Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Arch Dermatol Res ; 316(1): 26, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060028

RESUMO

Safflower (Carthamus tinctorius) oleosomes are unique organelles that house triglycerides and fatty acids and demonstrate a natural resilience to environmental stresses. There is recent growing interest in safflower oleosomes due to their potential applications in dermatology, especially as a carrier technology to improve drug penetration through the skin. This paper explores various aspects of safflower oleosomes, including their production, safety, absorption, and applications in photoprotection and epidermal remodeling. Oleosomes have shown encouraging results in targeted drug delivery in in vitro and in vivo animal models; however, human clinical research is required to determine their efficacy and safety in dermatology. Oleosomes are comprise a novel biotechnology that has the potential to transform sustainable and natural treatments in dermatology by utilizing their unique structure. Safflower oleosomes are stable lipid molecules that can deliver small and large molecules with high efficacy. This review will examine the current research findings and prospective future applications of oleosomes.


Assuntos
Carthamus tinctorius , Animais , Humanos , Carthamus tinctorius/química , Gotículas Lipídicas/química , Pele , Epiderme
2.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 19-25, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38063123

RESUMO

Breast cancer is the most common type of cancer in women and the second  cause of cancer-related death after lung cancer. Although the common methods used in the treatment of breast cancer are chemotherapy, radiotherapy and surgery, the search for alternative treatments continues.  The leading  alternative treatments are medicinal plants which actually inspire the production of many cancer drugs. In this study, the proliferative and metastatic effects of Carthamus tinctorius L., known for its many therapeutic properties, on metastatic breast cancer were investigated. Here, intending to evaluate the the content and actions of different extracts of safflower leaves extracts were prepared by extracting in water, alcohol and oil and analysed by FTIR. Their antioxidant effect was tested and then the extracts were applied to metastatic breast cancer cells. FTIR spectrums of all three extracts have revealed the presence of organic compounds.  It is found that all extracts but mostly the oil extract has antioxidant property. MTT assay, wound healing assay and gene expression analysis were performed to assess the antiproliferative and anti metastatic effects of the extracts on breast cancer cells. It is found that, there is no significant antiproliferative effect of extracts on MDA-MB-231 cells except the alcohol extract. However, all safflower extracts, especially the oil extract, significantly reduced the metastatic potential of breast cancer cells. It is concluded that safflower contents are potent chemicals which inhibit the cellular mechanisms underlying the spreading of cancer cells and further analysis may lead to new initiatives in drug design research.


Assuntos
Neoplasias da Mama , Carthamus tinctorius , Humanos , Feminino , Carthamus tinctorius/química , Carthamus tinctorius/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Células MDA-MB-231 , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6624-6634, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212022

RESUMO

Carthami Flos, as a traditional blood-activating and stasis-resolving drug, possesses anti-tumor, anti-inflammatory, and immunomodulatory pharmacological activities. Flavonoid glycosides are the main bioactive components in Carthamus tinctorius. Glycosyltransferase deserves to be studied in depth as a downstream modification enzyme in the biosynthesis of active glycoside compounds. This study reported a flavonoid glycosyltransferase CtUGT49 from C. tinctorius based on the transcriptome data, followed by bioinformatic analysis and the investigation of enzymatic properties. The open reading frame(ORF) of the gene was 1 416 bp, encoding 471 amino acid residues with the molecular weight of about 52 kDa. Phylogenetic analysis showed that CtUGT49 belonged to the UGT73 family. According to in vitro enzymatic results, CtUGT49 could catalyze naringenin chalcone to the prunin and choerospondin, and catalyze phloretin to phlorizin and trilobatin, exhibiting good substrate versatility. After the recombinant protein CtUGT49 was obtained by hetero-logous expression and purification, the enzymatic properties of CtUGT49 catalyzing the formation of prunin from naringenin chalcone were investigated. The results showed that the optimal pH value for CtUGT49 catalysis was 7.0, the optimal temperature was 37 ℃, and the highest substrate conversion rate was achieved after 8 h of reaction. The results of enzymatic kinetic parameters showed that the K_m value was 209.90 µmol·L~(-1) and k_(cat) was 48.36 s~(-1) calculated with the method of Michaelis-Menten plot. The discovery of the novel glycosyltransferase CtUGT49 is important for enriching the library of glycosylation tool enzymes and provides a basis for analyzing the glycosylation process of flavonoid glycosides in C. tinctorius.


Assuntos
Carthamus tinctorius , Chalconas , Carthamus tinctorius/genética , Carthamus tinctorius/química , Filogenia , Flavonoides/análise , Glicosídeos/análise , Glicosiltransferases/genética , Anti-Inflamatórios
4.
Nutrients ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558507

RESUMO

(1) Background: The florets of Carthamus tinctorius L. are traditionally used as a blood-activating drug and can be used for the treatment of atherosclerosis, but no compounds with anti-atherosclerotic activity have been reported. (2) Methods: This study investigated the chemical compounds from the florets of C. tinctorius. Comprehensive spectroscopic techniques revealed their structures, and ECD calculations established their absolute configurations. Nile Red staining, Oil Red O staining, and cholesterol assessment were performed on these compounds and their aglycones for the inhibitory activity against the formation of foam cells induced by oxidized low-density lipoprotein (ox-LDL) in RAW264.7 macrophages. In addition, RAW264.7 macrophages were tested for their anti-inflammatory activity by measuring the inhibition of NO production caused by LPS. (3) Results: Five new sesquiterpenoids (1-5) isolated from the florets of C. tinctorius were identified as (-)-(1R,4S,9S,11R)-caryophyll-8(13)-en-14-ol-5-one (1), (+)-(1R,4R,9S,11R)-caryophyll-8(13)-en-14-ol-5-one (2), (-)-(3Z,1R,5S,8S,9S,11R)-5,8-epoxycaryophyll-3-en-14-O-ß-D-glucopyranoside (3), (+)-(1S,7R,10S)-guai-4-en-3-one-11-O-ß-D-fucopyranoside (4), and (-)-(2R,5R,10R)-vetispir-6-en-8-one-11-O-ß-D-fucopyranoside (5). All compounds except for compound 3 reduced the lipid content in ox-LDL-treated RAW264.7 cells. Compounds 3 and 4 and their aglycones were found to reduce the level of total cholesterol (TC) and free cholesterol (FC) in ox-LDL-treated RAW264.7 cells. However, no compounds showed anti-inflammatory activity. (4) Conclusion: Sesquiterpenoids from C. tinctorius help to decrease the content of lipids, TC and FC in RAW264.7 cells, but they cannot inhibit NO production, which implies that their anti-atherogenic effects do not involve the inhibition of inflammation.


Assuntos
Aterosclerose , Carthamus tinctorius , Sesquiterpenos , Carthamus tinctorius/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Macrófagos , Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico
5.
Biomed Pharmacother ; 153: 113462, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076573

RESUMO

Safflower (Carthamus tinctorius L.) is cultivated in various countries for the flavonoid compounds it contains. These flavonoids have been used in many industries as drugs and/or dyes. Over 60 flavonoids have been isolated from safflower. These flavonoids can be divided into two groups: special and common, both of which are active pharmaceutical ingredients efficacious in the treatment of cardiovascular and cerebrovascular diseases. Gene functions have been studied to figure out the biosynthesis of flavonoids in safflower. However, there is no comprehensive summary of the flavonoids in safflower. Research was recognised through systematic searches of ScienceDirect, PubMed, Web of Science, and CNKI databases by searching terms of "Carthamus tinctorius L.", "safflower", "flavonoid", "pharmacology", and "gene". More than 200 research reports were included after eligibility checks. This study summarizes the application of flavonoids in medicine and other industries. Comprehensively collects the chemical structure information of the two groups of flavonoids, and organic acids, alkaloids, spermidine, polyacetylene, and polysaccharides. The mechanism of two groups of flavonoids in treatment of cardiovascular and cerebrovascular diseases was describe in detail, and pharmacological mechanisms of protecting liver, lung and bone, and anti-cancer and anti-inflammatory were also summarised. Besides, the study updated the latest information on the molecular biology of safflower flavonoids. It is found that two groups of flavonoids in safflower have obvious differences in application, chemical structure, pharmacological mechanism, and biosynthetic pathway. It is hoped that this summative research will provide a new insight to flavonoids research in safflower.


Assuntos
Alcaloides , Carthamus tinctorius , Alcaloides/metabolismo , Vias Biossintéticas/genética , Carthamus tinctorius/química , Flavonoides/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4574-4582, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164862

RESUMO

Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3ß(GSK3ß) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.


Assuntos
Carthamus tinctorius , Chalcona , Flavonoides , AVC Isquêmico , Carthamus tinctorius/química , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , AVC Isquêmico/tratamento farmacológico , Janus Quinase 2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prostaglandina D2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinonas/farmacologia
7.
Angew Chem Int Ed Engl ; 61(32): e202202554, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35641432

RESUMO

Bioactive polysaccharides from natural resources target various biological processes and are increasingly used as potential target molecules for drug development. However, the accessibility of branched and long complex polysaccharide active domains with well-defined structures remains a major challenge. Herein we describe an efficient first total synthesis of a highly branched heptadecasaccharide moiety of the native bioactive galectin-3-targeting polysaccharide from Carthamus tinctorius L. as well as shorter fragments of the heptadecasaccharide. The key feature of the approach is that a photo-assisted convergent [6+4+7] one-pot coupling strategy enables rapid assembly of the heptadecasaccharide, whereby a photoremovable o-nitrobenzyl protecting group is used to generate the corresponding acceptor for glycosylation in situ upon ultraviolet radiation. Biological activity tests suggest that the heptadecasaccharide can target galectin-3 and inhibit pancreatic cancer cell growth.


Assuntos
Carthamus tinctorius , Neoplasias , Carthamus tinctorius/química , Galectina 3 , Glicosilação , Polissacarídeos/farmacologia , Raios Ultravioleta
8.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408704

RESUMO

Safflower seed oil (SSO) is considered to be an excellent edible oil since it contains abundant essential unsaturated fatty acids and lipid concomitants. However, the traditional alkali-refined deacidification process of SSO results in a serious loss of bioactive components of the oil and also yields massive amounts of wastewater. In this study, SSO was first extracted by ultrasonic-assisted ethanol extraction (UAEE), and the extraction process was optimized using random centroid optimization. By exploring the effects of ethanol concentration, solid−liquid ratio, ultrasonic time, and the number of deacidification times, the optimum conditions for the deacidification of safflower seed oil were obtained as follows: ethanol concentration 100%, solid−liquid ratio 1:4, ultrasonic time 29 min, and number of deacidification cycles (×2). The deacidification rate was 97.13% ± 0.70%, better than alkali-refining (72.16% ± 0.13%). The values of acid, peroxide, anisidine and total oxidation of UAEE-deacidified SSO were significantly lower than those of alkali-deacidified SSO (p < 0.05). The contents of the main lipid concomitants such as tocopherols, polyphenols, and phytosterols in UAEE-decidified SSO were significantly higher than those of the latter (p < 0.05). For instance, the DPPH radical scavenging capacity of UAEE-processed SSO was significantly higher than that of alkali refining (p < 0.05). The Pearson bivariate correlation analysis before and after the deacidification process demonstrated that the three main lipid concomitants in SSO were negatively correlated with the index of peroxide, anisidine, and total oxidation values. The purpose of this study was to provide an alternative method for the deacidification of SSO that can effectively remove free fatty acids while maintaining the nutritional characteristics, physicochemical properties, and antioxidant capacity of SSO.


Assuntos
Carthamus tinctorius , Álcalis , Carthamus tinctorius/química , Etanol/química , Peróxidos , Óleos de Plantas/química , Óleo de Cártamo , Tecnologia , Ultrassom
9.
Int J Pharm ; 616: 121537, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35150848

RESUMO

Androgenetic alopecia (AGA) affects physical and mental health with limited therapeutic options. Novel materials and delivery methods have considerable potential to improve the current paradigm of treatment. In this study, we used a novel plant nanoparticle of safflower oil body (SOB) loaded with human fibroblast growth factor 10 (hFGF10) to target hair follicles and accelerate hair regeneration in AGA mice with few adverse effects. Our data revealed that the average particle size of SOB-hFGF10 was 226.73 ± 9.98 nm, with a spherical and uniform structure, and that SOB-hFGF10 was quicker to preferentially penetrate into hair follicles than hFGF2 alone. Using a mouse model of AGA, SOB-hFGF10 was found to significantly improve hair regeneration without any significant toxicity. Furthermore, SOB-hFGF10 inhibited dihydrotestosterone (DHT)-induced TNF-α, IL-1ß, and IL-6 overproduction in macrophages in relation to hair follicle microinflammation, thereby enhancing the proliferation of dermal papilla cells. Overall, this study provides an applicable therapeutic method through targeting hair follicles and reducing microinflammation to accelerate hair regeneration in AGA.


Assuntos
Alopecia/tratamento farmacológico , Fator 10 de Crescimento de Fibroblastos , Nanopartículas , Óleo de Cártamo , Carthamus tinctorius/química , Sistemas de Liberação de Medicamentos , Fator 10 de Crescimento de Fibroblastos/administração & dosagem , Fator 10 de Crescimento de Fibroblastos/uso terapêutico , Cabelo/crescimento & desenvolvimento , Folículo Piloso/efeitos dos fármacos , Humanos , Regeneração , Óleo de Cártamo/química
10.
Food Funct ; 12(19): 9360-9371, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606545

RESUMO

Anhydrosafflor yellow B (AHSYB) is a major active water-soluble pigment in Safflower, but it has not received enough attention yet. In this study, high-speed counter-current chromatography (HSCCC) was used to prepare AHSYB from safflower. The parameters of the separation process were optimized by response surface methodology for the first time. The entropy weight method (EWM) was applied to calculate the information entropy and the weight of five indexes, and then figure out a comprehensive index of the HSCCC separation effect. Under the optimized separation conditions, a HSCCC apparatus speed of 850 rpm, a flow rate of 2 mL min-1 for the mobile phase and a separation temperature of 40 °C for AHSYB were achieved with a purity of 98%. Furthermore, AHSYB was found to have cardio-protective effects by inhibiting apoptosis via the mitochondrial-mediated pathway in oxygen-glucose deprivation/reoxygenation-induced H9c2 cells. This research provides good method guides for the rapid and efficient separation of active compounds from food-grade Chinese herb medicines.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotônicos/isolamento & purificação , Cardiotônicos/farmacologia , Carthamus tinctorius/química , Miócitos Cardíacos/efeitos dos fármacos , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cardiotônicos/química , Caspase 3/genética , Caspase 3/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Distribuição Contracorrente , Citocromos c/genética , Citocromos c/metabolismo , Regulação para Baixo , L-Lactato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Pigmentos Biológicos/química , Extratos Vegetais/química , Ratos , Espécies Reativas de Oxigênio
11.
J Ethnopharmacol ; 278: 114279, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34087402

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nicotiflorin is a flavonoid glycoside derived from the traditional Chinese medicine FlosCarthami, dried petals of Carthamus tinctorius L., and has been confirmed to be a promising novel drug candidate for ischemic stroke. Yet, the exact role of nicotiflorin in cerebral I/R injury is uncharacterized and the possible mechanisms have not been clearly expounded. AIM OF THE STUDY: The present study was designed to determine the effect of nicotiflorin on cerebral ischemia/reperfusion (I/R) injury and its relationship with autophagy. MATERIALS AND METHODS: Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation and reintroduction (OGD/R) in SH-SY5Y cells were established in in vivo and in vitro models, respectively. The severity of MCAO was assessed by brain infarct size, neurological scores and survival rate. The severity of OGD/R was evaluated by cell viability, lactate dehydrogenase (LDH) release and cell apoptosis. The level of autophagy was evaluated both in vivo and in vitro. Autophagosomes were observed using transmission electron microscopy and autophagic flux was measured using mRFP-GFP-tandem fluorescent LC3 adenovirus. Autophagy-related proteins (LC3-II/I, SQSTM1, beclin-1, Phospho-mTOR/mTOR) were measured by immunoblot. Autophagy-related mRNA levels (Becn1, Atg7) were detected by Real-Time PCR. Inhibition of autophagy was implemented by 3-Methyladenine (3-MA) or chloroquine in vitro. RESULTS: In vivo, nicotiflorin treatment alleviated brain damage and neurological deficit while it dramatically increased 72 h survival rate in rats. In vitro, nicotiflorin treatment also ameliorated the severity of OGD/R. Moreover, nicotiflorin treatment increased ischemic penumbra autophagy (autophagosomes, BECN1, LC3-II/I ratio, SQSTM1, Phospho-mTOR/mTOR, Atg7). In vitro, nicotiflorin likewise enhanced autophagy and promoted autophagy flux. Furthermore, the blockade of autophagy by 3-MA or chloroquine disabled the efficacic of nicotiflorin in preventing cell damage upon OGD/R insult. CONCLUSION: These findings suggest that autophagy plays a significant role in the protective effect of nicotiflorin against ischemic stroke.


Assuntos
Autofagia/efeitos dos fármacos , Carthamus tinctorius/química , Flavonoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Flavonoides/isolamento & purificação , Glucose/metabolismo , Infarto da Artéria Cerebral Média , AVC Isquêmico/prevenção & controle , Fármacos Neuroprotetores/isolamento & purificação , Oxigênio/metabolismo , Fenóis/isolamento & purificação , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
12.
Oxid Med Cell Longev ; 2020: 4103418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204394

RESUMO

Infection of skin injuries by pathogenic microbial strains is generally associated if not treated with a lasting wound bed oxidative stress status, a delay in healing process, and even wound chronicity with several human health complications. The aim of the current study was to explore the antioxidant and antimicrobial potentialities of safflower (Carthamus tinctorius L.) extracted oil from seeds by cold pressing which would be beneficial in the management of skin wounds. Antioxidant capacity of the oil was evaluated (scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP)). Total phenolic, total flavonoid, total carotenoid, and total chlorophyll contents were determined. Antimicrobial activities of safflower oil were tested against 10 skin pathogenic microorganisms: 4 bacterial strains (Escherichia coli, Enterobacter cloacae, Staphylococcus aureus, and Streptococcus agalactiae), 3 yeast species strains (Candida albicans, Candida parapsilosis, and Candida sake), and 3 fungi species (Aspergillus niger, Penicillium digitatum, and Fusarium oxysporum). A notable antioxidant capacity was demonstrated for the tested oil that exhibited moreover high antibacterial effects by both bacteriostatic and bactericidal pathways including lysozyme activity. An antifungal effect was further observed on the spore's germination. Safflower oil could be considered as a good natural alternative remedy in the management of skin wounds and their possible microbial infections.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Carthamus tinctorius/química , Óleos de Plantas/farmacologia , Pele/efeitos dos fármacos , Gerenciamento Clínico , Humanos , Sementes/química , Pele/lesões , Cicatrização/efeitos dos fármacos
13.
J Food Sci ; 85(10): 3191-3201, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32860216

RESUMO

In this study,based on a developed high performance liquid chromatographic quantitative method, the suitable extraction and purification conditions of anhydrosafflor yellow B (AHSYB) from safflower were determined by response surface methodology. The optimal water immersion extraction parameters were as follows: liquid to solid ratio of 22:1; extraction temperature of 75 °C; extraction time of 35 min. Under these conditions, the maximum extraction yield of AHSYB reached 0.465%. The aqueous extract was further purified by HPD-300 macroporous resin. The optimum adsorption conditions were: pH 2.8; adsorption flow rate of 1.9 mL/min; solution concentration of 0.06 g/mL. The optimum desorption conditions were: ethanol concentrations of 74%; desorption flow rate of 1.6 mL/min; elution volume of 4.4 BV. Under these conditions, the maximum adsorption ratio and desorption ratio reached 1.095 and 0.906 mg/g, respectively. The content of AHSYB reached 6.83%, which was 2.91 times higher than that before purification. PRACTICAL APPLICATION: The suitable conditions for water immersion extraction and macroporous resin purification of AHSYB are first determined, which facilitates the further utilization of AHSYB as a food and drug.


Assuntos
Carthamus tinctorius/química , Cromatografia Líquida de Alta Pressão/métodos , Pigmentos Biológicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Resinas Sintéticas/química , Adsorção , Cromatografia Líquida de Alta Pressão/instrumentação , Pigmentos Biológicos/química , Extratos Vegetais/química , Porosidade
14.
Biomed Pharmacother ; 130: 110563, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745908

RESUMO

Carthamus tinctorius L.(Safflower), a herbal formula from Traditional Chinese Medicine (TCM), has been widely used for the treatment of cardio-cerebrovascular diseases, particularly cerebral infarction (CI) or cerebral ischemia-reperfusion injury. However, we know very little about the specific mechanisms associated with the therapeutic effect of Safflower on CI. In this study, we used a network pharmacology-based approach, together with rat model of CI, to gain more insight into of such mechanisms. Our analysis showed that Safflower contains 52 active compounds that target 247 genes, which were also cross-referenced with 299 genes associated with CI. Consequently, we identified 52 target genes in Safflower that were associated with CI. These 52 target genes were analyzed by gene ontology (GO) enrichment analysis, leading to the identification of 1491 biological process items, 90 molecular function items and 19 cell assembly items. Eighty-nine pathways were generated by KEGG enrichment (P < 0.05). Next, we investigated the effect of the extract of safflower (ES) and Safflower extract phospholipid complex (ESPC), delivered via the nasal route, on an animal model of the middle cerebral artery occlusion (MCAO). Our data confirmed that Safflower was able to treat CI by the regulating the TNF-α/MAPK pathway via CASP3. The therapeutic effect of ES and ESPC on CI acts by improving the circulation of blood in the central nervous system, reducing the inflammatory reaction, inhibiting apoptosis, and by protecting brain nerve cells from injury.


Assuntos
Carthamus tinctorius/química , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Administração Intranasal , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Infarto Cerebral/mortalidade , Encefalite/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/mortalidade , Masculino , Medicina Tradicional Chinesa , Neurônios/efeitos dos fármacos , Fosfolipídeos/química , Extratos Vegetais/administração & dosagem , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética
15.
Cell Biochem Biophys ; 78(4): 511-520, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32705535

RESUMO

Esophageal cancer (EC) is a common digestive tract malignant tumor and the clinical outcome of patients with EC after surgery remains unsatisfactory. Hence, it is necessary to identify some effective drugs or methods to improve the prognosis of patients with EC. In this study, we attempted to analyze the potential role of hydroxysafflor yellow A (HSYA) in EC. Combined with The Cancer Genome Atlas (TCGA) and Comparative Toxicogenomics Database (CTD) as well as Database for Annotation, Visualization, and Integrated Discovery (DAVID) website, we tried to identify the related genes and pathways of HSYA. Then we estimated the actions of HSYA on proliferation, invasion and migration, and apoptosis of EC cells using cell counting kit 8, transwell and flow cytometry assays, respectively. At last, the expression of inflammatory protein and signaling pathway-related protein were measured using western blot analysis. Relative protein expression of intercellular adhesion molecule 1 (ICAM1), matrix metallopeptidase 9 (MMP9), tumor necrosis factor (TNF), and vascular cell adhesion molecule 1 (VCAM1) were all upregulated in EC tissues compared with normal tissues and they might be the target gene of HSYA according to bioinformatics analysis. HSYA exerted an inhibitory actions on cells proliferation, invasion, and migration but could accelerate the apoptosis of cells in EC. Moreover, HSYA could inhibit the expression of ICAM1, MMP9, TNF-α, and VCAM1 and induced the expression of phosphor-nuclear transcription factor kappa B p65 (p-P65) and phosphor-I kappa B-alpha (p-IκBα), but it did not influence the expression of P65 and IκBα. HSYA suppressed proliferation, invasion, and migration, simultaneously induce apoptosis of EC cells partly via regulating NF-κB signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carthamus tinctorius/química , Chalcona/análogos & derivados , Neoplasias Esofágicas/patologia , NF-kappa B/metabolismo , Quinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalcona/farmacologia , Descoberta de Drogas , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
J Microbiol Biotechnol ; 30(10): 1567-1573, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32522955

RESUMO

Ultraviolet (UV) is one of the major factors harmful to skin health. Irradiation with ultraviolet accelerates the decline of skin function, causing the skin to have deep wrinkles, dryness, decreased procollagen production, and degradation of collagen. Novel materials are needed to prevent the aging of the skin by blocking the effects of UV. Safflower seed oil (Charthamus tinctorius L., SSO) contains significantly high levels of unsaturated fatty acids and phytochemicals. SSO has been traditionally used in China, Japan, and Korea to improve skin and hair. Our objective in this study was to determine the effect of SSO and its active compound acacetin on UVB-induced skin photoaging in HaCaT cells and human dermal fibroblasts (HDF). SSO inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) at both protein and mRNA levels in HaCaT cells and HDF. MMP-1 is known to play important roles in collagen degradation and wrinkle formation. Acacetin, a type of flavonoid, is present in SSO. Similar to SSO, acacetin also inhibited UVB-induced MMP-1 protein and mRNA levels in HaCaT cells and HDF. MMP-1 mRNA is primarily regulated by the mitogen-activated kinase (MAPK) signaling pathway. Acacetin regulated the phosphorylation of JNK1/2 and c-jun, but did not inhibit the phosphorylation of ERK1/2, p38 and AKT. Taken together, these results indicate that SSO and its active compound acacetin can prevent UVB-induced MMP-1 expression, which leads to skin photoaging, and may therefore have therapeutic potential as an anti-wrinkle agent to improve skin health.


Assuntos
Carthamus tinctorius/química , Flavonas/farmacologia , Óleo de Cártamo/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células HaCaT , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Pele/efeitos da radiação
17.
Indian J Pharmacol ; 52(2): 108-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565598

RESUMO

We investigate the protective effect of Carthamus tinctorius L. (CTL, also known as Honghua in China or Safflower) on cerebral ischemia-reperfusion and explored the possible mechanisms on regulating apoptosis and matrix metalloproteinases (MMPs). High-performance liquid chromatography method with diode array detection analysis was established to analyze the components of CTL. Middle cerebral artery occlusion rats model was established to evaluate Neurological Function Score and hematoxylin-eosin staining, as well as triphenyltetrazolium was used to examine the infarction area ratio. Transferase-mediated dUTP nick-end labeling was performed for the apoptosis. Apoptosis-related factors, including B-cell lymphoma-2 (Bcl-2), Bax and Caspase3, and MMPs-related MMP2, MMP9, tissue inhibitor of metalloproteinases 1 (TIMP1) in ischemic brain, were assayed by Western blot, reverse transcription polymerase chain reaction, and immunohistochemistry. The data showed that CTL (2, 4 g crude drug/kg/d) treatment could significantly reduce the ischemic damage in brain tissue and improve a significant neurological function score. In addition, CTL could also attenuate apoptosis degree of brain tissues and regulate Bcl-2, Bax, and Caspase 3 and also have a significant decrease on MMP-9 expression, followed by a significant increase of TIMP1 protein expression. These findings indicated that regulation of CTL on apoptosis and MMPs contributed to its protective effect on ischemia/reperfusion injury.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Carthamus tinctorius , Infarto da Artéria Cerebral Média/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/enzimologia , Encéfalo/patologia , Carthamus tinctorius/química , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Masculino , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-1/metabolismo
18.
J Agric Food Chem ; 68(22): 6040-6047, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32374593

RESUMO

The steroid hormones, including brassinosteroids, regulate plant growth under stress. It is hypothesized that 24-epibrassinosteroids (24-EBR) can affect safflower (Carthamus tinctorius) biochemical properties, crop yield, and oil content under drought stress. The objective of our study was to determine the response of three safflower genotypes (Goldasht, Faraman, and Sina) to exogenous 24-EBR (0 and 10-7 M) under drought stress, including 85, 65, and 45% of field capacity in 2015. Stress decreased chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, relative water content (RWC), seed yield, and oil percentage. The activities of superoxide dismutase (SOD), catalase (CAT), polyphenol oxidase (PPO), and proline contents increased in response to either drought stress or 24-EBR. Genotypes behaved significantly different under stress. 24-EBR significantly increased plant chlorophyll contents and oil percentage, and it significantly reduced the malondialdehyde (MDA) content via increasing the proline and carotenoid contents under stress. 24-EBR can increase safflower oil and seed yield under drought stress.


Assuntos
Carthamus tinctorius/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Óleos de Plantas/metabolismo , Esteroides/farmacologia , Carotenoides/análise , Carotenoides/metabolismo , Carthamus tinctorius/química , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Clorofila/análogos & derivados , Clorofila/análise , Clorofila/metabolismo , Secas , Genótipo , Malondialdeído/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Óleos de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
19.
Mediators Inflamm ; 2020: 2720369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189992

RESUMO

Xuebijing injection is a Chinese herb compound to treat sepsis in China, but it contains many different kinds of components, and each component may have different effects in treating sepsis. The present study was performed to investigate the effect of three ingredients of Xuebijing, safflor yellow A (SYA), hydroxysafflor yellow A (HSYA), and anhydrosafflor yellow B (AHSYB), in lipopolysaccharide- (LPS-) induced acute lung injury (ALI). LPS (10 mg/kg) was injected intratracheally to induce acute lung injury in mice, which were then treated with SYA, HSYA, and AHSYB. The blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected to detect degree of lung injury, level of inflammation, and neutrophil extracellular traps (NETs). In vitro experiments were performed using HL-60 cells stimulated with phorbol myristate acetate (PMA). Lung injury induced by LPS was alleviated by SYA, HSYA, and AHSYB as demonstrated by the histopathologic test. The three components inhibit LPS-induced elevation of the levels of inflammatory factors and wet-to-dry weight ratio as well as the amount of protein and cells in the BALF. They also induced a remarkably less overlay of myeloperoxidase (MPO) and histone in the immunofluorescence assay and reduced level of MPO-DNA complex in plasma. The in vitro assay showed a similar trend that the three components inhibited PMA-induced NET release in neutrophil-like HL-60 cells. Western blot demonstrated that phosphorylation of c-rapidly accelerated fibrosarcoma (c-Raf), mitogen-activated protein kinase ERK kinase (MEK), and extracellular signal-regulated kinase (ERK) in the lungs of LPS-challenged mice, and PMA-treated HL-60 cells were all significantly reduced by SYA, HSYA, and AHSYB. Therefore, our data demonstrated that three components of XBJ, including SYA, HSYA, and AHSYB, showed a protective effect against LPS-induced lung injury and NET release.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Carthamus tinctorius/química , Armadilhas Extracelulares/metabolismo , Lipopolissacarídeos/toxicidade , Chalcona/análogos & derivados , Chalcona/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Células HL-60 , Humanos , Pigmentos Biológicos/farmacologia , Quinonas/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
20.
Carbohydr Polym ; 233: 115856, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059907

RESUMO

A water-soluble polysaccharide (SPAW) was purified from Safflower and it was identified to be (1→3)-linked ß-d-Glucan. The therapeutic effect and underlying mechanism of SPAW on steroid-induced avascular necrosis of the femoral head (SANFH) in a rabbit model was performed here. The abnormal histopathologic changes and apoptosis of femoral head in model group were significantly reverted after SPAW (25, 100 and 200 mg/kg) administration for 60 days, as evidenced by the a decline of empty lacunae rate, the average bone marrow fat cell size and the proportion of apoptotic cells. Furthermore, administration of SPAW significantly decreased the Bax and caspase-3 protein expression, but increased the protein expression of Bcl-2 when compared these in model rabbits. Meanwhile, increased hydroxyproline (HOP) and decreased serum hexosamine (HOM) concentration in rabbit serum were turned to the opposite way. The present study suggested that SPAW may provide an alternative treatment for the treatment of SANFH.


Assuntos
Carthamus tinctorius/química , Necrose da Cabeça do Fêmur/tratamento farmacológico , Glucanos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Feminino , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/induzido quimicamente , Glucanos/química , Glucanos/isolamento & purificação , Hexosaminas/metabolismo , Cavalos , Hidroxiprolina/metabolismo , Masculino , Hemissuccinato de Metilprednisolona , Peso Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Coelhos , Ratos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA