Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 741-768, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569526

RESUMO

Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicolipídeos/biossíntese , Antígenos O/biossíntese , Poliprenois/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ácidos Teicoicos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
2.
FEBS Lett ; 592(18): 3062-3073, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30107031

RESUMO

In the model cyanobacterium Synechocystis sp. PCC 6803, the terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), forms a complex with high light-inducible proteins, the photosystem II assembly factor Ycf39 and the YidC/Alb3/OxaI membrane insertase, co-ordinating chlorophyll delivery with cotranslational insertion of nascent photosystem polypeptides into the membrane. To gain insight into the ubiquity of this assembly complex in higher photosynthetic organisms, we produced functional foreign chlorophyll synthases in a cyanobacterial host. Synthesis of algal and plant chlorophyll synthases allowed deletion of the otherwise essential native cyanobacterial gene. Analysis of purified protein complexes shows that the interaction with YidC is maintained for both eukaryotic enzymes, indicating that a ChlG-YidC/Alb3 complex may be evolutionarily conserved in algae and plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/classificação , Carbono-Oxigênio Ligases/genética , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/genética , Filogenia , Ligação Proteica/efeitos da radiação , Synechocystis/genética , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
3.
Mol Microbiol ; 110(1): 95-113, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30047569

RESUMO

WaaL is an inner membrane glycosyltransferase that catalyzes the transfer of O-antigen polysaccharide from its lipid-linked intermediate to a terminal sugar of the lipid A-core oligosaccharide, a conserved step in lipopolysaccharide biosynthesis. Ligation occurs at the periplasmic side of the bacterial cell membrane, suggesting the catalytic region of WaaL faces the periplasm. Establishing the membrane topology of the WaaL protein family will enable understanding its mechanism and exploit it as a potential antimicrobial target. Applying oxidative labeling of native methionine/cysteine residues, we previously validated a topological model for Escherichia coli WaaL, which differs substantially from the reported topology of the Pseudomonas aeruginosa WaaL, derived from the analysis of truncated protein reporter fusions. Here, we examined the topology of intact E. coli and P. aeruginosa WaaL proteins by labeling engineered cysteine residues with the membrane-impermeable sulfhydryl reagent polyethylene glycol maleimide (PEG-Mal). The accessibility of PEG-Mal to targeted engineered cysteine residues in both E. coli and P. aeruginosa WaaL proteins demonstrates that both ligases share similar membrane topology. Further, we also demonstrate that P. aeruginosa WaaL shares similar functional properties with E. coli WaaL and that E. coli WaaL may adopt a functional dimer conformation.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Antígenos O/metabolismo , Pseudomonas aeruginosa/enzimologia , Alanina/genética , Proteínas de Bactérias/química , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Membrana Celular/metabolismo , Cisteína/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lipídeo A/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Periplasma/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Pseudomonas aeruginosa/genética
4.
Bioconjug Chem ; 27(10): 2418-2423, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27611478

RESUMO

The emergence of antibiotic-resistant bacteria is a major public health threat, and therefore novel antimicrobial targets and strategies are urgently needed. In this regard, cell-wall-associated proteases are envisaged as interesting antimicrobial targets due to their role in cell wall remodeling. Here, we describe the discovery and characteristics of a protease substrate that is processed by a bacterial cell-wall-associated protease. Stationary-phase grown Gram-positive bacteria were incubated with fluorogenic protease substrates, and their cleavage and covalent incorporation into the cell wall was analyzed. Of all of the substrates used, only one substrate, containing a valine-leucine-lysine (VLK) motif, was covalently incorporated into the bacterial cell wall. Linkage of the VLK-peptide substrate appeared unrelated to sortase A and B activity, as both wild-type and sortase A and B knock out Staphylococcus aureus strains incorporated this substrate into their cell wall with comparable efficiency. Additionally, the VLK-peptide substrate showed significantly higher incorporation in the cell wall of VanA-positive Enterococcus faecium strains than in VanB- and vancomycin-susceptible isolates. In conclusion, the VLK-peptide substrate identified in this study shows promise as a vehicle for targeting antimicrobial compounds and diagnostic contrast agents to the bacterial cell wall.


Assuntos
Parede Celular/química , Bactérias Gram-Positivas/citologia , Peptídeos/farmacocinética , Motivos de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Enterococcus faecium/citologia , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/metabolismo , Bactérias Gram-Positivas/metabolismo , Leucina/química , Lisina/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Valina/química
5.
J Biol Chem ; 291(4): 1735-1750, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26586916

RESUMO

We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Peptídeos/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Especificidade por Substrato
6.
Plant Cell ; 26(3): 1267-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24681617

RESUMO

Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Cianobactérias/enzimologia , Carotenoides/metabolismo , Clorofila/metabolismo , Ligação Proteica
7.
J Biol Chem ; 287(45): 37583-92, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22969085

RESUMO

d-Alanyl:d-lactate (d-Ala:d-Lac) and d-alanyl:d-serine ligases are key enzymes in vancomycin resistance of Gram-positive cocci. They catalyze a critical step in the synthesis of modified peptidoglycan precursors that are low binding affinity targets for vancomycin. The structure of the d-Ala:d-Lac ligase VanA led to the understanding of the molecular basis for its specificity, but that of d-Ala:d-Ser ligases had not been determined. We have investigated the enzymatic kinetics of the d-Ala:d-Ser ligase VanG from Enterococcus faecalis and solved its crystal structure in complex with ADP. The overall structure of VanG is similar to that of VanA but has significant differences mainly in the N-terminal and central domains. Based on reported mutagenesis data and comparison of the VanG and VanA structures, we show that residues Asp-243, Phe-252, and Arg-324 are molecular determinants for d-Ser selectivity. These residues are conserved in both enzymes and explain why VanA also displays d-Ala:d-Ser ligase activity, albeit with low catalytic efficiency in comparison with VanG. These observations suggest that d-Ala:d-Lac and d-Ala:d-Ser enzymes have evolved from a common ancestral d-Ala:d-X ligase. The crystal structure of VanG showed an unusual interaction between two dimers involving residues of the omega loop that are deeply anchored in the active site. We constructed an octapeptide mimicking the omega loop and found that it selectively inhibits VanG and VanA but not Staphylococcus aureus d-Ala:d-Ala ligase. This study provides additional insight into the molecular evolution of d-Ala:d-X ligases and could contribute to the development of new structure-based inhibitors of vancomycin resistance enzymes.


Assuntos
Proteínas de Bactérias/química , Enterococcus faecalis/enzimologia , Estrutura Terciária de Proteína , Resistência a Vancomicina , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Cristalografia por Raios X , Resistência Microbiana a Medicamentos/genética , Enterococcus faecalis/genética , Cinética , Modelos Moleculares , Mutação , Oligopeptídeos/farmacologia , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Filogenia , Ligação Proteica , Multimerização Proteica , Especificidade por Substrato
8.
Glycobiology ; 22(2): 288-99, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21983211

RESUMO

WaaL is a membrane enzyme that catalyzes a key step in lipopolysaccharide (LPS) synthesis: the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP) O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). Utilizing an in vitro assay, we demonstrate here that ligation with purified Escherichia coli WaaL occurs without adenosine-5'-triphosphate (ATP) and magnesium ions. Furthermore, E. coli and Pseudomonas aeruginosa WaaL proteins cannot catalyze ATP hydrolysis in vitro. We also show that a lysine substitution of the arginine (Arg)-215 residue renders an active protein, whereas WaaL mutants with alanine replacements in the periplasmic-exposed residues Arg-215, Arg-288 and histidine (His)-338 and also the membrane-embedded aspartic acid-389 are nonfunctional. An in silico approach, combining predicted topological information with the analysis of sequence conservation, confirms the importance of a positive charge at the small periplasmic loop of WaaL, since an Arg corresponding to Arg-215 was found at a similar position in all the WaaL homologs. Also, a universally conserved H[NSQ]X(9)GXX[GTY] motif spanning the C-terminal end of the predicted large periplasmic loop and the membrane boundary of the transmembrane helix was identified. The His residue in this motif corresponds to His-338. A survey of LPS structures in which the linkage between O-antigen and lipid A-core OS was elucidated reveals that it is always in the ß-configuration, whereas the sugars bound to Und-PP are in the α-configuration. Together, our biochemical and in silico data argue that WaaL proteins use a common reaction mechanism and share features of metal ion-independent inverting glycosyltransferases.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Glicosiltransferases/metabolismo , Íons/metabolismo , Ligases/metabolismo , Lipopolissacarídeos/metabolismo , Magnésio/metabolismo , Antígenos O/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/isolamento & purificação , Sequência Conservada , Escherichia coli/química , Escherichia coli/metabolismo , Glicosiltransferases/química , Glicosiltransferases/isolamento & purificação , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Íons/química , Ligases/química , Lipopolissacarídeos/química , Magnésio/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Antígenos O/química , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo
9.
BMC Pharmacol ; 11: 9, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21878090

RESUMO

BACKGROUND: Trypanosoma brucei (T. brucei) is an infectious agent for which drug development has been largely neglected. We here use a recently developed computer program called AutoGrow to add interacting molecular fragments to S5, a known inhibitor of the validated T. brucei drug target RNA editing ligase 1, in order to improve its predicted binding affinity. RESULTS: The proposed binding modes of the resulting compounds mimic that of ATP, the native substrate, and provide insights into novel protein-ligand interactions that may be exploited in future drug-discovery projects. CONCLUSIONS: We are hopeful that these new predicted inhibitors will aid medicinal chemists in developing novel therapeutics to fight human African trypanosomiasis.


Assuntos
Carbono-Oxigênio Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Edição de RNA , Software , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia
10.
Arch Microbiol ; 192(12): 1039-47, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20938646

RESUMO

Edwardsiella tarda is the causative agent of edwardsiellosis in fish. The genome sequence of a virulent strain EIB202 has been determined. According to the genome sequence, the lipopolysaccharide (LPS) synthesis cluster containing a putative O-antigen ligase gene waaL was identified. Here, the in-frame deletion mutant ΔwaaL was constructed to analyze the function of WaaL in E. tarda EIB202. The ΔwaaL mutant displayed absence in O-antigen side chains in the LPS production. The ΔwaaL mutant exhibited an increased sensitivity to hydrogen peroxide indicating that the LPS was involved in the endurance to the oxidative stress in hosts during infection. In addition, the resistance of ΔwaaL to serum and polymyxin B decreased remarkably. The ΔwaaL mutant was also attenuated in virulence, showed an impaired ability in internalization of epithelioma papulosum cyprinid (EPC) cells and a comparatively poor ability of proliferation in vivo, which was in line with the increased LD(50) value. These results indicated that waaL gene was a functional member of the gene cluster involved in LPS synthesis and highlighted the importance of the O-antigen side chains to stress adaption and virulence in E. tarda, signifying the gene as a potential target for live attenuated vaccine against this bacterium.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Edwardsiella tarda/patogenicidade , Lipopolissacarídeos/biossíntese , Virulência , Adaptação Fisiológica , Animais , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Células Cultivadas , DNA Bacteriano/genética , Edwardsiella tarda/enzimologia , Edwardsiella tarda/genética , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Genes Bacterianos , Família Multigênica , Mutação , Antígenos O/química , Estresse Oxidativo , Estresse Fisiológico , Peixe-Zebra/microbiologia
11.
RNA ; 15(7): 1338-44, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19447916

RESUMO

The RNA ligase-containing or L-complex is the core complex involved in uridine insertion/deletion RNA editing in trypanosome mitochondria. Blue native gels of glycerol gradient-separated fractions of mitochondrial lysate from cells transfected with the TAP-tagged editing protein, LC-8 (TbMP44/KREPB5), show a approximately 1 MDa L-complex band and, in addition, two minor higher molecular weight REL1-containing complexes: one (L*a) co-sedimenting with the L-complex and running in the gel at around 1.2 MDa; the other (L*b) showing a continuous increase in molecular weight from 1 MDa to particles sedimenting over 70S. The L*b-complexes appear to be mainly composed of L-complex components, since polypeptide profiles of L- and L*b-complex gradient fractions were similar in composition and L*b-complex bands often degraded to L-complex bands after manipulation or freeze-thaw cycles. The L*a-complex may be artifactual since this gel shift can be produced by various experimental manipulations. However, the nature of the change and any cellular role remain to be determined. The L*b-complexes from both lysate and TAP pull-down were sensitive to RNase A digestion, suggesting that RNA is involved with the stability of the L*b-complexes. The MRP1/2 RNA binding complex is localized mainly in the L*b-complexes in substoichiometric amounts and this association is RNase sensitive. We suggest that the L*b-complexes may provide a scaffold for dynamic interaction with other editing factors during the editing process to form the active holoenzyme or "editosome."


Assuntos
Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Edição de RNA , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , Trypanosoma brucei brucei/metabolismo , Uridina/genética , Animais , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Protozoários/genética , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mitocondrial , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Frações Subcelulares , Trypanosoma brucei brucei/genética , Uridina/metabolismo
12.
Mol Microbiol ; 65(5): 1345-59, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17697256

RESUMO

waaL has been implicated as the gene that encodes the O-antigen ligase. To date, in vitro biochemical evidence to prove that WaaL possesses ligase activity has been lacking due to the difficulty of purifying WaaL and unavailability of substrates. Here we describe the purification of WaaL, a membrane protein with 11 potential transmembrane segments from Pseudomonas aeruginosa, and the development of an in vitro O-antigen ligase assay. WaaL was expressed in a P. aeruginosa wbpL knockout strain, which is defective in its initial glycosyltransferase for O-antigen biosynthesis. This approach allowed the purification of WaaL without contaminating O-antigen-undecaprenol-phosphate (Und-P) molecules. Purified WaaL resolved to a monomer (35 kDa) and a dimer (70 kDa) band in SDS-PAGE. The substrates for the O-antigen ligase assay, O-antigen-Und-P and lipid A-core were prepared from a waaL mutant. ATP at 2-4 mM is optimum for the O-ligase activity, and ATP hydrolysis by WaaL follows Michaelis-Menten kinetics. Site-directed mutagenesis analysis indicated that the periplasmic loop region of WaaL is important for ligase activity. A waaL mutant of P. aeruginosa could not be cross-complemented by waaL of Escherichia coli, which suggested that each of these proteins has specificity for its cognate core oligosaccharide.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Lipídeo A/metabolismo , Antígenos O/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína
13.
FEBS J ; 272(12): 2993-3003, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15955059

RESUMO

The surface charge as well as the electrochemical properties and ligand binding abilities of the Gram-positive cell wall is controlled by the D-alanylation of the lipoteichoic acid. The incorporation of D-Ala into lipoteichoic acid requires the D-alanine:D-alanyl carrier protein ligase (DltA) and the carrier protein (DltC). We have heterologously expressed, purified, and assayed the substrate selectivity of the recombinant proteins DltA with its substrate DltC. We found that apo-DltC is recognized by both endogenous 4'-phosphopantetheinyl transferases AcpS and Sfp. After the biochemical characterization of DltA and DltC, we designed an inhibitor (D-alanylacyl-sulfamoyl-adenosine), which is able to block the D-Ala adenylation by DltA at a K(i) value of 232 nM vitro. We also performed in vivo studies and determined a significant inhibition of growth for different Bacillus subtilis strains when the inhibitor is used in combination with vancomycin.


Assuntos
Adenosina/análogos & derivados , Alanina/análogos & derivados , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Carbono-Oxigênio Ligases/metabolismo , Adenosina/farmacologia , Alanina/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Carbono-Oxigênio Ligases/antagonistas & inibidores , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Parede Celular/efeitos dos fármacos , Clonagem Molecular , Farmacorresistência Bacteriana , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli , Inibidores do Crescimento/farmacologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Especificidade por Substrato , Transferases , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Vancomicina/farmacologia
14.
J Mol Biol ; 343(3): 601-13, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15465048

RESUMO

Trypanosomatids are causative agents of several devastating tropical diseases such as African sleeping sickness, Chagas' disease and leishmaniasis. There are no effective vaccines available to date for treatment of these protozoan diseases, while current drugs have limited efficacy, significant toxicity and suffer from increasing resistance. Trypanosomatids have several remarkable and unique metabolic and structural features that are of great interest for developing new anti-protozoan therapeutics. One such feature is "RNA editing", an essential process in these pathogenic protozoa. Transcripts for key trypanosomatid mitochondrial proteins undergo extensive post-transcriptional RNA editing by specifically inserting or deleting uridylates from pre-mature mRNA in order to create mature mRNAs that encode functional proteins. The RNA editing process is carried out in a approximately 1.6 MDa multi-protein complex, the editosome. In Trypanosoma brucei, one of the editosome's core enzymes, the RNA editing ligase 1 (TbREL1), has been shown to be essential for survival of both insect and bloodstream forms of the parasite. We report here the crystal structure of the catalytic domain of TbREL1 at 1.2 A resolution, in complex with ATP and magnesium. The magnesium ion interacts with the beta and gamma-phosphate groups and is almost perfectly octahedrally coordinated by six phosphate and water oxygen atoms. ATP makes extensive direct and indirect interactions with the ligase via essentially all its atoms while extending its base into a deep pocket. In addition, the ATP makes numerous interactions with residues that are conserved in the editing ligases only. Further away from the active site, TbREL1 contains a unique loop containing several hydrophobic residues that are highly conserved among trypanosomatid RNA editing ligases which may play a role in protein-protein interactions in the editosome. The distinct characteristics of the adenine-binding pocket, and the absence of any close homolog in the human genome, bode well for the design of selective inhibitors that will block the essential RNA ligase function in a number of major protozoan pathogens.


Assuntos
Carbono-Oxigênio Ligases/química , Proteínas Mitocondriais/química , Estrutura Terciária de Proteína , Edição de RNA , Trypanosoma brucei brucei/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Magnésio/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
15.
Plant Mol Biol ; 50(2): 213-24, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12175014

RESUMO

The ChlH gene coding the H subunit of magnesium chelatase, an enzyme involved in chlorophyll biosynthesis, was silenced in Nicotiana benthamiana plants by infection with tobacco mosaic virus vectors (pTMV-30b) containing 67,214 or 549 nt long ChlH inserts. Silencing of the nuclear ChlH gene induced a chimeric phenotype with green and yellow/white leaves associated with alterations of chloroplast shape and ultrastructure. The symptoms became first evident around veins of young leaves, and only later in the mesophyll tissues. The efficiency of gene silencing was not dependent on the insert orientation, but was strongly correlated with the size of the ChlH insert, providing a flexible method to modulate the level of gene suppression. Silencing efficiency seemed to be strongly dependent on endogenous ChlH mRNA level of the target tissue. Silencing of the ChlH gene with the longest fragment of 549 nt also lowered the accumulation of ChlD and chlorophyll synthetase mRNAs, i.e. other genes involved in chlorophyll biosynthesis.


Assuntos
Clorofila/biossíntese , Inativação Gênica , Liases/genética , Nicotiana/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Vírus do Mosaico do Tabaco/fisiologia , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Clorofila/metabolismo , Clorofila A , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Liases/metabolismo , Microscopia Eletrônica , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Nicotiana/enzimologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética
16.
Mol Cell Biol ; 22(13): 4652-60, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12052873

RESUMO

Trypanosome RNA editing is a unique U insertion and U deletion process that involves cycles of pre-mRNA cleavage, terminal U addition or U removal, and religation. This editing can occur at massive levels and is directed by base pairing of trans-acting guide RNAs. Both U insertion and U deletion cycles are catalyzed by a single protein complex that contains only seven major proteins, band I through band VII. However, little is known about their catalytic functions, except that band IV and band V are RNA ligases and genetic analysis indicates that the former is important in U deletion. Here we establish biochemical approaches to distinguish the individual roles of these ligases, based on their distinctive ATP and pyrophosphate utilization. These in vitro analyses revealed that both ligases serve in RNA editing. Band V is the RNA editing ligase that functions very selectively to seal in U insertion (IREL), while band IV is the RNA editing ligase needed to seal in U deletion (DREL). In combination with our earlier findings about the cleavage and the U-addition/U-removal steps of U deletion and U insertion, these results show that all three steps of these editing pathways exhibit major differences and suggest that the editing complex could have physically separate regions for U deletion and U insertion.


Assuntos
Edição de RNA , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/metabolismo , Trypanosoma brucei brucei/genética , Trifosfato de Adenosina/metabolismo , Animais , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Fracionamento Químico , Mitocôndrias/química , Mitocôndrias/genética , RNA Ligase (ATP)/classificação , Titulometria , Trypanosoma brucei brucei/enzimologia
17.
Biol Chem ; 382(6): 903-11, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11501754

RESUMO

The chlorophyll synthase gene from oat (Avena sativa) was cloned and expressed in Escherichia coli. The deduced amino acid sequence consists of 378 amino acids including a presequence of 46 amino acids. Deletion mutants show that a core protein comprising amino acid residues 88 to 377 is enzymatically active. The sequence of the mature protein shows 85% identity with the chlorophyll synthase of Arabidopsis thaliana and 62% identity with the chlorophyll synthase of Synechocystis PCC 6803. The gene is constitutively expressed as the same transcript level is found in dark-grown and in light-grown seedlings. The enzyme requires magnesium ions for activity; manganese ions can reconstitute only part of the activity. Diacetyl and N-phenylmaleimide (NPM) inhibit the enzyme activity. Site-directed mutagenesis reveals that, out of the 4 Arg residues present in the active core protein, Arg-91 and Arg-161 are essential for the activity. Five cysteine residues are present in the core protein, of which only Cys-109 is essential for the enzyme activity. Since the wild-type and all other Cys-mutants with the exception of the mutant C304A are inhibited by N-phenylmaleimide, we conclude that the inhibitor binds to a non-essential Cys residue to abolish activity. The role of the various Arg and Cys residues is discussed.


Assuntos
Avena/enzimologia , Carbono-Oxigênio Ligases/metabolismo , Clonagem Molecular , Sequência de Aminoácidos , Substituição de Aminoácidos , Carbono-Oxigênio Ligases/biossíntese , Carbono-Oxigênio Ligases/genética , Inibidores Enzimáticos/farmacologia , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
18.
Artigo em Inglês | MEDLINE | ID: mdl-11414504

RESUMO

Prostaglandylinositol cyclic phosphate (cPIP), functionally a cAMP antagonist, is a novel, low-molecular weight mediator of insulin action. Both essential hypertension and type 2 diabetes may be associated with a reduction of cPIP synthesis. In intact cells and in plasma membranes, cPIP synthesis is stimulated by insulin, which activates cPIP synthase by tyrosine phosphorylation. We measured the activities of cPIP synthase in the homogenates of freeze-clamped and then lyophilized liver samples from five insulin-resistant, adult rhesus monkeys, obtained under basal fasting conditions and again under maximal insulin stimulation during a euglycemic hyperinsulinemic clamp. The mean cPIP synthase activity in basal samples (0.33 +/- 0.09 pmol/min/mg protein) was not significantly different at the end of the clamp (0.24 +/- 0.11 pmol/min/mg protein). Basal cPIP synthase activityVoL 12, No. 1, 2001 was directly related to both basal cAMP content and basal fractional activity of cAMP-dependent protein kinase (PKA): r=0.85, p<0.05 and r=0.86, p<0.05, respectively. In turn, insulin-stimulated cPIP synthase activity was inversely related to both the insulin-stimulated fractional activity of PKA (r=0.89, p<0.02) and the insulin-stimulated total PKA activity: r=0.94, p<0.005. The findings suggest that in the liver of insulin-resistant rhesus monkeys, cPIP synthase activity, which leads to the synthesis of the low-molecular weight mediator cPIP, may oppose cAMP synthesis and PKA activity.


Assuntos
Carbono-Oxigênio Ligases/metabolismo , Técnica Clamp de Glucose , Resistência à Insulina/fisiologia , Fígado/enzimologia , Animais , AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Macaca mulatta , Masculino
19.
Chem Biol ; 7(7): 505-14, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10903933

RESUMO

BACKGROUND: The D-alanyl-D-lactate (D-Ala-D-Lac) ligase is required for synthesis of altered peptidoglycan (PG) termini in the VanA phenotype of vancomycin-resistant enterococci (VRE), and the D-alanyl-D-serine (D-Ala-D-Ser) ligase is required for the VanC phenotype of VRE. Here we have compared these with the Escherichia coli D-Ala-D-Ala ligase DdlB for formation of the enzyme-bound D-alanyl phosphate, D-Ala(1)-PO(3)(2-) (D-Ala(1)-P), intermediate. RESULTS: The VanC2 ligase catalyzes a molecular isotope exchange (MIX) partial reaction, incorporating radioactivity from (14)C-D-Ser into D-Ala-(14)C-D-Ser at a rate of 0.7 min(-1), which approaches kinetic competence for the reversible D-Ala(1)-P formation from the back direction. A positional isotope exchange (PIX) study with the VanC2 and VanA ligases displayed a D-Ala(1)-dependent bridge to nonbridge exchange of the oxygen-18 label of [gamma-(18)O(4)]-ATP at rates of up to 0.6 min(-1); this exchange was completely suppressed by the addition of the second substrate D-Ser or D-Lac, respectively, as the D-Ala(1)-P intermediate was swept in the forward direction. As a third criterion for formation of bound D-Ala(1)-P, we conducted rapid quench studies to detect bursts of ADP formation in the first turnover of DdlB and VanA. With E. coli DdlB, there was a burst amplitude of ADP corresponding to 26-30% of the DdlB active sites, followed by the expected steady-state rate of 620-650 min(-1). For D-Ala-D-Lac and D-Ala-D-Ala synthesis by VanA, we measured a burst of 25-30% or 51% of active enzyme, respectively. CONCLUSIONS: These three approaches support the rapid (more than 1000 min(-1)), reversible formation of the enzyme intermediate D-Ala(1)-P by members of the D-Ala-D-X (where X is Ala, Ser or Lac) ligase superfamily.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Enterococcus/enzimologia , Peptídeo Sintases/metabolismo , Resistência a Vancomicina , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/isolamento & purificação , Catálise , Inibidores Enzimáticos , Marcação por Isótopo , Cinética , Estrutura Molecular , Peptídeo Sintases/química , Peptídeo Sintases/isolamento & purificação , Peptidoglicano/efeitos dos fármacos , Peptidoglicano/metabolismo , Especificidade por Substrato
20.
Structure ; 8(5): 463-70, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10801495

RESUMO

BACKGROUND: The bacterial cell wall and the enzymes that synthesize it are targets of glycopeptide antibiotics (vancomycins and teicoplanins) and beta-lactams (penicillins and cephalosporins). Biosynthesis of cell wall peptidoglycan requires a crosslinking of peptidyl moieties on adjacent glycan strands. The D-alanine-D-alanine transpeptidase, which catalyzes this crosslinking, is the target of beta-lactam antibiotics. Glycopeptides, in contrast, do not inhibit an enzyme, but bind directly to D-alanine-D-alanine and prevent subsequent crosslinking by the transpeptidase. Clinical resistance to vancomycin in enterococcal pathogens has been traced to altered ligases producing D-alanine-D-lactate rather than D-alanine-D-alanine. RESULTS: The structure of a D-alanine-D-lactate ligase has been determined by multiple anomalous dispersion (MAD) phasing to 2.4 A resolution. Co-crystallization of the Leuconostoc mesenteroides LmDdl2 ligase with ATP and a di-D-methylphosphinate produced ADP and a phosphinophosphate analog of the reaction intermediate of cell wall peptidoglycan biosynthesis. Comparison of this D-alanine-D-lactate ligase with the known structure of DdlB D-alanine-D-alanine ligase, a wild-type enzyme that does not provide vancomycin resistance, reveals alterations in the size and hydrophobicity of the site for D-lactate binding (subsite 2). A decrease was noted in the ability of the ligase to hydrogen bond a substrate molecule entering subsite 2. CONCLUSIONS: Structural differences at subsite 2 of the D-alanine-D-lactate ligase help explain a substrate specificity shift (D-alanine to D-lactate) leading to remodeled cell wall peptidoglycan and vancomycin resistance in Gram-positive pathogens.


Assuntos
Proteínas de Bactérias/química , Carbono-Oxigênio Ligases/química , Leuconostoc/enzimologia , Modelos Moleculares , Resistência a Vancomicina , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Alanina/análogos & derivados , Alanina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Carbono-Oxigênio Ligases/genética , Carbono-Oxigênio Ligases/metabolismo , Domínio Catalítico/fisiologia , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Leuconostoc/genética , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA