Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Mol Metab ; 81: 101899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346589

RESUMO

OBJECTIVE: Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS: PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS: PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS: This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Camundongos , Ratos , Humanos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Terapia Genética/métodos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/terapia
2.
J Nanobiotechnology ; 20(1): 435, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195937

RESUMO

Exosomes of human cardiosphere-derived cells (CDCs) are very promising for treating cardiovascular disorders. However, the current challenge is inconvenient delivery methods of exosomes for clinical application. The present study aims to explore the potential to enhance the therapeutic effect of exosome (EXO) from human CDCs to myocardial hypertrophy. A heart homing peptide (HHP) was displayed on the surface of exosomes derived from CDCs that were forced to express the HHP fused on the N-terminus of the lysosomal-associated membrane protein 2b (LAMP2b). The cardiomyocyte-targeting capability of exosomes were analyzed and their therapeutic effects were evaluated in a mouse model of myocardial hypertrophy induced by transverse aorta constriction (TAC). The molecular mechanisms of the therapeutic effects were dissected in angiotensin II-induced neonatal rat cardiomyocyte (NRCMs) hypertrophy model using a combination of biochemistry, immunohistochemistry and molecular biology techniques. We found that HHP-exosomes (HHP-EXO) accumulated more in mouse hearts after intravenous delivery and in cultured NRCMs than control exosomes (CON-EXO). Cardiac function of TAC mice was significantly improved with intravenous HHP-EXO administration. Left ventricular hypertrophy was reduced more by HHP-EXO than CON-EXO via inhibition of ß-MHC, BNP, GP130, p-STAT3, p-ERK1/2, and p-AKT. Similar results were obtained in angiotensin II-induced hypertrophy of NRCMs, in which the beneficial effects of HHP-EXO were abolished by miRNA-148a inhibition. Our results indicate that HHP-EXO preferentially target the heart and improve the therapeutic effect of CDCs-exosomes on cardiac hypertrophy. The beneficial therapeutic effect is most likely attributed to miRNA-148a-mediated suppression of GP130, which in turn inhibits STAT3/ERK1/2/AKT signaling pathway, leading to improved cardiac function and remodeling.


Assuntos
Exossomos , MicroRNAs , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/terapia , Receptor gp130 de Citocina/metabolismo , Exossomos/metabolismo , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
4.
J Zhejiang Univ Sci B ; 22(10): 818-838, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34636186

RESUMO

OBJECTIVES: Cardiac hypertrophy and fibrosis are major pathological manifestations observed in left ventricular remodeling induced by angiotensin II (AngII). Low-intensity pulsed ultrasound (LIPUS) has been reported to ameliorate cardiac dysfunction and myocardial fibrosis in myocardial infarction (MI) through mechano-transduction and its downstream pathways. In this study, we aimed to investigate whether LIPUS could exert a protective effect by ameliorating AngII-induced cardiac hypertrophy and fibrosis and if so, to further elucidate the underlying molecular mechanisms. METHODS: We used AngII to mimic animal and cell culture models of cardiac hypertrophy and fibrosis. LIPUS irradiation was applied in vivo for 20 min every 2 d from one week before mini-pump implantation to four weeks after mini-pump implantation, and in vitro for 20 min on each of two occasions 6 h apart. Cardiac hypertrophy and fibrosis levels were then evaluated by echocardiographic, histopathological, and molecular biological methods. RESULTS: Our results showed that LIPUS could ameliorate left ventricular remodeling in vivo and cardiac fibrosis in vitro by reducing AngII-induced release of inflammatory cytokines, but the protective effects on cardiac hypertrophy were limited in vitro. Given that LIPUS increased the expression of caveolin-1 in response to mechanical stimulation, we inhibited caveolin-1 activity with pyrazolopyrimidine 2 (pp2) in vivo and in vitro. LIPUS-induced downregulation of inflammation was reversed and the anti-fibrotic effects of LIPUS were absent. CONCLUSIONS: These results indicated that LIPUS could ameliorate AngII-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway, providing new insights for the development of novel therapeutic apparatus in clinical practice.


Assuntos
Cardiomegalia/terapia , Caveolina 1/fisiologia , Inflamação/prevenção & controle , Miocárdio/patologia , Ondas Ultrassônicas , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Células Cultivadas , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072818

RESUMO

The chemokine CXCL12 plays a fundamental role in cardiovascular development, cell trafficking, and myocardial repair. Human genome-wide association studies even have identified novel loci downstream of the CXCL12 gene locus associated with coronary artery disease and myocardial infarction. Nevertheless, cell and tissue specific effects of CXCL12 are barely understood. Since we detected high expression of CXCL12 in smooth muscle (SM) cells, we generated a SM22-alpha-Cre driven mouse model to ablate CXCL12 (SM-CXCL12-/-). SM-CXCL12-/- mice revealed high embryonic lethality (50%) with developmental defects, including aberrant topology of coronary arteries. Postnatally, SM-CXCL12-/- mice developed severe cardiac hypertrophy associated with fibrosis, apoptotic cell death, impaired heart function, and severe coronary vascular defects characterized by thinned and dilated arteries. Transcriptome analyses showed specific upregulation of pathways associated with hypertrophic cardiomyopathy, collagen protein network, heart-related proteoglycans, and downregulation of the M2 macrophage modulators. CXCL12 mutants showed endothelial downregulation of the CXCL12 co-receptor CXCR7. Treatment of SM-CXCL12-/- mice with the CXCR7 agonist TC14012 attenuated cardiac hypertrophy associated with increased pERK signaling. Our data suggest a critical role of smooth muscle-specific CXCL12 in arterial development, vessel maturation, and cardiac hypertrophy. Pharmacological stimulation of CXCR7 might be a promising target to attenuate adverse hypertrophic remodeling.


Assuntos
Cardiomegalia/genética , Quimiocina CXCL12/genética , Infarto do Miocárdio/genética , Receptores CXCR/genética , Técnicas de Ablação , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/terapia , Vasos Coronários , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Músculo Liso/metabolismo , Músculo Liso/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miocárdio/patologia
6.
Benef Microbes ; 12(3): 283-293, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030609

RESUMO

Escherichia coli Nissle (EcN), a probiotic bacterium protects against several disorders. Multiple reports have studied the pathways involved in cardiac hypertrophy. However, the effects of probiotic EcN against diabetes-induced cardiac hypertrophy remain to be understood. We administered five weeks old Wistar male (271±19.4 g body weight) streptozotocin-induced diabetic rats with 109 cfu of EcN via oral gavage every day for 24 days followed by subjecting the rats to echocardiography to analyse the cardiac parameters. Overexpressed interleukin (IL)-6 induced the MEK5/ERK5, JAK2/STAT3, and MAPK signalling cascades in streptozotocin-induced diabetic rats. Further, the upregulation of calcineurin, NFATc3, and p-GATA4 led to the elevation of hypertrophy markers, such as atrial and B-type natriuretic peptides. In contrast, diabetic rats supplemented with probiotic EcN exhibited significant downregulated IL-6. Moreover, the MEK5/ERK5 and JAK2/STAT3 cascades involved during eccentric hypertrophy and MAPK signalling, including phosphorylated MEK, ERK, JNK, and p-38, were significantly attenuated in diabetic rats after supplementation of EcN. Western blotting and immunofluorescence revealed the significant downregulation of NFATc3 and downstream mediators, thereby resulting in the impairment of cardiac hypertrophy. Taken together, the findings demonstrate that supplementing probiotic EcN has the potential to show cardioprotective effects by inhibiting diabetes-induced cardiomyopathies.


Assuntos
Cardiomegalia/terapia , Diabetes Mellitus Experimental/terapia , Cardiomiopatias Diabéticas/terapia , Escherichia coli/fisiologia , Interleucina-6/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Probióticos/uso terapêutico , Animais , Calcineurina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , MAP Quinase Quinase 5/metabolismo , Masculino , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Estreptozocina
7.
Circulation ; 143(23): 2277-2292, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33757294

RESUMO

BACKGROUND: Exercise can induce physiological myocardial hypertrophy (PMH), and former athletes can live 5 to 6 years longer than nonathletic controls, suggesting a benefit after regression of PMH. We previously reported that regression of pathological myocardial hypertrophy has antihypertrophic effects. Accordingly, we hypothesized that antihypertrophic memory exists even after PMH has regressed, increasing myocardial resistance to subsequent pathological hypertrophic stress. METHODS: C57BL/6 mice were submitted to 21 days of swimming training to develop PMH. After termination of exercise, PMH regressed within 1 week. PMH regression mice (exercise hypertrophic preconditioning [EHP] group) and sedentary mice (control group) then underwent transverse aortic constriction or a sham operation for 4 weeks. Cardiac remodeling and function were evaluated with echocardiography, invasive left ventricular hemodynamic measurement, and histological analysis. LncRNA sequencing, chromatin immunoprecipitation assay, and comprehensive identification of RNA-binding proteins by mass spectrometry and Western blot were used to investigate the role of Mhrt779 involved in the antihypertrophic effect induced by EHP. RESULTS: At 1 and 4 weeks after transverse aortic constriction, the EHP group showed less increase in myocardial hypertrophy and lower expression of the Nppa and Myh7 genes than the sedentary group. At 4 weeks after transverse aortic constriction, EHP mice had less pulmonary congestion, smaller left ventricular dimensions and end-diastolic pressure, and a larger left ventricular ejection fraction and maximum pressure change rate than sedentary mice. Quantitative polymerase chain reaction revealed that the long noncoding myosin heavy chain-associated RNA transcript Mhrt779 was one of the markedly upregulated lncRNAs in the EHP group. Silencing of Mhrt779 attenuated the antihypertrophic effect of EHP in mice with transverse aortic constriction and in cultured cardiomyocytes treated with angiotensin II, and overexpression enhanced the antihypertrophic effect. Using chromatin immunoprecipitation assay and quantitative polymerase chain reaction, we found that EHP increased histone 3 trimethylation (H3K4me3 and H3K36me3) at the a4 promoter of Mhrt779. Comprehensive identification of RNA-binding proteins by mass spectrometry and Western blot showed that Mhrt779 can bind SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (Brg1) to inhibit the activation of the histone deacetylase 2 (Hdac2)/phosphorylated serine/threonine kinase (Akt)/phosphorylated glycogen synthase kinase 3ß(p-GSK3ß) pathway induced by pressure overload. CONCLUSIONS: Myocardial hypertrophy preconditioning evoked by exercise increases resistance to pathological stress via an antihypertrophic effect mediated by a signal pathway of Mhrt779/Brg1/Hdac2/p-Akt/p-GSK3ß.


Assuntos
Cardiomegalia/terapia , Condicionamento Físico Animal , RNA Longo não Codificante/metabolismo , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomegalia/genética , Modelos Animais de Doenças , Ecocardiografia , Glicogênio Sintase Quinase 3 beta/metabolismo , Hemodinâmica , Histona Desacetilase 2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Regulação para Cima , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular
9.
J Mol Endocrinol ; 66(4): 273-283, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33739937

RESUMO

Glucocorticoid excess often causes a variety of cardiovascular complications, including hypertension, atherosclerosis, and cardiac hypertrophy. To abrogate its cardiac side effects, it is necessary to fully disclose the pathophysiological role of glucocorticoid in cardiac remodelling. Previous clinical and experimental studies have found that omentin-1, one of the adipokines, has beneficial effects in cardiovascular diseases, and is closely associated with metabolic disorders. However, there is no evidence to address the potential role of omentin-1 in glucocorticoid excess-induced cardiac injuries. To uncover the links, the present study utilized rat model with glucocorticoid-induced cardiac injuries and clinical patients with abnormal cardiac function. Chronic administration of glucocorticoid excess reduced rat serum omentin-1 concentration, which closely correlated with cardiac functional parameters. Intravenous administration of adeno-associated virus encoding omentin-1 upregulated the circulating omentin-1 level and attenuated glucocorticoid excess-induced cardiac hypertrophy and functional disorders. Overexpression of omentin-1 also improved cardiac mitochondrial function, including the reduction of lipid deposits, induction of mitochondrial biogenesis, and enhanced mitochondrial activities. Mechanistically, omentin-1 phosphorylated and activated the GSK3ß pathway in the heart. From a study of 28 patients with Cushing's syndrome and 23 healthy subjects, the plasma level of glucocorticoid was negatively correlated with omentin-1, and was positively associated with cardiac ejection fraction and fractional shortening. Collectively, the present study provided a novel role of omentin-1 in glucocorticoid excess-induced cardiac injuries and found that the omentin-1/GSK3ß pathway was a potential therapeutic target in combating the side effects of glucocorticoid.


Assuntos
Cardiomegalia/genética , Síndrome de Cushing/genética , Citocinas/genética , Glicogênio Sintase Quinase 3 beta/genética , Lectinas/genética , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/terapia , Síndrome de Cushing/sangue , Síndrome de Cushing/patologia , Feminino , Glucocorticoides/sangue , Glucocorticoides/toxicidade , Voluntários Saudáveis , Humanos , Masculino , Mitocôndrias/genética , Fosforilação/genética , Ratos , Transdução de Sinais/genética
10.
J Nutr Biochem ; 87: 108522, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045326

RESUMO

Obesity and exercise lead to structural changes in heart such as cardiac hypertrophy. The underlying signaling pathways vary according to the source of the overload, be it physiological (exercise) or pathologic (obesity). The physiological pathway relies more on PI3K-Akt signaling while the pathologic pathway involves calcineurin-Nuclear factor of activated T-cells activation and fibrosis accumulation. Independently, exercise and polyphenols have demonstrated to prevent pathologic cardiac hypertrophy. Therefore, we investigated the molecular adaptations of the combination of exercise training and grape polyphenols supplementation (EXOPP) in obese high-fat fed rats on heart adaptation in comparison to exercise (EXO), polyphenols supplementation (PP) and high-fat fed rats (HF), alone. Exercised and PP rats presented a higher heart weight/body weight ratio compared to HF rats. EXO and EXOPP depicted an increase in cell-surface area, P-Akt/Akt, P-AMPK/AMPK ratios with a decreased fibrosis and calcineurin expression, illustrating an activation of the physiological pathway, but no additional benefit of the combination. In contrast, neither cell-surface area nor Akt signaling increased in PP rats; but markedly decreased fibrosis, calcineurin expression, systolic blood pressure, higher SERCA and P-Phospholamdan/Phospholamdan levels were observed. These data suggest that PP rats have a shift from pathologic toward physiological hypertrophy. Our study demonstrates that polyphenols supplementation has physical-activity-status-specific effects; it appears to be more protective in sedentary obese insulin-resistant rats than in the exercised ones. Exercise training improved metabolic and cardiac alterations without a synergistic effect of polyphenols supplementation. These data highlight a greater effect of exercise than polyphenols supplementation for the treatment of cardiac alterations in obese insulin-resistant rats.


Assuntos
Cardiomegalia/terapia , Suplementos Nutricionais , Resistência à Insulina , Obesidade/terapia , Polifenóis/uso terapêutico , Vitis , Animais , Cardiomegalia/complicações , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Masculino , Obesidade/complicações , Obesidade/metabolismo , Condicionamento Físico Animal , Ratos , Ratos Sprague-Dawley , Vitis/química
11.
Mol Ther ; 29(3): 1120-1137, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33130312

RESUMO

Emerging evidence reveals that autophagy plays crucial roles in cardiac hypertrophy. Long noncoding RNAs (lncRNAs) are novel transcripts that function as gene regulators. However, it is unclear whether lncRNAs regulate autophagy in cardiac hypertrophy. Here, we identified a novel transcript named lncRNA Gm15834, which was upregulated in the transverse aortic constriction (TAC) model in vivo and the angiotensin-II (Ang-II)-induced cardiac hypertrophy model in vitro and was regulated by nuclear factor kappa B (NF-κB). Importantly, forced expression of lncRNA Gm15834 enhanced autophagic activity of cardiomyocytes and promoted myocardial hypertrophy, whereas silencing of lncRNA Gm15834 attenuated autophagy-induced myocardial hypertrophy. Mechanistically, we found that lncRNA Gm15834 could function as an endogenous sponge RNA of microRNA (miR)-30b-3p, which was downregulated in cardiac hypertrophy. Inhibition of miR-30b-3p enhanced cardiomyocyte autophagic activity and aggravated myocardial hypertrophy, whereas overexpression of miR-30b-3p suppressed autophagy-induced myocardial hypertrophy by targeting the downstream autophagy factor of unc-51-like kinase 1 (ULK1). Moreover, inhibition of lncRNA Gm15834 by adeno-associated virus carrying short hairpin RNA (shRNA) suppressed cardiomyocyte autophagic activity, improved cardiac function, and mitigated cardiac hypertrophy. Taken together, our study identified a novel regulatory axis encompassing lncRNA Gm15834/miR-30b-3p/ULK1/autophagy in cardiac hypertrophy, which may provide a potential therapy target for cardiac hypertrophy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Cardiomegalia/terapia , Regulação da Expressão Gênica , RNA Longo não Codificante/antagonistas & inibidores , Angiotensina II/toxicidade , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Vasoconstritores/toxicidade
12.
In Vitro Cell Dev Biol Anim ; 56(7): 567-576, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32748023

RESUMO

The multiple therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) have been verified in ischemic and reperfusion diseases. Exosomes are thought to play vital roles in MSCs-related cardioprotective effects. Recently, more and more evidences indicated that apoptosis and fibrosis were crucial pathological mechanisms in cardiac remodeling. Whether MSCs-derived exosomes could regulate cardiac hypertrophy and remodeling need to be explored. Murine BM-MSCs-derived exosomes were isolated by differential gradient centrifugation method. The transverse aortic constriction (TAC) mice model was established to promote cardiac remodeling. Cardiac function and remodeling were assessed via echocardiography and histology analysis. Myocytes apoptosis was determined by TUNEL fluorescence staining. Meanwhile, premature senescence was detected by ß-galactosidase (SA-ß-gal) staining. Related proteins and mRNA alternation were assessed via western blotting and quantitative reverse transcription polymerase chain reaction, respectively. MSCs-derived exosomes significantly protected myocardium against cardiac hypertrophy, attenuated myocardial apoptosis, and fibrosis and preserved heart function when pressure overload. In cultured myocytes, MSCs-derived exosomes also prevented cell hypertrophy stimulated with angiotensin II. One the other hand, exosomes promoted premature senescence of myofibroblasts vitro, indicating its anti-fibrosis effect in cardiac remodeling. Exosomes protected cardiomyocytes against pathological hypertrophy. It may provide a promising future treatment for heart failure.


Assuntos
Cardiomegalia/fisiopatologia , Cardiomegalia/terapia , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pressão , Remodelação Ventricular , Angiotensina II , Animais , Apoptose , Exossomos/ultraestrutura , Fibrose , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Miofibroblastos/patologia
13.
J Am Coll Cardiol ; 75(15): 1788-1800, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32299591

RESUMO

BACKGROUND: miR-21 is a central regulator of cardiac fibrosis, and its inhibition in small-animal models has been shown to be an effective antifibrotic strategy in various organs, including the heart. Effective delivery of therapeutic antisense micro-ribonucleic acid (antimiR) molecules to the myocardium in larger organisms is challenging, though, and remains to be established for models of chronic heart failure. OBJECTIVES: The aims of this study were to test the applicability and therapeutic efficacy of local, catheter-based delivery of antimiR-21 in a pig model of heart failure and determine its effect on the cardiac transcriptomic signature and cellular composition. METHODS: Pigs underwent transient percutaneous occlusion of the left coronary artery and were followed up for 33 days. AntimiR-21 (10 mg) was applied by intracoronary infusion at days 5 and 19 after the injury. Cardiac function was assessed in vivo, followed by histological analyses and deep ribonucleic acid sequencing (RNA-seq) of the myocardium and genetic deconvolution analysis. RESULTS: AntimiR-21 effectively suppressed the remodeling-associated increase of miR-21. At 33 days after ischemia/reperfusion injury, LNA-21-treated hearts exhibited reduced cardiac fibrosis and hypertrophy and improved cardiac function. Deep RNA-seq revealed a significant derepression of the miR-21 targetome in antimiR-21-treated myocardium and a suppression of the inflammatory response and mitogen-activated protein kinase signaling. A genetic deconvolution approach built on deep RNA-seq and single-cell RNA-seq data identified reductions in macrophage and fibroblast numbers as the key cell types affected by antimiR-21 treatment. CONCLUSIONS: This study provides the first evidence for the feasibility and therapeutic efficacy of miR-21 inhibition in a large animal model of heart failure.


Assuntos
Cardiomegalia/terapia , Fibrose/terapia , MicroRNAs/antagonistas & inibidores , Miocárdio/patologia , Traumatismo por Reperfusão/terapia , Remodelação Ventricular , Animais , Cardiomegalia/genética , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose/genética , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Oligonucleotídeos/química , Remodelação Ventricular/genética
14.
Mol Ther ; 28(6): 1506-1517, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32304667

RESUMO

Circular RNAs (circRNAs) sequester microRNAs (miRNAs) and repress their endogenous activity. We hypothesized that artificial circRNA sponges (circmiRs) can be constructed to target miRNAs therapeutically, with a low dosage requirement and extended half-lives compared to current alternatives. This could present a new treatment approach for critical global pathologies, including cardiovascular disease. Here, we constructed a circmiR sponge to target known cardiac pro-hypertrophic miR-132 and -212. Expressed circmiRs competitively inhibited miR-132 and -212 activity in luciferase rescue assays and showed greater stability than linear sponges. A design containing 12 bulged binding sites with 12 nucleotides spacing was determined to be optimal. Adeno-associated viruses (AAVs) were used to deliver circmiRs to cardiomyocytes in vivo in a transverse aortic constriction (TAC) mouse model of cardiac disease. Hypertrophic disease characteristics were attenuated, and cardiac function was preserved in treated mice, demonstrating the potential of circmiRs as novel therapeutic tools. Subsequently, group I permutated intron-exon sequences were used to directly synthesize exogenous circmiRs, which showed greater in vitro efficacy than the current gold standard antagomiRs in inhibiting miRNA function. Engineered circRNAs thus offer exciting potential as future therapeutics.


Assuntos
Cardiomegalia/fisiopatologia , Regulação da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , RNA Circular/genética , Animais , Sequência de Bases , Sítios de Ligação , Cardiomegalia/diagnóstico , Cardiomegalia/etiologia , Cardiomegalia/terapia , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Testes de Função Cardíaca , Camundongos , MicroRNAs/administração & dosagem , MicroRNAs/química , Estabilidade de RNA , RNA Circular/administração & dosagem , RNA Circular/química
15.
J Appl Physiol (1985) ; 128(1): 59-69, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647720

RESUMO

The present study investigated the effects of exercise on the cardiac nuclear factor (erythroid-derived 2) factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) pathway in an experimental model of chronic fructose consumption. Male C57BL/6 mice were assigned to Control, Fructose (20% fructose in drinking water), Exercise (treadmill exercise at moderate intensity), and Fructose + Exercise groups (n = 10). After 12 wk, the energy intake and body weight in the groups were similar. Maximum exercise testing, resting energy expenditure, resting oxygen consumption, and carbon dioxide production increased in the exercise groups (Exercise and Fructose + Exercise vs. Control and Fructose groups, P < 0.05). Chronic fructose intake induced circulating hypercholesterolemia, hypertriglyceridemia, and hyperleptinemia and increased white adipose tissue depots, with no changes in blood pressure. This metabolic environment increased circulating IL-6, IL-1ß, IL-10, cardiac hypertrophy, and cardiac NF-κB-p65 and TNF-α expression, which were reduced by exercise (P < 0.05). Cardiac ANG II type 1 receptor and NAD(P)H oxidase 2 (NOX2) were increased by fructose intake and exercise decreased this response (P < 0.05). Exercise increased the cardiac expression of the NRF2-to-KEAP1 ratio and phase II antioxidants in fructose-fed mice (P < 0.05). NOX4, glutathione reductase, and catalase protein expression were similar between the groups. These findings suggest that exercise confers modulatory cardiac effects, improving antioxidant defenses through the NRF2/KEAP1 pathway and decreasing oxidative stress, representing a potential nonpharmacological approach to protect against fructose-induced cardiometabolic diseases.NEW & NOTEWORTHY This is the first study to evaluate the cardiac modulation of NAD(P)H oxidase (NOX), the NRF2/Kelch-like ECH-associated protein 1 pathway (KEAP), and the thioredoxin (TRX1) system through exercise in the presence of moderate fructose intake. We demonstrated a novel mechanism by which exercise improves cardiac antioxidant defenses in an experimental model of chronic fructose intake, which involves NRF2-to-KEAP1 ratio modulation, enhancing the local phase II antioxidants hemoxygenase-1, thioredoxin reductase (TXNRD1), and peroxiredoxin1B (PDRX1), and inhibiting cardiac NOX2 overexpression.


Assuntos
Cardiomegalia/terapia , Frutose/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Glutationa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Condicionamento Físico Animal , Espécies Reativas de Oxigênio/metabolismo , Edulcorantes/toxicidade
16.
J Am Heart Assoc ; 8(21): e012880, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31640463

RESUMO

Background Cardiac fibrosis occurs because of disruption of the extracellular matrix network leading to myocardial dysfunction. Angiotensin II (AngII) has been implicated in the development of cardiac fibrosis. Recently, microRNAs have been identified as an attractive target for therapeutic intervention in cardiac pathologies; however, the underlying mechanism of microRNAs in cardiac fibrosis remains unclear. Next-generation sequencing analysis identified a novel characterized microRNA, miR-1954, that was significantly reduced in AngII-infused mice. The finding led us to hypothesize that deficiency of miR-1954 triggers cardiac fibrosis. Methods and Results A transgenic mouse was created using α-MHC (α-myosin heavy chain) promoter and was challenged with AngII infusion. AngII induced cardiac hypertrophy and remodeling. The in vivo overexpression of miR-1954 showed significant reduction in cardiac mass and blood pressure in AngII-infused mice. Further analysis showed significant reduction in cardiac fibrotic genes, hypertrophy marker genes, and an inflammatory gene and restoration of a calcium-regulated gene (Atp2a2 [ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2]; also known as SERCA2), but no changes were observed in apoptotic genes. THBS1 (thrombospondin 1) is indicated as a target gene for miR-1954. Conclusions Our findings provide evidence, for the first time, that miR-1954 plays a critical role in cardiac fibrosis by targeting THBS1. We conclude that promoting the level of miR-1954 would be a promising strategy for the treatment of cardiac fibrosis.


Assuntos
Fibrose/genética , MicroRNAs/genética , Miocárdio/patologia , Remodelação Ventricular/genética , Actinas/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Cardiomegalia/terapia , Caspase 3/metabolismo , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/metabolismo , Colágeno Tipo IV/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Fibrose/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Interleucina-6/metabolismo , Camundongos Transgênicos , Tamanho do Órgão , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
17.
Acupunct Med ; 37(1): 55-63, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30843422

RESUMO

OBJECTIVES: To investigate the effect of acupuncture at PC6 on cardiac hypertrophy in isoproterenol (ISO)-treated mice. METHODS: 48 male C57BL/6 mice underwent subcutaneous injection of ISO for 14 days and were randomly divided into four groups (n=12 each) that remained untreated (ISO group), received verum manual acupuncture (MA) treatment at PC6 (ISO+MA(PC6) group), sham MA at location on the tail not corresponding to any traditional acupuncture point (ISO+MA(tail) group), or propranolol (ISO+PR group). An additional 12 mice were given an injection of phosphate-buffered saline (PBS) and formed a healthy control (Normal) group. After performing echocardiography and measuring the ratio of heart weight (HW)/tibia length (TL) at 14 days, all mice were euthanased. Morphological examination was performed following haematoxylin and eosin and Masson's staining of heart tissues. Ultrastructural changes were observed by electron microscopy. Cardiac protein expression of atrial natriuretic peptide (ANP) and tumour necrosis factor α (TNFα) were measured by immunohistochemical (IHC) staining and Western blotting. RESULTS: Compared with the untreated model group, acupuncture at PC6 lowered the heart rate, reduced the ratio of HW/TL, improved the left ventricular (LV) anterior wall thickness (LVAWd), LV end-diastolic anterior wall thickness (LVAWs), LV end-systolic posterior wall thickness (LVPWd), LV end-diastolic posterior wall thickness (LVPWs), and fractional shortening (FS) as observed by echocardiography (ISO+MA(PC6) vs. ISO groups: P<0.05). Moreover, evidence from morphological studies demonstrated that acupuncture at PC6 inhibited myocardial hypertrophy and collagen deposition, and normalised the ultrastructural changes. In addition, ANP and TNFα expression were attenuated in the verum acupuncture group compared with the untreated model group (ISO+MA(PC6) vs. ISO groups: P<0.05). CONCLUSIONS: The results demonstrated that acupuncture at PC6 attenuates sympathetic overactivity. Additionally, it may improve cardiac performance by reversing adverse cardiac remodelling. Acupuncture has potential as a treatment for sympathetic hypertension.


Assuntos
Terapia por Acupuntura , Cardiomegalia/terapia , Isoproterenol/efeitos adversos , Pontos de Acupuntura , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Humanos , Injeções Subcutâneas , Isoproterenol/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propranolol/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
J Tradit Chin Med ; 39(4): 502-508, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186097

RESUMO

OBJECTIVE: To investigate the effects of electroacupuncture (EA) at Taichong (LR 3) and Baihui (DU 20) on myocardial hypertrophy in spontaneously hypertensive rats (SHRs). METHODS: Thirty-six SHRs were randomly assigned to model, EA, and Losartan groups, with twelve rats per group. Twelve Wistar Kyoto rats were selected as the normal control group. Systolic blood pressure (SBP) and cardiac function were measured in all rats. Expression levels of factors associated with the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway were evaluated by Western blotting and real-time PCR. Pathological changes of the heart tissue were observed by hematoxylin-eosin staining. RESULTS: After treatment, enhanced SBP was significantly decreased in the EA and Losartan groups compared with the model group (P < 0.01). Echocardiographic and morphological analyses revealed that enhanced end-diastolic interventricular septal thickness and left ventricular posterior wall thickness, as well as ratio of left ventricular weight to body weight were markedly diminished in the EA and Losartan groups (P < 0.01 or P < 0.05), while reduced left ventricular end-diastolic dimension and left ventricular ejection fraction were significantly ameliorated (P < 0.01). Real-time PCR and western blotting analyses showed that the expression levels of PI3K, Akt, and mTOR in SHRs were significantly up-regulated by EA and Losartan (P < 0.01), while the expression levels of PTEN and ANP were down-regulated (P < 0.01). CONCLUSION: EA at Taichong (LR 3) and Baihui (DU 20) inhibited the development of cardiac hypertrophy and improved the cardiac function in SHRs, possibly through regulation of the PI3K/Akt/mTOR signalling pathway.


Assuntos
Pontos de Acupuntura , Cardiomegalia/terapia , Eletroacupuntura , Hipertensão/terapia , Animais , Pressão Sanguínea , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Hum Genomics ; 12(1): 52, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514363

RESUMO

BACKGROUND: Cardiac hypertrophy and acute myocardial infarction (AMI) are two common heart diseases worldwide. However, research is needed into the exact pathogenesis and effective treatment strategies for these diseases. Recently, microRNAs (miRNAs) have been suggested to regulate the pathological pathways of heart disease, indicating a potential role in novel treatments. RESULTS: In our study, we constructed a miRNA-gene-drug network and analyzed its topological features. We also identified some significantly dysregulated miRNA-gene-drug triplets (MGDTs) in cardiac hypertrophy and AMI using a computational method. Then, we characterized the activity score profile features for MGDTs in cardiac hypertrophy and AMI. The functional analyses suggested that the genes in the network held special functions. We extracted an insulin-like growth factor 1 receptor-related subnetwork in cardiac hypertrophy and a vascular endothelial growth factor A-related subnetwork in AMI. Finally, we considered insulin-like growth factor 1 receptor and vascular endothelial growth factor A as two candidate drug targets by utilizing the cardiac hypertrophy and AMI pathways. CONCLUSION: These results provide novel insights into the mechanisms and treatment of cardiac hypertrophy and AMI.


Assuntos
Cardiomegalia/terapia , Reposicionamento de Medicamentos , MicroRNAs/uso terapêutico , Terapia de Alvo Molecular , Infarto do Miocárdio/terapia , Animais , Cardiomegalia/genética , Biologia Computacional , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Infarto do Miocárdio/genética , Receptor IGF Tipo 1/genética , Fator A de Crescimento do Endotélio Vascular/genética
20.
Arterioscler Thromb Vasc Biol ; 38(9): 2028-2040, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29976771

RESUMO

Objective- We investigated the hypothesis that HDL (high-density lipoprotein) dysfunction in Scarb1-/- mice negatively affects cardiac function both in the absence and in the presence of pressure overload. Second, we evaluated whether normalization of HDL metabolism in Scarb1-/- mice by hepatocyte-specific SR-BI (scavenger receptor class B, type I) expression after E1E3E4-deleted adenoviral AdSR-BI (E1E3E4-deleted adenoviral vector expressing SR-BI protein in hepatocytes) transfer abrogates the effects of total body SR-BI deficiency on cardiac structure and function. Approach and Results- Transverse aortic constriction (TAC) or sham operation was performed at the age of 14 weeks, 2 weeks after saline injection or after gene transfer with AdSR-BI or with the control vector Adnull. Mortality rate in Scarb1-/- TAC mice was significantly increased compared with wild-type TAC mice during 8 weeks of follow-up (hazard ratio, 2.02; 95% CI, 1.14-3.61). Hepatocyte-specific SR-BI gene transfer performed 2 weeks before induction of pressure overload by TAC potently reduced mortality in Scarb1-/- mice (hazard ratio, 0.329; 95% CI, 0.180-0.600). Hepatocyte-specific SR-BI expression abrogated increased cardiac hypertrophy and lung congestion and counteracted increased myocardial apoptosis and interstitial and perivascular fibrosis in Scarb1-/- TAC mice. Scarb1-/- sham mice were, notwithstanding the absence of detectable structural heart disease, characterized by systolic and diastolic dysfunction and hypotension, which were completely counteracted by AdSR-BI transfer. Furthermore, AdSR-BI transfer abrogated increased end-diastolic pressure and diastolic dysfunction in Scarb1-/- TAC mice. Increased oxidative stress and reduced antioxidant defense systems in Scarb1-/- mice were rescued by AdSR-BI transfer. Conclusions- The detrimental effects of SR-BI deficiency on cardiac structure and function are nullified by hepatocyte-specific SR-BI transfer, which restores HDL metabolism.


Assuntos
Cardiomegalia/terapia , Técnicas de Transferência de Genes , Hepatócitos/metabolismo , Receptores Depuradores Classe B/genética , Animais , Apoptose , Pressão Sanguínea , Cardiomegalia/sangue , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Células Cultivadas , HDL-Colesterol/sangue , Feminino , Fibrose , Expressão Gênica , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA