Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Commun Biol ; 3(1): 435, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792544

RESUMO

The onset and progression of numerous protein misfolding diseases are associated with the presence of oligomers formed during the aberrant aggregation of several different proteins, including amyloid-ß (Aß) in Alzheimer's disease and α-synuclein (αS) in Parkinson's disease. These small, soluble aggregates are currently major targets for drug discovery. In this study, we show that trodusquemine, a naturally-occurring aminosterol, markedly reduces the cytotoxicity of αS, Aß and HypF-N oligomers to human neuroblastoma cells by displacing the oligomers from cell membranes in the absence of any substantial morphological and structural changes to the oligomers. These results indicate that the reduced toxicity results from a mechanism that is common to oligomers from different proteins, shed light on the origin of the toxicity of the most deleterious species associated with protein aggregation and suggest that aminosterols have the therapeutically-relevant potential to protect cells from the oligomer-induced cytotoxicity associated with numerous protein misfolding diseases.


Assuntos
Membrana Celular/metabolismo , Colestanos/farmacologia , Dobramento de Proteína , Multimerização Proteica , Espermina/análogos & derivados , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Fenômenos Biofísicos/efeitos dos fármacos , Carboxil e Carbamoil Transferases/química , Carboxil e Carbamoil Transferases/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/toxicidade , Humanos , Dobramento de Proteína/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Espermina/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade
3.
Appl Microbiol Biotechnol ; 103(6): 2649-2664, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30707253

RESUMO

Lasso peptides belong to a peculiar family of ribosomally synthesized and post-translationally modified peptides (RiPPs)-natural products with an unusual isopeptide-bonded slipknot structure. Except for assembling of this unusual lasso fold, several further post-translational modifications of lasso peptides, including C-terminal methylation, phosphorylation/poly-phosphorylation, citrullination, and acetylation, have been reported recently. However, most of their biosynthetic logic have not been elucidated except the phosphorylated paeninodin lasso peptide. Herein, we identified two novel lassomycin-like lasso peptide biosynthetic pathways and, for the first time, characterized a novel C-terminal peptide carboxyl methyltransferase involved in these pathways. Our investigations revealed that this new family of methyltransferase could specifically methylate the C terminus of precursor peptide substrates, eventually leading to lassomycin-like C-terminal methylated lasso peptides. Our studies offer another rare insight into the extraordinary strategies of chemical diversification adopted by lasso peptide biosynthetic machinery and predicated two valuable sources for methylated lasso peptide discovery.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Metiltransferases/metabolismo , Peptídeos/metabolismo , Streptomyces/enzimologia , Proteínas de Bactérias/isolamento & purificação , Produtos Biológicos , Vias Biossintéticas , Carboxil e Carbamoil Transferases/isolamento & purificação , Metilação , Metiltransferases/isolamento & purificação , Biossíntese Peptídica , Peptídeos Cíclicos , Fosforilação , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo
4.
Small ; 14(36): e1800890, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30091859

RESUMO

Highly toxic protein misfolded oligomers associated with neurological disorders such as Alzheimer's and Parkinson's diseases are nowadays considered primarily responsible for promoting synaptic failure and neuronal death. Unraveling the relationship between structure and neurotoxicity of protein oligomers appears pivotal in understanding the causes of the pathological process, as well as in designing novel diagnostic and therapeutic strategies tuned toward the earliest and presymptomatic stages of the disease. Here, it is benefited from tip-enhanced Raman spectroscopy (TERS) as a surface-sensitive tool with spatial resolution on the nanoscale, to inspect the spatial organization and surface character of individual protein oligomers from two samples formed by the same polypeptide sequence and different toxicity levels. TERS provides direct assignment of specific amino acid residues that are exposed to a large extent on the surface of toxic species and buried in nontoxic oligomers. These residues, thanks to their outward disposition, might represent structural factors driving the pathogenic behavior exhibited by protein misfolded oligomers, including affecting cell membrane integrity and specific signaling pathways in neurodegenerative conditions.


Assuntos
Carboxil e Carbamoil Transferases/toxicidade , Proteínas de Escherichia coli/toxicidade , Nanopartículas/química , Dobramento de Proteína , Multimerização Proteica , Análise Espectral Raman/métodos , Dobramento de Proteína/efeitos dos fármacos
5.
Sci Rep ; 6: 32721, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27619987

RESUMO

The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aß42 peptide associated with Alzheimer's disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca(2+) across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane.


Assuntos
Amiloide/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Deficiências na Proteostase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Citosol/metabolismo , Proteínas de Escherichia coli/metabolismo , Gangliosídeo G(M1)/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Receptores de Glutamato/metabolismo , Ressonância de Plasmônio de Superfície
6.
Structure ; 24(8): 1227-1236, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27396827

RESUMO

Biotin-dependent acyl-coenzyme A (CoA) carboxylases (aCCs) are involved in key steps of anabolic pathways and comprise three distinct functional units: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyl transferase (CT). YCC multienzymes are a poorly characterized family of prokaryotic aCCs of unidentified substrate specificity, which integrate all functional units into a single polypeptide chain. We employed a hybrid approach to study the dynamic structure of Deinococcus radiodurans (Dra) YCC: crystal structures of isolated domains reveal a hexameric CT core with extended substrate binding pocket and a dimeric BC domain. Negative-stain electron microscopy provides an approximation of the variable positioning of the BC dimers relative to the CT core. Small-angle X-ray scattering yields quantitative information on the ensemble of Dra YCC structures in solution. Comparison with other carrier protein-dependent multienzymes highlights a characteristic range of large-scale interdomain flexibility in this important class of biosynthetic enzymes.


Assuntos
Acetil-CoA Carboxilase/química , Proteínas de Bactérias/química , Biotina/química , Carbono-Nitrogênio Ligases/química , Carboxil e Carbamoil Transferases/química , Deinococcus/química , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Biotina/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Carboxil e Carbamoil Transferases/genética , Carboxil e Carbamoil Transferases/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Deinococcus/enzimologia , Escherichia coli/química , Escherichia coli/enzimologia , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Células Sf9 , Spodoptera , Especificidade por Substrato , Difração de Raios X
7.
Biochemistry ; 55(24): 3447-60, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27254467

RESUMO

Protein structure, ligand binding, and catalytic turnover contributes to the governance of catalytic events occurring at spatially distinct domains in multifunctional enzymes. Coordination of these catalytic events partially rests on the ability of spatially discrete active sites to communicate with other allosteric and active sites on the same polypeptide chain (intramolecular) or on different polypeptide chains (intermolecular) within the holoenzyme. Often, communication results in long-range effects on substrate binding or product release. For example, pyruvate binding to the carboxyl transferase (CT) domain of pyruvate carboxylase (PC) increases the rate of product release in the biotin carboxylase (BC) domain. In order to address how CT domain ligand occupancy is "sensed" by other domains, we generated functional, mixed hybrid tetramers using the E218A (inactive BC domain) and T882S (low pyruvate binding, low activity) mutant forms of PC. The apparent Ka pyruvate for the pyruvate-stimulated release of Pi catalyzed by the T882S:E218A[1:1] hybrid tetramer was comparable to the wild-type enzyme and nearly 10-fold lower than that for the T882S homotetramer. In addition, the ratio of the rates of oxaloacetate formation to Pi release for the WT:T882S[1:1] and E218A:T882S[1:1] hybrid tetramer-catalyzed reactions was 0.5 and 0.6, respectively, while the T882S homotetramer exhibited a near 1:1 coupling of the two domains, suggesting that the mechanisms coordinating catalytic events is more complicated that we initially assumed. The results presented here are consistent with an intermolecular communication mechanism, where pyruvate binding to the CT domain is "sensed" by domains on a different polypeptide chain within the tetramer.


Assuntos
Proteínas de Bactérias/química , Biotina/metabolismo , Carbono-Nitrogênio Ligases/química , Carboxil e Carbamoil Transferases/química , Piruvato Carboxilase/química , Ácido Pirúvico/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carbono-Nitrogênio Ligases/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Conformação Proteica , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo , Homologia de Sequência de Aminoácidos
8.
Biol Chem ; 397(5): 401-15, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26812789

RESUMO

Living systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 µm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration. SDS-PAGE profiles have shown that the large aggregates were predominantly composed of the HypF-N protein. ANS fluorescence measurements show that the chaperone-induced clustering of HypF-N oligomers does not change the overall solvent exposure of hydrophobic residues on the surface of the oligomers. αB-crystallin, clusterin and M-TTR can diminish the cytotoxic effects of the HypF-N oligomers at all chaperone concentration, as demonstrated by MTT reduction and Ca2+ influx measurements. The observation that the protective effect is primarily at all concentrations of chaperones, both when the increase in HypF-N aggregate size is minimal and large, emphasizes the efficiency and versatility of these protein molecules.


Assuntos
Carboxil e Carbamoil Transferases/química , Clusterina/química , Proteínas de Escherichia coli/química , Cadeia B de alfa-Cristalina/química , Animais , Carboxil e Carbamoil Transferases/metabolismo , Linhagem Celular Tumoral , Clusterina/genética , Clusterina/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Pré-Albumina/química , Pré-Albumina/genética , Pré-Albumina/metabolismo , Agregados Proteicos , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
9.
Biochim Biophys Acta ; 1832(12): 2302-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075940

RESUMO

Although human transthyretin (TTR) is associated with systemic amyloidoses, an anti-amyloidogenic effect that prevents Aß fibril formation in vitro and in animal models has been observed. Here we studied the ability of three different types of TTR, namely human tetramers (hTTR), mouse tetramers (muTTR) and an engineered monomer of the human protein (M-TTR), to suppress the toxicity of oligomers formed by two different amyloidogenic peptides/proteins (HypF-N and Aß42). muTTR is the most stable homotetramer, hTTR can dissociate into partially unfolded monomers, whereas M-TTR maintains a monomeric state. Preformed toxic HypF-N and Aß42 oligomers were incubated in the presence of each TTR then added to cell culture media. hTTR, and to a greater extent M-TTR, were found to protect human neuroblastoma cells and rat primary neurons against oligomer-induced toxicity, whereas muTTR had no protective effect. The thioflavin T assay and site-directed labeling experiments using pyrene ruled out disaggregation and structural reorganization within the discrete oligomers following incubation with TTRs, while confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and hTTR, particularly M-TTR. Moreover, atomic force microscopy (AFM), light scattering and turbidimetry analyses indicated that larger assemblies of oligomers are formed in the presence of M-TTR and, to a lesser extent, with hTTR. Overall, the data suggest a generic capacity of TTR to efficiently neutralize the toxicity of oligomers formed by misfolded proteins and reveal that such neutralization occurs through a mechanism of TTR-mediated assembly of protein oligomers into larger species, with an efficiency that correlates inversely with TTR tetramer stability.


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Proteínas Amiloidogênicas/efeitos adversos , Carboxil e Carbamoil Transferases/efeitos adversos , Proteínas de Escherichia coli/efeitos adversos , Neuroblastoma/tratamento farmacológico , Neurônios/efeitos dos fármacos , Pré-Albumina/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Camundongos , Microscopia de Força Atômica , Modelos Moleculares , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Conformação Proteica , Multimerização Proteica , Ratos
10.
Anal Biochem ; 437(1): 32-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23435309

RESUMO

A simple off-column capillary electrophoretic (CE) assay for measuring acetyl coenzyme A carboxylase holoenzyme (holo-ACC) activity and inhibition was developed. The two reactions catalyzed by the holo-ACC components, biotin carboxylase (BC) and carboxyltransferase (CT), were simultaneously monitored in this assay. Acetyl coenzyme A (CoA), malonyl-CoA, adenosine triphosphate (ATP), and adenosine diphosphate (ADP) were separated by capillary electrophoresis, and the depletion of ATP and acetyl-CoA as well as the production of ADP and malonyl-CoA were monitored. Inhibition of holo-ACC by the BC inhibitor, 2-amino-N,N-dibenzyloxazole-5-carboxamide, and the carboxyltransferase inhibitor, andrimid, was confirmed using this assay. A previously reported off-column CE assay for only the CT component of ACC was optimized, and an off-column CE assay for the BC component of ACC also was developed.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Eletroforese Capilar/métodos , Ensaios Enzimáticos/métodos , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Biocatálise , Carbono-Nitrogênio Ligases/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Holoenzimas/metabolismo
11.
J Bioenerg Biomembr ; 45(3): 253-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23271421

RESUMO

Proton motive force (Δp) generation by Escherichia coli wild type cells during glycerol fermentation was first studied. Its two components, electrical-the membrane potential (∆φ) and chemical-the pH transmembrane gradient (ΔpH), were established and the effects of external pH (pHex) were determined. Intracellular pH was 7.0 and 6.0 and lower than pHex at pH 7.5 and 6.5, respectively; and it was higher than pHex at pH 5.5. At high pHex, the increase of ∆φ (-130 mV) was only partially compensated by a reversed ΔpH, resulting in a low Δp. At low pHex ∆φ and consequently Δp were decreased. The generation of Δp during glycerol fermentation was compared with glucose fermentation, and the difference in Δp might be due to distinguished mechanisms for H(+) transport through the membrane, especially to hydrogenase (Hyd) enzymes besides the F0F1-ATPase. H(+) efflux was determined to depend on pHex; overall and N,N'-dicyclohexylcarbodiimide (DCCD)-inhibitory H(+) efflux was maximal at pH 6.5. Moreover, ΔpH was changed at pH 6.5 and Δp was different at pH 6.5 and 5.5 with the hypF mutant lacking all Hyd enzymes. DCCD-inhibited ATPase activity of membrane vesicles was maximal at pH 7.5 and decreased with the hypF mutant. Thus, Δp generation by E. coli during glycerol fermentation is different than that during glucose fermentation. Δp is dependent on pHex, and a role of Hyd enzymes in its generation is suggested.


Assuntos
Escherichia coli/enzimologia , Glicerol/metabolismo , Hidrogenase/metabolismo , Força Próton-Motriz/fisiologia , Carboxil e Carbamoil Transferases/genética , Carboxil e Carbamoil Transferases/metabolismo , Crioprotetores/metabolismo , Crioprotetores/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucose/genética , Glucose/metabolismo , Glicerol/farmacologia , Concentração de Íons de Hidrogênio , Hidrogenase/genética , Mutação , Força Próton-Motriz/efeitos dos fármacos , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
12.
Protein Sci ; 21(11): 1597-619, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22969052

RESUMO

Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO2 carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis.


Assuntos
Biotina/metabolismo , Dióxido de Carbono/metabolismo , Carboxiliases/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotina/química , Dióxido de Carbono/química , Carboxiliases/química , Carboxil e Carbamoil Transferases/química , Catálise , Humanos , Modelos Moleculares , Conformação Proteica
13.
Biochem Biophys Res Commun ; 424(1): 158-63, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22735263

RESUMO

Endoprotease-specific C-terminal processing is required to complete the maturation of the large subunit of [NiFe]-hydrogenases. This happens only after synthesis and insertion of the NiFe(CN)(2)CO cofactor by the Hyp maturases has occurred. It is assumed that in the absence of maturation the unprocessed species of the large subunit lacks cofactors. In this study we isolated a variant of the hydrogenase 2 large subunit, HybC, containing a fused C-terminal pentapeptide. The polypeptide could not be processed and was unable to associate with the small subunit to deliver an active enzyme. The His(6)-HybC variant protein isolated was brown and had sub-stoichiometric amounts of an oxygen-sensitive Iron-sulfur cluster, which could be chemically reconstituted to a [4Fe-4S] cluster. This cluster was coordinated by the conserved cysteinyl residues that normally ligate the NiFe(CN)(2)CO cofactor. Our findings provide evidence for temporary promiscuity of cofactor-binding sites.


Assuntos
Escherichia coli/enzimologia , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Oxirredutases/química , Oxigênio/química , Carboxil e Carbamoil Transferases/genética , Proteínas de Transporte/genética , Proteínas de Escherichia coli/genética , Hidrogenase/genética , Proteínas Ferro-Enxofre/genética , Mutação , Oligopeptídeos/química , Oligopeptídeos/genética , Oxirredutases/genética
14.
J Cell Mol Med ; 15(10): 2106-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21155974

RESUMO

Peptides and proteins can convert from their soluble forms into highly ordered fibrillar aggregates, giving rise to pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. It is increasingly recognized that protein oligomers forming early in the process of fibril aggregation represent the pathogenic species in protein deposition diseases. The N-terminal domain of the HypF protein from Escherichia coli (HypF-N) has previously been shown to form, under distinct conditions, two types of HypF-N oligomers with indistinguishable morphologies but distinct structural features at the molecular level. Only the oligomer type exposing hydrophobic surfaces and possessing sufficient structural plasticity is toxic (type A), whereas the other type is benign to cultured cells (type B). Here we show that only type A oligomers are able to induce a Ca(2+) influx from the cell medium to the cytosol, to penetrate the plasma membrane, to increase intracellular reactive oxygen species production, lipid peroxidation and release of intracellular calcein, resulting in the activation of the apoptotic pathway. Remarkably, these oligomers can also induce a loss of cholinergic neurons when injected into rat brains. By contrast, markers of cellular stress and viability were unaffected in cultured and rat neuronal cells exposed to type B oligomers. The analysis of the time scales of such effects indicates that the difference of toxicity between the two oligomer types involve the early events of the toxicity cascade, shedding new light on the mechanism of action of protein oligomers and on the molecular targets for the therapeutic intervention against protein deposition diseases.


Assuntos
Cálcio/metabolismo , Carboxil e Carbamoil Transferases/química , Carboxil e Carbamoil Transferases/farmacologia , Neurônios Colinérgicos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Neurônios Colinérgicos/química , Modelos Animais de Doenças , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
15.
Virol J ; 7: 316, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21073735

RESUMO

Gene delivery vectors based on adenovirus, particularly human adenovirus serotype 5 (hAd5) have great potential for the treatment of variety of diseases. However, the tropism of hAd5 needs to be modified to achieve tissue- or cell- specific therapies for the successful application of this vector system to clinic. Here, we modified hAd5 tropism by replacing the fiber knob which contains the coxsackievirus B and adenovirus receptor (CAR)-binding sites with a biotin acceptor peptide, a truncated form of Propionibacterium shermanii 1.3 S transcarboxylase domain (PSTCD), to enable metabolically biotinylation of the virus. We demonstrate here that the new adenovirus no longer shows CAR-dependent cell uptake and transduction. When metabolically biotinylated and avidin-coated, it forms a nano-complex that can be retargeted to distinct cells using biotinylated antibodies. This vector may prove useful in the path towards achieving targeted gene delivery.


Assuntos
Adenovírus Humanos/fisiologia , Biotina/metabolismo , Proteínas do Capsídeo/genética , Deleção de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Tropismo Viral , Adenovírus Humanos/genética , Animais , Carboxil e Carbamoil Transferases/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Terapia Genética/métodos , Humanos , Receptores Virais/genética , Proteínas Recombinantes/genética , Coloração e Rotulagem/métodos
16.
Can Vet J ; 51(6): 615-22, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20808573

RESUMO

This study evaluated the relationship between severity of fatty liver and macromineral status in downer dairy cows and determined the usefulness of selected biochemical analytes for assessing prognosis. Blood and liver biopsy specimens were obtained from 36 Holstein downer cows shortly after the cows became recumbent and before they were treated. Liver tissue was examined histologically and serum activity of liver-derived enzymes and concentration of total lipids, triglycerides, bile acids, glucose, beta-hydroxybutyrate, acetoacetic acid, total bilirubin, non-esterified fatty acids (NEFA), cholesterol and macrominerals (Ca, Mg, K, Na, P) were determined. Fatty liver infiltration was severe in 44% of the cows and moderate in 44%. Serum activities of ornithine carbamoyltransferase and glutamate dehydrogenase, and NEFA/cholesterol ratio were good indicators of fatty liver. Cows with severe fatty liver had the lowest mean K values. The prognosis is guarded for downer cows with moderate and severe fatty liver and when total bilirubin concentration is high.


Assuntos
Doenças dos Bovinos/patologia , Fígado Gorduroso/veterinária , Lactação/fisiologia , Transtornos Puerperais/veterinária , Ácido 3-Hidroxibutírico/metabolismo , Acetoacetatos/metabolismo , Animais , Bilirrubina/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Bovinos/metabolismo , Doenças dos Bovinos/metabolismo , Colesterol/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Glutamato Desidrogenase/metabolismo , Fígado/química , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Necessidades Nutricionais , Estado Nutricional , Prognóstico , Transtornos Puerperais/metabolismo , Transtornos Puerperais/patologia , Índice de Gravidade de Doença , Triglicerídeos/metabolismo
17.
Z Naturforsch C J Biosci ; 65(1-2): 103-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20355329

RESUMO

A full-length cDNA of the carboxyltransferase (accA) gene of acetyl-coenzym A (acetyl-CoA) carboxylase from Jatropha curcas was cloned and sequenced. The gene with an open reading frame (ORF) of 1149 bp encodes a polypeptide of 383 amino acids, with a molecular mass of 41.9 kDa. Utilizing fluorogenic real-time polymerase chain reaction (RT-PCR), the expression levels of the accA gene in leaves and fruits at early, middle and late stages under pH 7.0/8.0 and light/darkness stress were investigated. The expression levels of the accA gene in leaves at early, middle and late stages increased significantly under pH 8.0 stress compared to pH 7.0. Similarly, the expression levels in fruits showed a significant increase under darkness condition compared to the control. Under light stress, the expression levels in the fruits at early, middle and late stages showed the largest fluctuations compared to those of the control. These findings suggested that the expression levels of the accA gene are closely related to the growth conditions and developmental stages in the leaves and fruits of Jatropha curcas.


Assuntos
Acetil-CoA Carboxilase/genética , Carboxil e Carbamoil Transferases/genética , Jatropha/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Escuridão , Frutas/enzimologia , Frutas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Jatropha/genética , Luz , Dados de Sequência Molecular , Folhas de Planta/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Mol Biol ; 398(4): 600-13, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20346957

RESUMO

Aggregation of peptides and proteins into insoluble amyloid fibrils or related intracellular inclusions is the hallmark of many degenerative diseases, including Alzheimer's disease, Parkinson's disease, and various forms of amyloidosis. In spite of the considerable progress carried out in vitro in elucidating the molecular determinants of the conversion of purified and isolated proteins into amyloid fibrils, very little is known on factors governing this process in the complex environment of living organisms. Taking advantage of increasing evidence that bacterial inclusion bodies consist of amyloid-like aggregates, we have expressed in Escherichia coli both wild type and 21 single-point mutants of the N-terminal domain of the E. coli protein HypF. All variants were expressed as folding-incompetent units in a controlled manner, at low and comparable levels. Their solubilities were measured by quantifying the protein amount contained in the soluble and insoluble fractions by Western blot analysis. A significant negative correlation was found between the solubility of the variants in E. coli and their intrinsic propensity to form amyloid fibrils, predicted using an algorithm previously validated experimentally in vitro on a number of unfolded peptides and proteins, and considering hydrophobicity, beta-sheet propensity, and charge as major sequence determinants of the aggregation process. These findings show that the physicochemical parameters previously recognized to govern amyloid formation by fully or partially unfolded proteins are largely applicable in vivo and pave the way for the molecular exploration of a process as complex as protein aggregation in living organisms.


Assuntos
Carboxil e Carbamoil Transferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Amiloide/metabolismo , Western Blotting/métodos , Carboxil e Carbamoil Transferases/química , Carboxil e Carbamoil Transferases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Dobramento de Proteína , Solubilidade
19.
Nat Chem Biol ; 6(2): 140-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20081829

RESUMO

The aberrant assembly of peptides and proteins into fibrillar aggregates proceeds through oligomeric intermediates that are thought to be the primary pathogenic species in many protein deposition diseases. We describe two types of oligomers formed by the HypF-N protein that are morphologically and tinctorially similar, as detected with atomic force microscopy and thioflavin T assays, though one is benign when added to cell cultures whereas the other is toxic. Structural investigation at a residue-specific level using site-directed labeling with pyrene indicated differences in the packing of the hydrophobic interactions between adjacent protein molecules in the oligomers. The lower degree of hydrophobic packing was found to correlate with a higher ability to penetrate the cell membrane and cause an influx of Ca(2+) ions. Our findings suggest that structural flexibility and hydrophobic exposure are primary determinants of the ability of oligomeric assemblies to cause cellular dysfunction and its consequences, such as neurodegeneration.


Assuntos
Carboxil e Carbamoil Transferases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Multimerização Proteica , Carboxil e Carbamoil Transferases/metabolismo , Carboxil e Carbamoil Transferases/ultraestrutura , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Ligação Proteica , Conformação Proteica
20.
J Bacteriol ; 192(5): 1387-94, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20047908

RESUMO

Anaerobic ethylbenzene metabolism in the betaproteobacterium Aromatoleum aromaticum is initiated by anaerobic oxidation to acetophenone via (S)-1-phenylethanol. The subsequent carboxylation of acetophenone to benzoylacetate is catalyzed by an acetophenone-induced enzyme, which has been purified and studied. The same enzyme is involved in acetophenone metabolism in the absence of ethylbenzene. Acetophenone carboxylase consists of five subunits with molecular masses of 70, 15, 87, 75, and 34 kDa, whose genes (apcABCDE) form an apparent operon. The enzyme is synthesized at high levels in cells grown on ethylbenzene or acetophenone, but not in cells grown on benzoate. During purification, acetophenone carboxylase dissociates into inactive subcomplexes consisting of the 70-, 15-, 87-, and 75-kDa subunits (apcABCD gene products) and the 34-kDa subunit (apcE gene product), respectively. Acetophenone carboxylase activity was restored by mixing the purified subcomplexes. The enzyme contains 1 Zn(2+) ion per alphabetagammadelta core complex and is dependent on the presence of Mg(2+) or Mn(2+). In spite of the presence of Zn in the enzyme, it is strongly inhibited by Zn(2+) ions. Carboxylation of acetophenone is dependent on ATP hydrolysis to ADP and P(i), exhibiting a stoichiometry of 2 mol ATP per mol acetophenone carboxylated. The enzyme shows uncoupled ATPase activity with either bicarbonate or acetophenone in the absence of the second substrate. These observations indicate that both substrates may be phosphorylated, which is consistent with isotope exchange activity observed with deuterated acetophenone and inhibition by carbamoylphosphate, a structural analogue of carboxyphosphate. A potential mechanism of ATP-dependent acetophenone carboxylation is suggested.


Assuntos
Acetofenonas/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Rhodocyclaceae/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Bicarbonatos/metabolismo , Carboxil e Carbamoil Transferases/química , Carboxil e Carbamoil Transferases/genética , Carboxil e Carbamoil Transferases/isolamento & purificação , Ativadores de Enzimas/farmacologia , Regulação Enzimológica da Expressão Gênica , Magnésio/farmacologia , Manganês/farmacologia , Redes e Vias Metabólicas , Peso Molecular , Óperon , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA