Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.861
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732111

RESUMO

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Assuntos
Cartilagem Articular , Condrócitos , Glicoesfingolipídeos , Osteoartrite , Regeneração , Humanos , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Glicoesfingolipídeos/metabolismo , Transdução de Sinais , Gangliosídeos/metabolismo
2.
BMC Musculoskelet Disord ; 25(1): 253, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561728

RESUMO

BACKGROUND: The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS: CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS: The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION: The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Animais , Camundongos , Cartilagem Articular/metabolismo , Antígeno CD146/metabolismo , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Condrogênese , RNA Mensageiro/metabolismo , Fenômenos Magnéticos , Lipídeos
3.
PLoS One ; 19(4): e0298575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593124

RESUMO

Osteoarthritis (OA) is a widespread chronic, progressive, degenerative joint disease that causes pain and disability. Current treatments for OA have limited effectiveness and new biomarkers need to be identified. Bioinformatics analysis was conducted to explore differentially expressed genes and DNA repair/recombination protein 54 L (RAD54L) was selected. We firstly overexpressed RAD54L in interleukin-1ß (IL-1ß)-induced human articular chondrocytes or in OA rats to investigate its effect on OA. Chondrocyte viability and apoptotic rate were measured by Cell Counting Kit-8 and flow cytometry, respectively. Then we evaluated OA severity in vivo by Hematoxylin-eosin staining and Osteoarthritis Research Society International standards. The expression of inflammatory mediators was tested by enzyme-linked immunosorbent assay. Finally, western blot was performed to determine the relative expression level of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Overexpression of RAD54L promoted cell viability and attenuated apoptosis in IL-1ß-induced human chondrocytes. A lower Osteoarthritis Research Society International score and a remarkable alleviation of chondrocyte disordering and infiltration of inflammatory cells were found in cartilage tissues of OA rats after overexpressing RAD54L. The inflammatory response induced by OA was decreased by RAD54L overexpression in vitro and in vivo. In addition, RAD54L overexpression decreased the relative expression level of HIF-1α and VEGF. Overexpression of RAD54L could attenuate OA by suppressing the HIF-1α/VEGF signaling pathway, indicating that RAD54L may be a potential treatment target for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Ratos , Apoptose , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Mol Med ; 30(1): 55, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664616

RESUMO

BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.


Assuntos
Apoptose , Condrócitos , Matriz Extracelular , Hialuronoglucosaminidase , NF-kappa B , Osteoartrite , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Proteômica/métodos
5.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570055

RESUMO

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Assuntos
Cartilagem Articular , Emodina , Osteoporose , Ratos Sprague-Dawley , Microtomografia por Raio-X , Animais , Emodina/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Ratos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Feminino , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia
6.
ACS Appl Mater Interfaces ; 16(17): 21383-21399, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626424

RESUMO

Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1ß-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.


Assuntos
Fatores Ativadores da Transcrição , Condrócitos , Exossomos , Mitocôndrias , Osteoartrite , RNA Mensageiro , Resposta a Proteínas não Dobradas , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Exossomos/metabolismo , Exossomos/química , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fatores Ativadores da Transcrição/metabolismo , Fatores Ativadores da Transcrição/química , Fatores Ativadores da Transcrição/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos
7.
Med Sci Monit ; 30: e943738, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664941

RESUMO

BACKGROUND The pathological mechanism of osteoarthritis is still unclear. The regulation of the immune microenvironment has been of growing interest in the progression and treatment of osteoarthritis. Macrophages with different phenotypes, producing different cytokines, have been linked to the mechanism of cartilage injury in osteoarthritis. Copper ions play a role in the immune response and are involved in the pathological mechanisms of osteoarthritis by affecting the metabolism of the cartilage matrix. Bioactive glass (BG) is an osteogenic material with superior biocompatibility. Here, we report on the regulatory behavior of macrophages using a copper-based composite BG material. MATERIAL AND METHODS Cu-BGC powder was prepared by sol-gel method, and scaffolds were fabricated and characterized using 3D printing. Macrophage cultures grown with Cu-BGC were examined for cell culture and proliferation. The effect of Cu-BGC on the degradation metabolism of chondrocytes, cultured in the environment of inflammatory cytokine IL-1ß, was determined. In addition, the morphology of macrophages, secretion of inflammatory cytokines, and expression of surface markers were examined. RESULTS The results show that Cu-BGC promotes macrophage proliferation at a range of concentrations and increases the secretion of anti-inflammatory cytokines while inhibiting proinflammatory cytokines. At the same time, M2-type cell surface markers are definitely expressed and the morphology of macrophages is altered. In addition, Cu-BGC inhibited the degradation metabolism of chondrocytes in the inflammatory environment induced by IL-1ß. CONCLUSIONS These results suggest that Cu-BGC induced macrophage polarization into an M2 type anti-inflammatory phenotype, and inhibition of immune injury response may play a role in delaying cartilage matrix damage in osteoarthritis.


Assuntos
Proliferação de Células , Condrócitos , Cobre , Citocinas , Macrófagos , Osteoartrite , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Cobre/metabolismo , Cobre/farmacologia , Citocinas/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Células RAW 264.7 , Vidro , Alicerces Teciduais
8.
Int Immunopharmacol ; 133: 112005, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626543

RESUMO

BACKGROUND: Because the pathophysiology of osteoarthritis (OA) has not been fully elucidated, targeted treatments are lacking. In this study, we assessed the role and underlying mechanism apolipoprotein D (APOD) on the development of OA. METHODS: To establish an in vitro OA model, we extracted primary chondrocytes from the cartilage of C57BL/6 mice and stimulated the chondrocytes with IL-1ß. After APOD intervention or incubation with an overexpressing plasmid, we detected inflammatory-related markers using RT-qPCR, Western blotting, and ELISA. To detect apoptosis and autophagy-related markers, we used flow cytometry, immunofluorescence, and transmission electron microscopy (TEM). Finally, we measured the level of oxidative stress. We also used RNA-seq to identify the APOD-regulated downstream signaling pathways. We used an in vivo mice OA model of the anterior cruciate ligament transection (ACLT) and administered intra-articular adenovirus overexpressing APOD. To examine cartilage damage severity, we used immunohistochemical analysis (IHC), micro-CT, scanning electron microscopy (SEM), and Safranin O-fast green staining. RESULTS: Our results showed that APOD inhibited chondrocyte inflammation, degeneration, and apoptosis induced by IL-1ß. Additionally, APOD reversed autophagy inhibition and oxidative stress and also blocked activation of the PI3K/AKT/mTOR signaling pathway induced by IL-1ß. Finally, overexpression of the APOD gene through adenovirus was sufficient to mitigate OA progression. CONCLUSIONS: Our findings revealed that APOD had a chondroprotective role in OA progression by the PI3K/AKT/mTOR signaling pathway.


Assuntos
Apolipoproteínas D , Condrócitos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Condrócitos/metabolismo , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Apolipoproteínas D/genética , Apolipoproteínas D/metabolismo , Masculino , Células Cultivadas , Apoptose , Autofagia , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Estresse Oxidativo
9.
J Orthop Surg Res ; 19(1): 178, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468339

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1ß (IL-1ß)-induced damage and the potential mechanisms of action. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1ß stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS: OMT alleviated IL-1ß-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1ß treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1ß treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS: OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1ß-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.


Assuntos
Alcaloides , Cartilagem Articular , Matrinas , Osteoartrite , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/toxicidade , Interleucina-1beta/metabolismo , Osteoartrite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Cartilagem Articular/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo , Autofagia , Colágeno/metabolismo , Apoptose
10.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473759

RESUMO

Osteoarthritis (OA) causes joint pain and disability due to the abnormal production of inflammatory cytokines and reactive oxygen species (ROS) in chondrocytes, leading to cell death and cartilage matrix destruction. Selenium (Se) intake can protect cells against oxidative damage. It is still unknown whether Se supplementation is beneficial for OA. This study investigated the effects of Se on sodium iodoacetate (MIA)-imitated OA progress in human chondrocyte cell line (SW1353 cells) and rats. The results showed that 0.3 µM of Se treatment could protect SW1353 cells from MIA-induced damage by the Nrf2 pathway by promoting the gene expression of glutathione-synthesis-related enzymes such as the glutamate-cysteine ligase catalytic subunit, the glutamate-cysteine ligase modifier subunit, and glutathione synthetase. In addition, glutathione, superoxide dismutase, glutathione peroxidase, and glutathione reductase expressions are also elevated to eliminate excessive ROS production. Moreover, Se could downregulate NF-κB, leading to a decrease in cytokines, matrix proteases, and glycosaminoglycans. In the rats, MIA-induced cartilage loss was lessened after 2 weeks of Se supplementation by oral gavage; meanwhile, glutathione synthesis was increased, and the expressions of pro-inflammatory cytokines were decreased. These results suggest that Se intake is beneficial for OA due to its effects of decreasing cartilage loss by enhancing antioxidant capacity and reducing inflammation.


Assuntos
Cartilagem Articular , Osteoartrite , Selênio , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Condrócitos/metabolismo , Selênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteoartrite/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Glutationa/metabolismo , Cartilagem Articular/metabolismo
11.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542192

RESUMO

Osteoarthritis is a widespread chronic degenerative disease marked by the deterioration of articular cartilage, modifications in subchondral bone, and a spectrum of symptoms, including pain, stiffness, and disability. Ultimately, this condition impairs the patient's quality of life. This study aimed to evaluate the therapeutic efficacy of standardized Boswellia serrata gum resin extract (BSRE) in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. A total of 60 rats were allocated into six groups: normal control group (NC), osteoarthritis control (injected with MIA, OC), O + B50 (injected with MIA and treated with 50 mg/kg body weight (BW) BSRE), O + B75 (injected with MIA and treated with 75 mg/kg BW BSRE), O + B100 (injected with MIA and treated with 100 mg/kg BW BSRE), and O + M (injected with MIA and treated with 150 mg/kg BW methyl sulfonyl methane). Several parameters, including knee joint swelling, histopathological changes, and the expression of collagen type II alpha 1 (COL2A1) and aggrecan, were comprehensively assessed. Concurrently, the serum levels and mRNA expression of inflammatory mediators, cytokines, and matrix metalloproteinases (MMPs) were analyzed in both the serum and knee joint synovium. The results demonstrated that BSRE significantly mitigated knee joint swelling, cartilage destruction, and tissue deformation. Notably, BSRE administration markedly upregulated the expression of COL2A1 and aggrecan while concurrently reducing levels of nitric oxide, prostaglandin E2, leukotriene B4, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Furthermore, a substantial decrease was observed in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, 5-lipoxygenase, IL-6, TNF-α and MMP-3 and -13, thereby indicating promising therapeutic implications for osteoarthritis. In conclusion, BSRE exhibited anti-inflammatory properties and inhibited cartilage matrix degradation in a rat model of MIA-induced osteoarthritis, with the O + B100 group showing significant reductions in swelling and notable improvements in joint cartilage damage. These findings illuminate the preventive and therapeutic potential of BSRE for osteoarthritis treatment, emphasizing the criticality of exhaustive evaluation of novel compounds.


Assuntos
Boswellia , Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Boswellia/metabolismo , Agrecanas/metabolismo , Qualidade de Vida , Modelos Animais de Doenças , Osteoartrite/metabolismo , Inflamação/metabolismo , Articulação do Joelho/patologia , Ácido Iodoacético/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro/metabolismo , Cartilagem Articular/metabolismo
12.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519981

RESUMO

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Eicosanoides/uso terapêutico , Células Endoteliais/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 3 da Matriz/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Osteoartrite/metabolismo , RNA Interferente Pequeno/metabolismo
13.
J Orthop Surg Res ; 19(1): 197, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528611

RESUMO

BACKGROUND: Patellofemoral osteoarthritis (PFJOA) is a subtype of knee OA, which is one of the main causes of anterior knee pain. The current study found an increased prevalence of OA in postmenopausal women, called postmenopausal OA. Therefore, we designed the ovariectomized rat model of patella baja-induced PFJOA. Alendronate (ALN) inhibits osteoclast-mediated bone loss, and has been reported the favorable result of a potential intervention option of OA treatment. However, the potential effects of ALN treatment on PFJOA in the ovariectomized rat model are unknown and need further investigation prior to exploration in the clinical research setting. In this study, the effects of ALN on articular cartilage degradation and subchondral bone microstructure were assessed in the ovariectomized PFJOA rat model for 10 weeks. METHODS: Patella baja and estrogen withdrawal were induced by patellar ligament shortening (PLS) and bilateral ovariectmomy surgeries in 3-month-old female Sprague-Dawley rats, respectively. Rats were randomly divided into five groups (n = 8): Sham + V; OVX + V, Sham + PLS + V, OVX + PLS + V, OVX + PLS + ALN (ALN: 70 µg/kg/week). Radiography was performed to evaluate patellar height ratios, and the progression of PFJOA was assessed by macroscopic and microscopic analyses, immunohistochemistry and micro-computed tomography (micro-CT). RESULTS: Our results found that the patella baja model prepared by PLS can successfully cause degeneration of articular cartilage and subchondral bone, resulting in changes of PFJOA. OVX caused a decrease in estrogen levels in rats, which aggravated the joint degeneration caused by PFJOA. Early application of ALN can delay the degenerative changes of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent, improve and maintain the micrometabolism and structural changes of cartilage and subchondral bone. CONCLUSION: The early application of ALN can delay the destruction of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite do Joelho , Humanos , Ratos , Feminino , Animais , Lactente , Alendronato/farmacologia , Ratos Sprague-Dawley , Patela/diagnóstico por imagem , Microtomografia por Raio-X , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Cartilagem Articular/metabolismo , Reabsorção Óssea/tratamento farmacológico , Modelos Animais de Doenças , Estrogênios
14.
Biomed Pharmacother ; 174: 116501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554527

RESUMO

Osteoarthritis (OA) is a chronic joint disease, characterized by degenerative destruction of articular cartilage. Chondrocytes, the unique cell type in cartilage, mediate the metabolism of extracellular matrix (ECM), which is mainly constituted by aggrecan and type II collagen. A disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) is an aggrecanase responsible for the degradation of aggrecan in OA cartilage. CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor in the C/EBP family, has been reported to mediate the expression of ADAMTS5. Our previous study showed that 5,7,3',4'-tetramethoxyflavone (TMF) could activate the Sirt1/FOXO3a signaling in OA chondrocytes. However, whether TMF protected against ECM degradation by down-regulating C/EBPß expression was unknown. In this study, we found that aggrecan expression was down-regulated, and ADAMTS5 expression was up-regulated. Knockdown of C/EBPß could up-regulate aggrecan expression and down-regulate ADAMTS5 expression in IL-1ß-treated C28/I2 cells. TMF could compromise the effects of C/EBPß on OA chondrocytes by activating the Sirt1/FOXO3a signaling. Conclusively, TMF exhibited protective activity against ECM degradation by mediating the Sirt1/FOXO3a/C/EBPß pathway in OA chondrocytes.


Assuntos
Proteína ADAMTS5 , Proteína beta Intensificadora de Ligação a CCAAT , Condrócitos , Matriz Extracelular , Osteoartrite , Transdução de Sinais , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Masculino , Sirtuína 1/metabolismo , Agrecanas/metabolismo , Flavonoides/farmacologia , Interleucina-1beta/metabolismo , Linhagem Celular , Proteína Forkhead Box O3/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Pessoa de Meia-Idade , Idoso , Regulação para Baixo/efeitos dos fármacos
15.
Biomaterials ; 308: 122549, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554643

RESUMO

The availability of human cell-based models capturing molecular processes of cartilage degeneration can facilitate development of disease-modifying therapies for osteoarthritis [1], a currently unmet clinical need. Here, by imposing specific inflammatory challenges upon mesenchymal stromal cells at a defined stage of chondrogenesis, we engineered a human organotypic model which recapitulates main OA pathological traits such as chondrocyte hypertrophy, cartilage matrix mineralization, enhanced catabolism and mechanical stiffening. To exemplify the utility of the model, we exposed the engineered OA cartilage organoids to factors known to attenuate pathological features, including IL-1Ra, and carried out mass spectrometry-based proteomics. We identified that IL-1Ra strongly reduced production of the transcription factor CCAAT/enhancer-binding protein beta [2] and demonstrated that inhibition of the C/EBPß-activating kinases could revert the degradative processes. Human OA cartilage organoids thus represent a relevant tool towards the discovery of new molecular drivers of cartilage degeneration and the assessment of therapeutics targeting associated pathways.


Assuntos
Organoides , Osteoartrite , Engenharia Tecidual , Humanos , Organoides/metabolismo , Organoides/patologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Condrogênese , Condrócitos/metabolismo , Condrócitos/patologia , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Cartilagem/patologia , Cartilagem/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteômica
16.
Int J Immunogenet ; 51(3): 130-142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462560

RESUMO

Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1ß/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.


Assuntos
Quimiocinas , Macrófagos , Monócitos , Osteoartrite , Humanos , Osteoartrite/imunologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Quimiocinas/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Cartilagem Articular/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo
17.
Arthritis Res Ther ; 26(1): 53, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368390

RESUMO

BACKGROUND: Understanding of pain in osteoarthritis, its genesis, and perception is still in its early stages. Identification of precise ligand-receptor pairs that transduce pain and the cells and tissues in which they reside will elucidate new therapeutic approaches for pain management. Our recent studies had identified an inflammation-amplifying (Inf-A) cell population that is expanded in human OA cartilage and is distinctive in the expression of both IL1R1 and TNF-R2 receptors and active Jnk signaling cascade. METHODS: In this study, we have tested the function of the cartilage-resident IL1R1+TNF-R2+ Inf-A cells in OA. We have identified that the IL1R1+TNF-R2+ Inf-A cells expand in aged mice as well as after anterior cruciate ligament tear upon tibia loading and OA initiation in mice. We targeted and modulated the Jnk signaling cascade in InfA through competitive inhibition of Jnk signaling in mice and human OA explants and tested the effects on joint structure and gait in mice. RESULTS: Modulation of Jnk signaling led to attenuation of inflammatory cytokines CCL2 and CCL7 without showing any structural improvements in the joint architecture. Interestingly, Jnk inhibition and lowered CCL2 and 7 are sufficient to significantly improve the gait parameters in treated PTOA mice demonstrating reduced OA-associated pain. Consistent with the mice data, treatment with JNK inhibitor did not improve human OA cartilage explants. CONCLUSION: These studies demonstrate that Inf-A, an articular-cartilage resident cell population, contributes to pain in OA via secretion of CCL2 and 7 and can be targeted via inhibition of Jnk signaling.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Modelos Animais de Doenças , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Dor/etiologia , Dor/metabolismo , Inflamação/metabolismo
18.
Chem Biol Interact ; 391: 110897, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309612

RESUMO

Knee osteoarthritis (KOA) is a chronic, disabling knee joint lesion in which degeneration and defects in articular cartilage are the most important features. Casticin (CAS) is a flavonoid extracted from the Chinese herb Vitex species that has anti-inflammatory and antitumor effects. The aim of this study was to investigate the therapeutic and mechanistic effects of CAS on cartilage damage in KOA. A KOA rat model was established by anterior cruciate ligament transection (ACLT), and cartilage morphological changes were assessed by histological analysis and micro-CT scans. Subsequently, chondrocytes were treated with 10 ng/mL IL-1ß to establish an OA model. CCK-8 assays and EdU assays were performed to assess the viability of CAS-treated chondrocytes. Western blotting, flow cytometry and Hoechst 33342/PI Double Stain were used to detect chondrocyte apoptosis. Western blotting, qRT‒PCR and ELISA were used to detect changes in inflammatory mediators. In addition, cartilage matrix-related indices were detected by Western blotting, qRT‒PCR and immunofluorescence (IF) analysis. Immunohistochemistry (IHC) and Western blotting were performed to detect the expression of p-PI3K, p-AKT and HIF-1α in vivo and in vitro. Micro-CT, pathological sections and related scores showed that CAS improved the alterations in bony structures and reduced cartilage damage and osteophyte formation in the ACLT model. In vivo, CAS attenuated IL-1ß-induced cartilage matrix degradation, apoptosis and the inflammatory response. In addition, CAS inhibited the expression of the PI3K/AKT/HIF-1α signaling pathway in the ACLT animal model and IL-1ß cell model. CAS may ameliorate cartilage damage in OA by inhibiting the PI3K/AKT/HIF-1α signaling pathway, suggesting that CAS is a potential strategy for the treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Transdução de Sinais , Flavonoides/farmacologia , Interleucina-1beta/metabolismo , Condrócitos , Cartilagem Articular/metabolismo , Modelos Animais de Doenças
19.
Zhonghua Yi Xue Za Zhi ; 104(9): 695-703, 2024 Mar 05.
Artigo em Chinês | MEDLINE | ID: mdl-38418169

RESUMO

Objective: To explore the mechanism of cross-linked hyaluronic acid-dexamethasone hydrogel (cHA-Dex) in inhibiting chondrocyte apoptosis and alleviating early post-traumatic osteoarthritis (PTOA). Methods: To generate PTOA model, anterior cruciate ligament transection (ACLT)was performed on SD rats (n=70), and the sham surgery group (n=70) was set as control. The changes in inflammatory indicators such as interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-3 (MMP-3), and matrix metalloproteinase-13 (MMP-13) in the joint lavage fluid were measured at different time points (1-14 days, 5 rats at each time point) after surgery. The cHA-Dex (0.5 mg/ml) hydrogel (experimental group, n=70) and ordinary low-molecular-weight hyaluronic acid (HA) hydrogel premixed with Dex, that was, HA-Dex (0.5 mg/ml) hydrogel (control group, n=70) were injected into the joint cavity of PTOA rats, and the release amount and cumulative release amount of Dex in the joint fluid of rats at each time point(1-14 days, 5 rats at each time point) were detected to reveal the release mechanism of cHA-Dex hydrogel. The cartilage of knee joint of patients with osteoarthritis (OA) who underwent knee arthroplasty in the Second Hospital of Shanxi Medical University from January 2020 to December 2022 was taken for in vitro tissue block culture (Outbridge score=1 or 2,n=18). After the cartilage tissue block was treated with cHA-Dex hydrogel premixed with 0.1, 0.2, and 0.5 mg/ml Dex, the mRNA expression levels of IL-1ß, IL-6, TNF-α, MMP-3, and MMP-13 in the articular cartilage tissue block were detected. OA chondrocytes were isolated from cartilage samples using enzymatic hydrolysis and cultured in vitro (n=18). Chondrocytes were divided into 4 groups: saline, cHA hydrogel, Dex (0.5 mg/ml), and cHA-Dex (0.5 mg/ml) hydrogel group. The effects of different interventions on chondrocyte proliferation and apoptosis were tested. Results: The Osteoarthritis Research Society International (OARSI) score of safranine O-solid green staining in PTOA group was 3.34±0.35, and it was 1.17±0.21 in Sham group(P=0.010). The Meachim score of knee joint osteophytes in PTOA rats was significantly higher than that in the Sham group (2.66±0.41 vs 0.22±0.17, P=0.010), indicating PTOA model in rat was established successfully. The cHA-Dex hydrogel, which corresponded to the peak changes of inflammatory factors in the joints of PTOA rats in the early stage, was also released in the early stage and sustained-released in the late stage. After the OA articular cartilage tissue block was treated with cHA-Dex hydrogel premixed with 0.1, 0.2, and 0.5 mg/ml Dex, the mRNA expression levels of IL-1 ß, IL-6, TNF-α, MMP-3, and MMP-13 in the tissue block were reduced significantly (all P<0.05) and in a dose-dependent manner. Compared with Dex (0.5 mg/ml) alone group, the apoptosis rate of cHA-Dex (0.5 mg/ml) hydrogel group was significantly reduced (0.60±0.07 vs 6.63±0.98, P=0.010).Compared with the normal saline or the cHA hydrogel alone group, the cHA-Dex (0.5 mg/ml) hydrogel group had significant cell proliferation, and the difference at each time point were all significant statistically (all P<0.05). Conclusion: For the early inflammation of PTOA, cHA-Dex hydrogel can not only inhibit cartilage inflammation, but also reverse the increased apoptosis and decreased proliferation rate of chondrocytes caused by Dex, and finally alleviate the progress of PTOA by releasing Dex.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Ratos , Animais , Ácido Hialurônico/farmacologia , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Ratos Sprague-Dawley , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Inflamação , Condrócitos , Dexametasona/farmacologia , Hidrogéis/farmacologia , RNA Mensageiro
20.
ACS Appl Mater Interfaces ; 16(9): 11336-11348, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407027

RESUMO

Articular cartilage injury is a common disease in clinical medicine. Because of its special physiological structure and lack of blood, lymph, and nerves, its ability to regenerate once damaged is very limited. In this study, we designed and synthesized a series of self- and coassembled cartilage-inducing functional peptide molecules and constructed a coassembled functional peptide hydrogel based on phenylboronic acid-o-dihydroxy "click chemistry" cross-linking to promote aggregation and signal transduction of mesenchymal stem cells (MSCs) in the early stage and differentiation toward cartilage, thereby promoting the repair of cartilage damage. Three functional peptide molecules were produced using solid-phase peptide synthesis technology, yielding a purity higher than 95%. DOPA-FEFEFEFEGHSNGLPL (DFP) and PBA-FKFKFKFKGHAVDI (BFP) were coassembled at near-neutral pH to form hydrogels (C Gels) based on phenylboronic acid-o-dihydroxy click chemistry cross-linking and effectively loaded transforming growth factor (TGF)-ß1 with a release period of up to 2 weeks. Furthermore, chondrocytes and bone marrow mesenchymal stem cells (BMSCs) were cocultured with functional peptide hydrogels, and the results displayed that the coassembled functional peptide hydrogel group C Gels significantly promoted the proliferation of chondrocytes and MSCs. The chondrocyte markers collagen type I, collagen type II, and glycosaminoglycan (GAG) in the coassembled functional peptide hydrogel group were significantly higher than those in the control group, indicating that it can induce the differentiation of MSCs into cartilage. In vivo experiments demonstrated that the size and thickness of the new cartilage in the compound gel group were the most beneficial to cartilage regeneration. These results indicated that peptide hydrogels are a promising therapeutic option for cartilage regeneration.


Assuntos
Ácidos Borônicos , Cartilagem Articular , Hidrogéis , Hidrogéis/química , Cartilagem Articular/metabolismo , Condrócitos , Diferenciação Celular , Peptídeos/farmacologia , Peptídeos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Condrogênese , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA