Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 20(13): 1701-1711, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30856684

RESUMO

Enzyme-catalyzed ß-lactone formation from ß-hydroxy acids is a crucial step in bacterial biosynthesis of ß-lactone natural products and membrane hydrocarbons. We developed a novel, continuous assay for ß-lactone synthetase activity using synthetic ß-hydroxy acid substrates with alkene or alkyne moieties. ß-Lactone formation is followed by rapid decarboxylation to form a conjugated triene chromophore for real-time evaluation by UV/Vis spectroscopy. The assay was used to determine steady-state kinetics of a long-chain ß-lactone synthetase, OleC, from the plant pathogen Xanthomonas campestris. Site-directed mutagenesis was used to test the involvement of conserved active site residues in Mg2+ and ATP binding. A previous report suggested OleC adenylated the substrate hydroxy group. Here we present several lines of evidence, including hydroxylamine trapping of the AMP intermediate, to demonstrate the substrate carboxyl group is adenylated prior to making the ß-lactone final product. A panel of nine substrate analogues were used to investigate the substrate specificity of X. campestris OleC by HPLC and GC-MS. Stereoisomers of 2-hexyl-3hydroxyoctanoic acid were synthesized and OleC preferred the (2R,3S) diastereomer consistent with the stereo-preference of upstream and downstream pathway enzymes. This biochemical knowledge was used to guide phylogenetic analysis of the ß-lactone synthetases to map their functional diversity within the acyl-CoA synthetase, NRPS adenylation domain, and luciferase superfamily.


Assuntos
Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Carbono-Oxigênio Liases/genética , Catálise , Domínio Catalítico/genética , Ensaios Enzimáticos/métodos , Hidroxiácidos/metabolismo , Cinética , Magnésio/metabolismo , Modelos Químicos , Mutagênese Sítio-Dirigida , Filogenia , Ligação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Xanthomonas campestris/enzimologia
2.
J Am Chem Soc ; 140(29): 9034-9037, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29998737

RESUMO

DNA polymerase Î¸ (Pol Î¸) is a multifunctional enzyme. It is nonessential in normal cells, but its upregulation in cancer cells correlates with cellular resistance to oxidative damage and poor prognosis. Pol Î¸ possesses polymerase activity and poorly characterized lyase activity. We examined the Pol Î¸ lyase activity on various abasic sites and determined that the enzyme is inactivated upon attempted removal of the oxidized abasic site commonly associated with C4'-oxidation (pC4-AP). Covalent modification of Pol Î¸ by the DNA lesion enabled determination of the primary nucleophile (Lys2383) responsible for Schiff base formation in the lyase reaction. Unlike some other base excision repair polymerases, Pol Î¸ uses a single active site for polymerase and lyase activity. Mutation of Lys2383 significantly reduces both enzyme activities but not DNA binding. Demonstration that Lys2383 is required for polymerase and lyase activities indicates that this residue is an Achilles heel for Pol Î¸ and suggests a path forward for designing inhibitors of this attractive anticancer target.


Assuntos
Carbono-Oxigênio Liases/antagonistas & inibidores , Carbono-Oxigênio Liases/química , DNA Polimerase Dirigida por DNA/química , Inibidores da Síntese de Ácido Nucleico/química , Butanonas/química , Carbono-Oxigênio Liases/genética , Domínio Catalítico , DNA Polimerase Dirigida por DNA/genética , Humanos , Lisina/química , Mutação , Bases de Schiff/química , DNA Polimerase teta
3.
J Agric Food Chem ; 65(29): 6002-6008, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28675039

RESUMO

Cystathionine γ-synthase (MetB) condenses O-acetyl-l-homoserine (OAHS) or O-succinyl-l-homoserine (OSHS) with cysteine to produce cystathionine. To investigate the molecular mechanisms and substrate specificity of MetB from Corynebacterium glutamicum (CgMetB), we determined its crystal structure at 1.5 Å resolution. The pyridoxal phosphate cofactor is covalently bound to Lys204 via a Schiff base linkage in the deep cavity. Superposition with the structure of MetB from Nicotiana tabacum in complex with its inhibitor dl-(E)-2-amino-5-phosphono-3-pentenoic acid revealed that Thr347 from the ß10-ß11 connecting loop, located at the entrance of the active site, is speculated to be a main contributor for stabilization of the acetyl group of OAHS. Moreover, on the basis of structural comparison of CgMetB with EcMetB utilizing OSHS as a main substrate, we propose that the conformation of the ß10-ß11 connecting loops determines the size and shape of the acetyl- or succinyl-group binding site and ultimately determines the substrate specificity of MetBs toward OAHS or OSHS.


Assuntos
Proteínas de Bactérias/química , Carbono-Oxigênio Liases/química , Corynebacterium glutamicum/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/metabolismo , Domínio Catalítico , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Homosserina/análogos & derivados , Homosserina/química , Homosserina/metabolismo , Cinética , Especificidade por Substrato
4.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 3): 152-158, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28291751

RESUMO

Cystathionine γ-synthase (CGS; EC 2.5.1.48), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the formation of cystathionine from an L-homoserine derivative and L-cysteine in the first step of the transsulfuration pathway. Recombinant CGS from the thermoacidophilic archaeon Sulfolobus tokodaii (StCGS) was overexpressed in Escherichia coli and purified to homogeneity by heat treatment followed by hydroxyapatite and gel-filtration column chromatography. The purified enzyme shows higher enzymatic activity at 353 K under basic pH conditions compared with that at 293 K. Crystallization trials yielded three crystal forms from different temperature and pH conditions. Form I crystals (space group P21; unit-cell parameters a = 58.4, b = 149.3, c = 90.2 Å, ß = 108.9°) were obtained at 293 K under acidic pH conditions using 2-methyl-2,4-pentanediol as a precipitant, whereas under basic pH conditions the enzyme crystallized in form II at 293 K (space group C2221; unit-cell parameters a = 117.7, b = 117.8, c = 251.3 Å) and in form II' at 313 K (space group C2221; unit-cell parameters a = 107.5, b = 127.7, c = 251.1 Å) using polyethylene glycol 3350 as a precipitant. X-ray diffraction data were collected to 2.2, 2.9 and 2.7 Šresolution for forms I, II and II', respectively. Structural analysis of these crystal forms shows that the orientation of the bound PLP in form II is significantly different from that in form II', suggesting that the change in orientation of PLP with temperature plays a role in the thermophilic enzymatic activity of StCGS.


Assuntos
Proteínas Arqueais/química , Carbono-Oxigênio Liases/química , Fosfato de Piridoxal/química , Sulfolobus/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/metabolismo , Precipitação Química , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicóis/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Plasmídeos/química , Plasmídeos/metabolismo , Polietilenoglicóis/química , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus/enzimologia
5.
Extremophiles ; 20(5): 733-45, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27377295

RESUMO

O-Phosphoserine sulfhydrylase (OPSS) synthesizes cysteine from O-phospho-L-serine (OPS) and sulfide. We have determined the three-dimensional structures of OPSS from hyperthermophilic archaeon Aeropyrum pernix K1 (ApOPSS) in complex with aminoacrylate intermediate (AA) formed from pyridoxal 5'-phosphate with OPS or in complex with cysteine and compared them with that of ApOPSS. We found an orientational change of F225 at the active-site entrance and constructed an F225A mutant to examine its activities and AA stability and clarify the role of F225 in ApOPSS. The OPS and O-acetyl-L-serine (OAS) sulfhydrylase activities of the F225A mutant decreased by 4.2- and 15-fold compared to those of the wild-type (wt) ApOPSS, respectively. The ability of OPS and OAS to form AA also decreased by 12- and 27-fold, respectively. AA was less stable in the F225A mutant than in the wt ApOPSS. Simulated docking showed that leaving groups, such as phosphate and acetate, were oriented to the inside of the active site in the F225A mutant, whereas they were oriented to the entrance in the wt ApOPSS. These results suggest that F225 in ApOPSS plays important roles in maintaining the hydrophobic environment of AA from solvent water and in controlling the orientation of leaving groups.


Assuntos
Aeropyrum/enzimologia , Carbono-Oxigênio Liases/química , Simulação de Acoplamento Molecular , Aeropyrum/genética , Substituição de Aminoácidos , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/metabolismo , Domínio Catalítico
6.
J Mol Model ; 21(4): 96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25799964

RESUMO

Amoebiasis, a worldwide explosive epidemic, caused by the gastrointestinal anaerobic protozoan parasite Entamoeba histolytica, infects the large intestine and, in advance stages, liver, kidney, brain and lung. Metronidazole (MNZ)-the first line medicament against amoebiasis-is potentially carcinogenic to humans and shows significant side-effects. Pyrazolo[3,4-d]pyrimidine compounds have been reported to demonstrate antiamoebic activity. In silico molecular docking simulations on nine pyrazolo[3,4-d]pyrimidine molecules without linkers (molecules 1-9) and nine pyrazolo[3,4-d]pyrimidine molecules with a trimethylene linker (molecules 10-18) along with the reference drug metronidazole (MNZ) were conducted using the modules of the programs Glide-SP, Glide-XP and Autodock with O-acetyl-L-serine sulfhydrylase (OASS) enzyme-a promising target for inhibiting the growth of Entamoeba histolytica. Docking simulations using Glide-SP demonstrate good agreement with reported biological activities of molecules 1-9 and indicate that molecules 2 and 4 may act as potential high affinity inhibitors. Trimethylene linker molecules show improved binding affinities among which molecules 15 and 16 supersede. MD simulations on the best docked poses of molecules 2, 4, 15, 16 and MNZ were carried out for 20 ns using DESMOND. It was observed that the docking complexes of molecules 4, 15 and MNZ remain stable in aqueous conditions and do not undergo noticeable fluctuations during the course of the dynamics. Relative binding free energy calculations of the ligands with the enzyme were executed on the best docked poses using the molecular mechanics generalized Born surface area (MM-GBSA) approach, which show good agreement with the reported biological activities.


Assuntos
Carbono-Oxigênio Liases/química , Entamoeba histolytica/enzimologia , Entamebíase/enzimologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Carbono-Oxigênio Liases/antagonistas & inibidores , Simulação por Computador , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/patogenicidade , Entamebíase/tratamento farmacológico , Entamebíase/parasitologia , Humanos , Metronidazol/química , Metronidazol/farmacologia , Simulação de Acoplamento Molecular , Pirazóis/química , Pirimidinas/química
7.
Biosci Biotechnol Biochem ; 79(8): 1280-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25779754

RESUMO

O-phospho-l-serine sulfhydrylase (OPSS) from archaeon Aeropyrum pernix K1 is able to synthesize l-cysteine even at 80 °C. In this article, we compared thermal stability and reactivity in organic solvent of OPSS with those of O-acetyl-l-serine sulfhydrylase B (OASS-B) from Escherichia coli. As a result, the thermostability of OPSS was much higher than that of OASS-B. Moreover, the activity of OPSS increased in the reaction mixture containing the organic solvent, such as N, N'-dimethyl formamide and 1,4-dioxane, whereas that of OASS-B gradually decreased as the content of organic solvent increased. From the crystal structural analysis, the intramolecular electrostatic interactions of N-terminal domain in OPSS seemed to be correlated with the tolerance of OPSS to high temperature and organic solvent. These results indicate that OPSS is more superior to OASS-B for the industrial production of l-cysteine and unnatural amino acids that are useful pharmaceuticals in the presence of organic solvent.


Assuntos
Aeropyrum/enzimologia , Carbono-Oxigênio Liases/química , Cisteína/biossíntese , Estabilidade Enzimática , Carbono-Oxigênio Liases/metabolismo , Fermentação , Cinética , Solventes/química , Especificidade por Substrato , Temperatura
8.
Chembiochem ; 16(1): 100-9, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404066

RESUMO

CalE6 is a previously uncharacterized protein involved in the biosynthesis of calicheamicins in Micromonospora echinospora. It is a pyridoxal-5'-phosphate-dependent enzyme and exhibits high sequence homology to cystathionine γ-lyases and cystathionine γ-synthases. However, it was found to be active towards methionine and to convert this amino acid into α-ketobutyrate, ammonium, and methanethiol. The crystal structure of the cofactor-bound holoenzyme was resolved at 2.0 Å; it contains two active site residues, Gly105 and Val322, specific for methionine γ-lyases. Modeling of methionine into the active site allows identification of the active site residues responsible for substrate recognition and catalysis. These findings support that CalE6 is a putative methionine γ-lyase producing methanethiol as a building block in biosynthesis of calicheamicins.


Assuntos
Proteínas de Bactérias/química , Liases de Carbono-Enxofre/química , Coenzimas/química , Holoenzimas/química , Micromonospora/enzimologia , Fosfato de Piridoxal/química , Sequência de Aminoácidos , Aminoglicosídeos/biossíntese , Compostos de Amônio/química , Compostos de Amônio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butiratos/química , Butiratos/metabolismo , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Domínio Catalítico , Coenzimas/metabolismo , Cristalografia por Raios X , Enedi-Inos , Expressão Gênica , Holoenzimas/genética , Holoenzimas/metabolismo , Metionina/química , Metionina/metabolismo , Micromonospora/genética , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Fosfato de Piridoxal/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
9.
Plant Cell Physiol ; 55(10): 1779-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25146485

RESUMO

Chloroplast transit peptide sequences (cTPs) located in the N-terminal region of nuclear-encoded chloroplast proteins are essential for their sorting, and are generally cleaved from the proteins after their import into the chloroplasts. The Arabidopsis thaliana cystathionine γ-synthase (CGS), the first committed enzyme of methionine biosynthesis, is a nuclear-encoded chloroplast protein. Arabidopsis CGS possesses an N-terminal extension region that is dispensable for enzymatic activity. This N-terminal extension contains the cTP and several functional domains including an MTO1 region, the cis-element for post-transcriptional feedback regulation of CGS1 that codes for CGS. A previous report suggested that the cTP cleavage site of CGS is located upstream of the MTO1 region. However, the region required for protein sorting has not been analyzed. In this study, we carried out functional analyses to elucidate the region required for chloroplast targeting by using a chimeric protein, Ex1:GFP, in which the CGS1 exon 1 coding region containing the N-terminal extension was tagged with green fluorescent protein. The sequence upstream of the MTO1 region was responsible for efficient chloroplast targeting and for avoidance of missorting to the mitochondria. Our data also showed that the major N-terminus of Ex1:GFP is Ala91, which is located immediately downstream of the MTO1 region, and the MTO1 region is not retained in the mature Ex1:GFP accumulated in the chloroplast. These findings suggest that the N-terminal cleavable pre-sequence harbors dual functions in protein sorting and in regulating gene expression. Our study highlights the unique properties of Arabidopsis CGS cTP among chloroplast-targeted proteins.


Assuntos
Arabidopsis/enzimologia , Carbono-Oxigênio Liases/genética , Cloroplastos/metabolismo , Éxons , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Carbono-Oxigênio Liases/química , Cloroplastos/genética , Dados de Sequência Molecular
10.
Genome Biol Evol ; 6(8): 2017-33, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25062915

RESUMO

Bacterial phosphothreonine lyases catalyze a novel posttranslational modification involving formation of dehydrobutyrine/dehyroalanine by ß elimination of the phosphate group of phosphothreonine or phosphoserine residues in their substrate proteins. Though there is experimental evidence for presence of dehydro amino acids in human proteins, no eukaryotic homologs of these lyases have been identified as of today. A comprehensive genome-wide search for identifying phosphothreonine lyase homologs in eukaryotes was carried out. Our fold-based search revealed structural and catalytic site similarity between bacterial phosphothreonine lyases and BLES03 (basophilic leukemia-expressed protein 03), a human protein with unknown function. Ligand induced conformational changes similar to bacterial phosphothreonine lyases, and movement of crucial arginines in the loop region to the catalytic pocket upon binding of phosphothreonine-containing peptides was seen during docking and molecular dynamics studies. Genome-wide search for BLES03 homologs using sensitive profile-based methods revealed their presence not only in eukaryotic classes such as chordata and fungi but also in bacterial and archaebacterial classes. The synteny of these archaebacterial BLES03-like proteins was remarkably similar to that of type IV lantibiotic synthetases which harbor LanL-like phosphothreonine lyase domains. Hence, context-based analysis reinforced our earlier sequence/structure-based prediction of phosphothreonine lyase catalytic function for BLES03. Our in silico analysis has revealed that BLES03-like proteins with previously unknown function are novel eukaryotic phosphothreonine lyases involved in biosynthesis of dehydro amino acids, whereas their bacterial and archaebacterial counterparts might be involved in biosynthesis of natural products similar to lantibiotics.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Evolução Molecular , Proteínas de Neoplasias/genética , Sequência de Aminoácidos , Animais , Archaea/química , Archaea/genética , Bactérias/química , Bactérias/genética , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/genética , Genoma , Humanos , Hidroliases/química , Hidroliases/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Proteínas de Neoplasias/química , Fosfotreonina/metabolismo , Filogenia , Conformação Proteica , Alinhamento de Sequência
11.
Biochim Biophys Acta ; 1834(6): 1044-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23470500

RESUMO

Cystathionine γ-synthase (CGS) and cystathionine ß-lyase (CBL) share a common structure and several active-site residues, but catalyze distinct side-chain rearrangements in the two-step transsulfuration pathway that converts cysteine to homocysteine, the precursor of methionine. A series of 12 chimeric variants of Escherichia coli CGS (eCGS) and CBL (eCBL) was constructed to probe the roles of two structurally distinct, ~25-residue segments situated in proximity to the amino and carboxy termini and located at the entrance of the active-site. In vivo complementation of methionine-auxotrophic E. coli strains, lacking the genes encoding eCGS and eCBL, demonstrated that exchange of the targeted regions impairs the activity of the resulting enzymes, but does not produce a corresponding interchange of reaction specificity. In keeping with the in vivo results, the catalytic efficiency of the native reactions is reduced by at least 95-fold, and α,ß versus α,γ-elimination specificity is not modified. The midpoint of thermal denaturation monitored by circular dichroism, ranges between 59 and 80°C, compared to 66°C for the two wild-type enzymes, indicating that the chimeric enzymes adopt a stable folded structure and that the observed reductions in catalytic efficiency are due to reorganization of the active site. Alanine-substitution variants of residues S32 and S33, as well as K42 of eCBL, situated in proximity to and within, respectively, the targeted amino-terminal region were also investigated to explore their role as determinants of reaction specificity via positioning of key active-site residues. The catalytic efficiency of the S32A, S33A and the K42A site-directed variants of eCBL is reduced by less than 10-fold, demonstrating that, while these residues may participate in positioning S339, which tethers the catalytic base, their role is minor.


Assuntos
Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/metabolismo , Escherichia coli/enzimologia , Liases/química , Liases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Carbono-Oxigênio Liases/genética , Catálise , Domínio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Liases/genética , Metionina/química , Metionina/genética , Metionina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , Proteínas Recombinantes de Fusão/genética , Relação Estrutura-Atividade
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1515-7, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23192036

RESUMO

Cystathionine γ-synthase (CGS) catalyzes the first step in the transsulfuration pathway leading to the formation of cystathionine from O-succinylhomoserine and L-cysteine through a γ-replacement reaction. As an antibacterial drug target against Xanthomonas oryzae pv. oryzae (Xoo), CGS from Xoo (XometB) was cloned, expressed, purified and crystallized. The XometB crystal diffracted to 2.4 Šresolution and belonged to the tetragonal space group I4(1), with unit-cell parameters a=b=165.4, c=241.7 Å. There were four protomers in the asymmetric unit, with a corresponding solvent content of 73.9%.


Assuntos
Proteínas de Bactérias/química , Carbono-Oxigênio Liases/química , Xanthomonas/enzimologia , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Liases/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Xanthomonas/efeitos dos fármacos , Xanthomonas/metabolismo
13.
Protein Sci ; 21(11): 1662-71, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22855027

RESUMO

Cystathionine γ-synthase (CGS) catalyzes the condensation of O-succinyl-L-homoserine (L-OSHS) and L-cysteine (L-Cys), to produce L-cystathionine (L-Cth) and succinate, in the first step of the bacterial transsulfuration pathway. In the absence of L-Cys, the enzyme catalyzes the futile α,γ-elimination of L-OSHS, yielding succinate, α-ketobutyrate, and ammonia. A series of 16 site-directed variants of Escherichia coli CGS (eCGS) was constructed to probe the roles of active-site residues D45, Y46, R48, R49, Y101, R106, N227, E325, S326, and R361. The effects of these substitutions on the catalytic efficiency of the α,γ-elimination reaction range from a reduction of only ∼2-fold for R49K and the E325A,Q variants to 310- and 760-fold for R361K and R48K, respectively. A similar trend is observed for the k(cat) /K(m)(l-OSHS) of the physiological, α,γ-replacement reaction. The results of this study suggest that the arginine residues at positions 48, 106 and 361 of eCGS, conserved in bacterial CGS sequences, tether the distal and α-carboxylate moieties, respectively, of the L-OSHS substrate. In contrast, with the exception of the 13-fold increase observed for R106A, the K(m)(l-Cys) is not markedly affected by the site-directed replacement of the residues investigated. The decrease in k(cat) observed for the S326A variant reflects the role of this residue in tethering the side chain of K198, the catalytic base. Although no structures exist of eCGS bound to active-site ligands, the roles of individual residues is consistent with the structures inhibitor complexes of related enzymes. Substitution of D45, E325, or Y101 enables a minor transamination activity for the substrate L-Ala.


Assuntos
Carbono-Oxigênio Liases/metabolismo , Escherichia coli/enzimologia , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/genética , Domínio Catalítico , Cistationina/química , Cistationina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo
14.
J Mol Biol ; 422(1): 33-44, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22580223

RESUMO

L-Cysteine is synthesized from O-acetyl-L-serine (OAS) and sulfide by O-acetylserine sulfhydrylase (OASS; EC 2.5.1.47) in plants and bacteria. O-phosphoserine sulfhydrylase (OPSS; EC 2.5.1.65) is a novel enzyme from the hyperthermophilic aerobic archaeon Aeropyrum pernix K1 (2003). OPSS can use OAS or O-phospho-L-serine (OPS) to synthesize L-cysteine. To elucidate the mechanism of the substrate specificity of OPSS, we analyzed three-dimensional structures of the active site of the enzyme. The active-site lysine (K127) of OPSS forms an internal Schiff base with pyridoxal 5'-phosphate. Therefore, crystals of the complexes formed by the K127A mutant with the external Schiff base of pyridoxal 5'-phosphate with either OPS or OAS were prepared and examined by X-ray diffraction analysis. In contrast to that observed for OASS, no significant difference was seen in the overall structure between the free and complexed forms of OPSS. The side chains of T152, S153, and Q224 interacted with the carboxylate of the substrates, as a previous study has suggested. The side chain of R297 has been proposed to recognize the phosphate group of OPS. Surprisingly, however, the position of R297 was significantly unchanged in the complex of the OPSS K127A mutant with the external Schiff base, allowing enough space for an interaction with OPS. The positively charged environment around the entrance of the active site including S153 and R297 is important for accepting negatively charged substrates such as OPS.


Assuntos
Aeropyrum/enzimologia , Proteínas Arqueais/química , Carbono-Oxigênio Liases/química , Aeropyrum/metabolismo , Proteínas Arqueais/metabolismo , Sítios de Ligação , Carbono-Oxigênio Liases/metabolismo , Domínio Catalítico , Cinética , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Bases de Schiff/química , Relação Estrutura-Atividade , Especificidade por Substrato
15.
J Biol Chem ; 287(26): 21654-62, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22528483

RESUMO

A family of eukaryotic proline racemase-like genes has recently been identified. Several members of this family have been well characterized and are known to catalyze the racemization of free proline or trans-4-hydroxyproline. However, the majority of eukaryotic proline racemase-like proteins, including a human protein called C14orf149, lack a specific cysteine residue that is known to be critical for racemase activity. Instead, these proteins invariably contain a threonine residue at this position. The function of these enzymes has remained unresolved until now. In this study, we demonstrate that three enzymes of this type, including human C14orf149, catalyze the dehydration of trans-3-hydroxy-L-proline to Δ(1)-pyrroline-2-carboxylate (Pyr2C). These are the first enzymes of this subclass of proline racemase-like genes for which the enzymatic activity has been resolved. C14orf149 is also the first human enzyme that acts on trans-3-hydroxy-L-proline. Interestingly, a mutant enzyme in which the threonine in the active site is mutated back into cysteine regained 3-hydroxyproline epimerase activity. This result suggests that the enzymatic activity of these enzymes is dictated by a single residue. Presumably, human C14orf149 serves to degrade trans-3-hydroxy-L-proline from the diet and originating from the degradation of proteins that contain this amino acid, such as collagen IV, which is an important structural component of basement membrane.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/genética , Regulação Enzimológica da Expressão Gênica , Animais , Membrana Basal/metabolismo , Catálise , Domínio Catalítico , Clonagem Molecular , Cisteína/química , Glutationa Transferase/metabolismo , Humanos , Hidroxiprolina/química , Modelos Biológicos , Mutação , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase/métodos , Distribuição Tecidual
16.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 10): 831-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21931214

RESUMO

O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate (PLP) dependent sulfide-utilizing enzyme in the L-cysteine and L-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Šresolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.


Assuntos
Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/metabolismo , Wolinella/metabolismo , Vias Biossintéticas , Liases de Carbono-Enxofre/química , Domínio Catalítico , Cristalografia por Raios X , Cistationina gama-Liase/química , Cisteína/metabolismo , Metionina/metabolismo , Conformação Proteica , Dobramento de Proteína , Fosfato de Piridoxal/metabolismo , Homologia Estrutural de Proteína , Enxofre/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-21904066

RESUMO

Cystathionine γ-synthase (CGS) is a transulfurication enzyme that catalyzes the first specific step in L-methionine biosynthesis by the reaction of O(4)-succinyl-L-homoserine and L-cysteine to produce L-cystathionine and succinate. Controlling the first step in L-methionine biosythesis, CGS is an excellent potential drug target. Mycobacterium ulcerans is a slow-growing mycobacterium that is the third most common form of mycobacterial infection, mainly infecting people in Africa, Australia and Southeast Asia. Infected patients display a variety of skin ailments ranging from indolent non-ulcerated lesions as well as ulcerated lesions. Here, the crystal structure of CGS from M. ulcerans covalently linked to the cofactor pyridoxal phosphate (PLP) is reported at 1.9 Šresolution. A second structure contains PLP as well as a highly ordered HEPES molecule in the active site acting as a pseudo-ligand. These results present the first structure of a CGS from a mycobacterium and allow comparison with other CGS enzymes. This is also the first structure reported from the pathogen M. ulcerans.


Assuntos
Carbono-Oxigênio Liases/química , Mycobacterium ulcerans/enzimologia , Domínio Catalítico , Modelos Moleculares , Estrutura Quaternária de Proteína , Eletricidade Estática
18.
Biochim Biophys Acta ; 1814(11): 1511-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21435402

RESUMO

The diversity of reactions catalyzed by enzymes reliant on pyridoxal 5'-phosphate (PLP) demonstrates the catalytic versatility of this cofactor and the plasticity of the protein scaffolds of the major fold types of PLP-dependent enzymes. The enzymes of the transsulfuration (cystathionine γ-synthase and cystathionine ß-lyase) and reverse transsulfuration (cystathionine ß-synthase and cystathionine γ-lyase) pathways interconvert l-cysteine and l-homocysteine, the immediate precursor of l-methionine, in plants/bacteria and yeast/animals, respectively. These enzymes provide a useful model system for investigation of the mechanisms of substrate and reaction specificity in PLP-dependent enzymes as they catalyze distinct side chain rearrangements of similar amino acid substrates. Exploration of the underlying factors that enable enzymes to control the substrate and reaction specificity of this cofactor will enable the engineering of these properties and the development of therapeutics and antimicrobial compounds. Recent studies probing the role of active-site residues, of the enzymes of the transsulfuration pathways, as determinants of substrate and reaction specificity are the subject of this review. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.


Assuntos
Carbono-Oxigênio Liases/metabolismo , Liases/metabolismo , Enxofre/metabolismo , Biocatálise , Carbono-Oxigênio Liases/química , Domínio Catalítico , Liases/química , Fosfato de Piridoxal/metabolismo
19.
J Biol Chem ; 286(1): 578-86, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21047785

RESUMO

The last step of sulfur assimilation is catalyzed by O-acetylserine(thiol)lyase (OASTL) enzymes. OASTLs are encoded by a multigene family in the model plant Arabidopsis thaliana. Cytosolic OASA1 enzyme is the main source of OASTL activity and thus crucial for cysteine homeostasis. We found that nitrating conditions after exposure to peroxynitrite strongly inhibited OASTL activity. Among OASTLs, OASA1 was markedly sensitive to nitration as demonstrated by the comparative analysis of OASTL activity in nitrated crude protein extracts from wild type and different oastl mutants. Furthermore, nitration assays on purified recombinant OASA1 protein led to 90% reduction of the activity due to inhibition of the enzyme, as no degradation of the protein occurred under these conditions. The reduced activity was due to nitration of the protein because selective scavenging of peroxynitrite with epicatechin impaired OASA1 nitration and the concomitant inhibition of OASTL activity. Inhibition of OASA1 activity upon nitration correlated with the identification of a modified OASA1 protein containing 3-nitroTyr(302) residue. The essential role of the Tyr(302) residue for the catalytic activity was further demonstrated by the loss of OASTL activity of a Y302A-mutated version of OASA1. Inhibition caused by Tyr(302) nitration on OASA1 activity seems to be due to a drastically reduced O-acetylserine substrate binding to the nitrated protein, and also to reduced stabilization of the pyridoxal-5'-phosphate cofactor through hydrogen bonds. This is the first report identifying a Tyr nitration site of a plant protein with functional effect and the first post-translational modification identified in OASA1 enzyme.


Assuntos
Arabidopsis/enzimologia , Carbono-Oxigênio Liases/antagonistas & inibidores , Carbono-Oxigênio Liases/metabolismo , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/farmacologia , Tirosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Sítios de Ligação , Biocatálise , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/genética , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Mutação , Extratos Vegetais/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional
20.
Appl Biochem Biotechnol ; 162(6): 1519-28, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20419481

RESUMO

A gene encoding methylglyoxal synthase from Thermus sp. GH5 (TMGS) was cloned, sequenced, overexpressed, and purified by Q-Sepharose. The TMGS gene was composed of 399 bp which encoded a polypeptide of 132 amino acids with a molecular mass of 14.3 kDa. The K (m) and k (cat) values of TMGS were 0.56 mM and 325 (s(-1)), respectively. The enzyme exhibited its optimum activity at pH 6 and 75 degrees C. Comparing the amino acid sequences and Hill coefficients of Escherichia coli MGS and TMGS revealed that the loss of Arg 150 in TMGS has caused a decrease in the cooperativity between the enzyme subunits in the presence of phosphate as an allosteric inhibitor. Gel filtration experiments showed that TMGS is a hexameric enzyme, and its quaternary structure did not change in the presence of phosphate.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/genética , Clonagem Molecular , Expressão Gênica , Thermus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Liases/metabolismo , Estabilidade Enzimática , Cinética , Dados de Sequência Molecular , Multimerização Proteica , Alinhamento de Sequência , Thermus/química , Thermus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA