (PLP), an ACC deaminase co-factor, could be a useful ACC inhibitor in plants; however, it has not been studied before. In the present study, the effects of PLP on the growth and morphophysiological characteristics of rice cultivars (Jinyuan 85 (JY85) and Nipponbare (NPBA) were investigated under salinity stress (control (CK), low salinity (LS), and high salinity (HS) in hydroponic conditions. The experiment was laid out in a completely randomized design (CRD) under factorial arrangement of treatments. The results showed that, compared with no PLP, exogenous application of PLP significantly inhibited ACC and ethylene production in the roots, leaves and panicles of both cultivars under salinity, and PLP was more effective at improving the physiological characteristics of both cultivars under salinity stress. Further, root morphophysiological traits and pollen viability were triggered in the PLP treatment compared to the no-PLP treatment under various salinity levels. ACC production inhibited by PLP was useful for improving the 1000-grain weight, grain yield per plant, and total plant biomass under the CK, LS and HS treatments in both rice cultivars. These results revealed that PLP, as an ACC deaminase cofactor, is a key tool for mitigating ethylene-induced effects under salinity stress and for enhancing the agronomic and morphophysiological traits of rice under saline conditions.


Assuntos
Etilenos/metabolismo , Oryza/fisiologia , Fosfato de Piridoxal/farmacologia , Estresse Salino , Carbono-Carbono Liases , Oryza/efeitos dos fármacos , Salinidade
14.
Chem Biodivers ; 17(3): e1900669, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31984627

RESUMO

1,8-Cineole is the main volatile produced by Thymus albicans Hoffmanns. & Link 1,8-cineole chemotype. To understand the contribution of distinct plant organs to the high 1,8-cineole production, trichome morphology and density, as well as emitted volatiles and transcriptional expression of the 1,8-cineole synthase (CIN) gene were determined separately for T. albicans leaves, bracts, calyx, corolla and inflorescences. Scanning electron microscopy (SEM) and stereoscope microscopy observations showed the highest peltate trichome density in leaves and bracts, significantly distinct from calyx and corolla. T. albicans volatiles were collected by solid phase micro extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC/MS) and by GC for component identification and quantification, respectively. Of the 23 components identified, 1,8-cineole was the dominant volatile (57-93 %) in all T. albicans plant organs. The relative amounts of emitted volatiles clearly separated vegetative from reproductive organs. Gene expression of CIN was assigned to all organs analyzed and was consistent with the relatively high emission of 1,8-cineole in leaves and bracts. Further studies will be required to analyze monoterpenoid biosynthesis by each type of glandular trichome.


Assuntos
Carbono-Carbono Liases/genética , Eucaliptol/metabolismo , Genitália/química , Óleos Voláteis/metabolismo , Thymus (Planta)/metabolismo , Carbono-Carbono Liases/metabolismo , Eucaliptol/química , Flores/química , Flores/metabolismo , Frutas/química , Frutas/metabolismo , Genitália/metabolismo , Óleos Voláteis/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Thymus (Planta)/química
15.
Phytochem Anal ; 31(4): 480-487, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31908083

RESUMO

INTRODUCTION: Nicotiana tabacum is a plant model intensively used in the bio-engineering pharmaceutical industry as a platform to produce drugs and therapeutic agents. Currently, no information regarding the non-targeted metabolome of transgenic tobacco containing recombinant regulatory sequences is available. OBJECTIVE: To compare the proton nuclear magnetic resonance (1 H-NMR) metabolomics profiling of a recombinant Nicotiana tabacum strain containing a promoter of a sesquiterpene cyclase from Capsicum annuum driving GUS expression, versus wild-type samples. Methodology The non-targeted 1 H-NMR metabolome was obtained and processed by principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). The differential metabolites were quantified by quantitative NMR. RESULTS: PCA and OPLS-DA revealed 37 metabolites including 16 discriminant compounds for transgenic samples. Ethanol (0.4 mg g-1 ), the main differential compound, was exclusively detected in transgenic tobacco; however, high levels of formate (0.28 mg g-1 ) and acetate (0.3 mg g-1 ) were simultaneously observed in the same group of samples. Cembratriene-4,6-diol, an antitumour and neuroprotective compound, and capsidiol, a known phytoalexin, increased by about 30% in transgenic samples. In addition, the endogenous levels of the antioxidant caffeoylquinic acid isomers increased by 50% in comparison to those of wild-type tobaccos. CONCLUSION: Our results support the occurrence of metabolic differences between wild type and transgenic tobacco containing a promoter of a Capsicum sesquiterpene cyclase gene. Interestingly, the recombinant transgenic strain studied accumulated high amounts of added value compounds with biological activity.


Assuntos
Metabolômica , Nicotiana , Carbono-Carbono Liases , Espectroscopia de Ressonância Magnética
16.
J Biol Chem ; 295(10): 3029-3039, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31996372

RESUMO

Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1). Alternative splicing of MOCS1 within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I-III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.


Assuntos
Carbono-Carbono Liases/metabolismo , Mitocôndrias/metabolismo , Processamento Alternativo , Animais , Células COS , Carbono-Carbono Liases/genética , Chlorocebus aethiops , Éxons , Humanos , Microscopia de Fluorescência , Proteínas Mitocondriais/metabolismo , Fases de Leitura Aberta/genética , Compostos Organofosforados/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pterinas/metabolismo
17.
Int J Mol Sci ; 20(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590281

RESUMO

Both hormonal balance and plant growth may be shaped by microorganisms synthesizing phytohormones, regulating its synthesis in the plant and inducing plant resistance by releasing elicitors from cell walls (CW) by degrading enzymes (CWDE). It was shown that the Trichoderma DEMTkZ3A0 strain, isolated from a healthy rye rhizosphere, colonized the rhizoplane of wheat seedlings and root border cells (RBC) and caused approximately 40% increase of stem weight. The strain inhibited (in over 90%) the growth of polyphagous Fusarium spp. (F. culmorum, F. oxysporum, F. graminearum) phytopathogens through a mechanism of mycoparasitism. Chitinolytic and glucanolytic activity, strongly stimulated by CW of F. culmorum in the DEMTkZ3A0 liquid culture, is most likely responsible for the lysis of hyphae and macroconidia of phytopathogenic Fusarium spp. as well as the release of plant resistance elicitors. In DEMTkZ3A0 inoculated plants, an increase in the activity of the six tested plant resistance markers and a decrease in the concentration of indoleacetic acid (IAA) auxin were noted. IAA and gibberellic acid (GA) but also the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) enzyme regulating ethylene production by plant were synthesized by DEMTkZ3A0 in the liquid culture. IAA synthesis was dependent on tryptophan and negatively correlated with temperature, whereas GA synthesis was positively correlated with the biomass and temperature.


Assuntos
Carbono-Carbono Liases/metabolismo , Resistência à Doença , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Trichoderma/metabolismo , Triticum/microbiologia , Fusarium/patogenicidade , Hifas/metabolismo , Rizosfera , Plântula/metabolismo , Plântula/microbiologia , Trichoderma/patogenicidade , Triticum/metabolismo
18.
Sci Rep ; 9(1): 12651, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477743

RESUMO

Ethylmalonic encephalopathy protein 1 (ETHE1) and molybdenum cofactor (MoCo) deficiencies are hereditary disorders that affect the catabolism of sulfur-containing amino acids. ETHE1 deficiency is caused by mutations in the ETHE1 gene, while MoCo deficiency is due to mutations in one of three genes involved in MoCo biosynthesis (MOCS1, MOCS2 and GPHN). Patients with both disorders exhibit abnormalities of the mitochondrial respiratory chain, among other biochemical findings. However, the pathophysiology of the defects has not been elucidated. To characterize cellular derangements, mitochondrial bioenergetics, dynamics, endoplasmic reticulum (ER)-mitochondria communication, superoxide production and apoptosis were evaluated in fibroblasts from four patients with ETHE1 deficiency and one with MOCS1 deficiency. The effect of JP4-039, a promising mitochondrial-targeted antioxidant, was also tested on cells. Our data show that mitochondrial respiration was decreased in all patient cell lines. ATP depletion and increased mitochondrial mass was identified in the same cells, while variable alterations in mitochondrial fusion and fission were seen. High superoxide levels were found in all cells and were decreased by treatment with JP4-039, while the respiratory chain activity was increased by this antioxidant in cells in which it was impaired. The content of VDAC1 and IP3R, proteins involved in ER-mitochondria communication, was decreased, while DDIT3, a marker of ER stress, and apoptosis were increased in all cell lines. These data demonstrate that previously unrecognized broad disturbances of cellular function are involved in the pathophysiology of ETHE1 and MOCS1 deficiencies, and that reduction of mitochondrial superoxide by JP4-039 is a promising strategy for adjuvant therapy of these disorders.


Assuntos
Carbono-Carbono Liases/deficiência , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Fibroblastos/patologia , Homeostase , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/deficiência , Proteínas de Transporte Nucleocitoplasmático/deficiência , Trifosfato de Adenosina/biossíntese , Apoptose , Carbono-Carbono Liases/metabolismo , Linhagem Celular , Respiração Celular , Análise Mutacional de DNA , Fibroblastos/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Oxirredução , Consumo de Oxigênio , Superóxidos/metabolismo
19.
Plant Cell ; 31(9): 2223-2240, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320482

RESUMO

Cuticular waxes, which cover the aboveground parts of land plants, are essential for plant survival in terrestrial environments. However, little is known about the regulatory mechanisms underlying cuticular wax biosynthesis in response to changes in ambient humidity. Here, we report that the Arabidopsis (Arabidopsis thaliana) Kelch repeat F-box protein SMALL AND GLOSSY LEAVES1 (SAGL1) mediates proteasome-dependent degradation of ECERIFERUM3 (CER3), a biosynthetic enzyme involved in the production of very long chain alkanes (the major components of wax), thereby negatively regulating cuticular wax biosynthesis. Disruption of SAGL1 led to severe growth retardation, enhanced drought tolerance, and increased wax accumulation in stems, leaves, and roots. Cytoplasmic SAGL1 physically interacts with CER3 and targets it for degradation. ß­glucuronidase (GUS) expression was observed in the roots of pSAGL1:GUS plants but was barely detected in aerial organs. High humidity-induced GUS activity and SAGL1 transcript levels were reduced in response to abscisic acid treatment and water deficit. SAGL1 levels increase under high humidity, and the stability of this protein is regulated by the 26S proteasome. These findings indicate that the SAGL1-CER3 module negatively regulates cuticular wax biosynthesis in Arabidopsis in response to changes to humidity, and they highlight the importance of permeable cuticle formation in terrestrial plants under high humidity conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono-Carbono Liases/metabolismo , Proteínas F-Box/metabolismo , Umidade , Ceras/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carbono-Carbono Liases/genética , Parede Celular/ultraestrutura , Clonagem Molecular , Secas , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/metabolismo , Mutação , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Sais/metabolismo , Plântula , Nicotiana
20.
J Agric Food Chem ; 67(21): 6007-6018, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31060359

RESUMO

4EBP1 is a chief downstream factor of mTORC1, and PPARγ is a key lipogenesis-related transcription factor. mTORC1 and PPARγ are associated with lipid metabolism. However, it is unknown which effector protein connects mTORC1 and PPARγ. This study investigated the interaction between 4EBP1 with PPARγ as part of the underlying mechanism by which insulin-induced lipid synthesis and secretion are regulated by mTORC1 in primary bovine mammary epithelial cells (pBMECs). Rapamycin, a specific inhibitor of mTORC1, downregulated 4EBP1 phosphorylation and the expression of PPARγ and the following lipogenic genes: lipin 1, DGAT1, ACC, and FAS. Rapamycin also decreased the levels of intracellular triacylglycerol (TAG); 10 types of fatty acid; and the accumulation of TAG, palmitic acid (PA), and stearic acid (SA) in the cell culture medium. Inactivation of mTORC1 by shRaptor or shRheb attenuated the synthesis and secretion of TAG and PA. In contrast, activation of mTORC1 by Rheb overexpression promoted 4EBP1 phosphorylation and PPARγ expression and upregulated the mRNA and protein levels of lipin 1, DGAT1, ACC, and FAS, whereas the levels of intracellular and extracellular TAG, PA, and SA also rose. Further, 4EBP1 interacted directly with PPARγ. Inactivation of mTORC1 by shRaptor prevented the nuclear location of PPARγ. These results demonstrate that mTORC1 regulates lipid synthesis and secretion by inducing the expression of lipin 1, DGAT1, ACC, and FAS, which is likely mediated by the 4EBP1/PPARγ axis. This finding constitutes a novel mechanism by which lipid synthesis and secretion are regulated in pBMECs.


Assuntos
Células Epiteliais/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica , Insulina/metabolismo , Lipogênese , Glândulas Mamárias Animais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , PPAR gama/metabolismo , Animais , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Bovinos , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Fatores de Iniciação em Eucariotos/genética , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , PPAR gama/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA