Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.356
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732111

RESUMO

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Assuntos
Cartilagem Articular , Condrócitos , Glicoesfingolipídeos , Osteoartrite , Regeneração , Humanos , Osteoartrite/terapia , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Glicoesfingolipídeos/metabolismo , Transdução de Sinais , Gangliosídeos/metabolismo
2.
Jt Dis Relat Surg ; 35(2): 330-339, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727112

RESUMO

OBJECTIVES: The study aims to investigate the relationship between the vastus medialis obliquus (VMO) muscle distal insertion features and patellar chondral lesion presence. PATIENTS AND METHODS: This cross-sectional study included a total of 100 patients (18 males, 82 females, mean age 67.2±7.1 years; range, 50 to 86 years) who underwent total knee arthroplasty (TKA). Radiological assessments, including merchant view and standing orthoroentgenograms, were conducted. The current osteoarthritis stage, varus angle, quadriceps angle (Q angle), patella-patellar tendon angle (P-PT angle), congruence angle, and sulcus angle were calculated. The VMO tendon length, muscle fiber angle, tendon insertion width measurements, and patellar chondral lesion localization data were obtained intraoperatively. Grouping was done according to the distal insertion width of the VMO tendon to the medial edge of the patella. The medial rim of the patella was divided into three equal-sized sectors. The first group (Group 1, n=31) consisted of patients who had an insertion from the quadriceps tendon into the upper one-third of the patella. The second group (Group 1, n=48) consisted of patients with a distal insertion expanding into the middle one-third of the patella. The third group (Group 3, n=21) consisted of patients who had a distal insertion extending into the distal third region of the medial patella margin. The patella joint surface was divided into sectors, and the presence and location of cartilage lesions were noted in detail. RESULTS: The mean tendon insertion width rate was 45.99±16.886% (range, 16.7 to 83.3%). The mean muscle fiber insertion angle was 51.85±11.67º (range, 20º to 80º). The mean tendon length was 12.45±3.289 (range, 4 to 20) mm. There was no significant difference between the mean age, weight, height, body mass index, BMI, fiber angle, tendon length, varus angle, Q angle, sulcus angle, and congruence angle data among the groups. In terms of the P-PT angle, Groups 1 and 2 had a significant relationship (p=0.008). No relationship was found between the mean fiber insertion angle, mean tendon length, or the presence of chondral lesions. There was a statistically significant difference among the groups regarding the presence of chondral lesions. The highest percentage of chondral lesion frequency was observed in Group 3 (95.24%), followed by Group 1 (90.3%) and Group 2 (89.6%), respectively. Compared to the other two groups, Group 3 had a higher average ratio of lesion areas per patient. CONCLUSION: Our study results demonstrate that the formation and localization of the patellar chondral lesions are affected by the insertion width type of the VMO muscle into the patella. Group 2-type insertion is associated with a lower lesion frequency rate than Groups 1 and 3.


Assuntos
Patela , Músculo Quadríceps , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Músculo Quadríceps/patologia , Músculo Quadríceps/diagnóstico por imagem , Estudos Transversais , Idoso de 80 Anos ou mais , Patela/patologia , Patela/diagnóstico por imagem , Patela/anatomia & histologia , Artroplastia do Joelho , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/diagnóstico por imagem , Cartilagem Articular/patologia , Cartilagem Articular/diagnóstico por imagem , Radiografia , Articulação do Joelho/patologia , Articulação do Joelho/cirurgia , Articulação do Joelho/diagnóstico por imagem
3.
Jt Dis Relat Surg ; 35(2): 361-367, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727116

RESUMO

OBJECTIVES: This study aims to compare the radiological, biomechanical, and histopathological results of microfracture treatment and osteochondral damage repair treatment with a new scaffold product produced by the three-dimensional (3D) bioprinting method containing gelatin-hyaluronic acid-alginate in rabbits with osteochondral damage. MATERIALS AND METHODS: A new 3D bioprinted scaffold consisting of gelatin, hyaluronic acid, and alginate designed by us was implanted into the osteochondral defect created in the femoral trochlea of 10 rabbits. By randomization, it was determined which side of 10 rabbits would be repaired with a 3D bioprinted scaffold, and microfracture treatment was applied to the other knees of the rabbits. After six months of follow-up, the rabbits were sacrificed. The results of both treatment groups were compared radiologically, biomechanically, and histopathologically. RESULTS: None of the rabbits experienced any complications. The magnetic resonance imaging evaluation showed that all osteochondral defect areas were integrated with healthy cartilage in both groups. There was no significant difference between the groups in the biomechanical load test (p=0.579). No statistically significant difference was detected in the histological examination using the modified Wakitani scores (p=0.731). CONCLUSION: Our study results showed that 3D bioprinted scaffolds exhibited comparable radiological, biomechanical, and histological properties to the conventional microfracture technique for osteochondral defect treatment.


Assuntos
Alginatos , Bioimpressão , Cartilagem Articular , Gelatina , Ácido Hialurônico , Articulação do Joelho , Impressão Tridimensional , Alicerces Teciduais , Animais , Coelhos , Alginatos/química , Gelatina/química , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Alicerces Teciduais/química , Cartilagem Articular/patologia , Cartilagem Articular/lesões , Cartilagem Articular/cirurgia , Articulação do Joelho/cirurgia , Articulação do Joelho/patologia , Bioimpressão/métodos , Modelos Animais de Doenças , Fenômenos Biomecânicos , Imageamento por Ressonância Magnética , Artroplastia Subcondral/métodos
4.
BMC Musculoskelet Disord ; 25(1): 398, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773475

RESUMO

OBJECTIVE: to investigate the association between cartilage lesion-related features observed in knee osteoarthritis (OA) patients' first MRI examination and incident knee surgery within 5 years. Additionally, to assess the predictive value of these features for the incident knee surgery. METHODS: We identified patients diagnosed with knee OA and treated at our institution between January 2015 and January 2018, and retrieved their baseline clinical data and first MRI examination films from the information system. Next, we proceeded to determine joint space narrowing grade, cartilage lesion size grade, cartilage full-thickness loss grade and cartilage lesion sum score for the medial and lateral compartments, respectively. Generalized linear regression models examined the association of these features with 5-year incident knee surgery. Positive and negative predictive values (PPVs and NPVs) were determined referring to 5-year incident knee surgery. RESULTS: Totally, 878 participants (knees) were found eligible to form the study population. Within the 5 years, surgery was performed on 61 knees. None of the cartilage-related features had been found significantly associated with incident surgery. The results were similar for medial and lateral compartments. The PPVs were low for all the features. CONCLUSIONS: Among symptomatic clinically diagnosed OA knees, cartilage lesions observed in the first MRI examinations were not found to be associated with the occurrence of joint surgery within a 5-year period. All these cartilage-related features appear to have no additional value in predicting 5-year incident joint surgery.


Assuntos
Cartilagem Articular , Articulação do Joelho , Imageamento por Ressonância Magnética , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/epidemiologia , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Idoso , Articulação do Joelho/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Artroplastia do Joelho/estatística & dados numéricos
5.
Eur Rev Med Pharmacol Sci ; 28(7): 2670-2676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639506

RESUMO

BACKGROUND: Synovial chondromatosis is a non-malignant synovial disorder characterized by the presence of cartilage formation within the synovial membrane, leading to the emergence of multiple cartilaginous nodules that may be either attached or unattached. The presence of this anatomical feature is frequently observed in articulations such as the knee, hip, elbow, and ankle. CASE REPORT: In this study, we present a case of synovial chondromatosis in the knee joint of a healthy male in his early 60s. Notably, the patient exhibited the simultaneous presence of 87 large loose bodies. The occurrence of a substantial quantity of unattached entities of notable dimensions within the joint is highly uncommon. CONCLUSIONS: The patient had several synovial chondromas, a rare disease. Synovial chondromatosis is a benign disorder; however, growing synovium can cause pyogenic cartilage nodules. Most loose bodies in joints can abrade and degenerate articular cartilage, causing long-term discomfort. Thus, an early-stage procedure to remove loose bodies and carefully excise synovial tissue is necessary to treat this condition.


Assuntos
Cartilagem Articular , Condromatose Sinovial , Humanos , Masculino , Condromatose Sinovial/diagnóstico por imagem , Condromatose Sinovial/cirurgia , Condromatose Sinovial/patologia , Membrana Sinovial/patologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/patologia , Cartilagem Articular/patologia , Articulação do Tornozelo
6.
Foot Ankle Clin ; 29(2): 185-192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679432

RESUMO

The current concepts thoroughly highlight the ankle cartilage cascade focusing on the different stages and the different etiologic factors that can introduce a patient into the cascade. Moreover, the authors will provide the reader with a comprehensive overview of the types of lesions that may present as symptomatic, asymptomatic, and dangerous for progression into osteoarthritis, and the authors supply the reader with considerations and directions for future clinical implications and scientific endeavors.


Assuntos
Traumatismos do Tornozelo , Cartilagem Articular , Humanos , Traumatismos do Tornozelo/epidemiologia , Traumatismos do Tornozelo/patologia , Articulação do Tornozelo/patologia , Doenças das Cartilagens , Cartilagem Articular/patologia , Incidência , Osteoartrite/etiologia , Terminologia como Assunto
7.
Int Immunopharmacol ; 133: 112005, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626543

RESUMO

BACKGROUND: Because the pathophysiology of osteoarthritis (OA) has not been fully elucidated, targeted treatments are lacking. In this study, we assessed the role and underlying mechanism apolipoprotein D (APOD) on the development of OA. METHODS: To establish an in vitro OA model, we extracted primary chondrocytes from the cartilage of C57BL/6 mice and stimulated the chondrocytes with IL-1ß. After APOD intervention or incubation with an overexpressing plasmid, we detected inflammatory-related markers using RT-qPCR, Western blotting, and ELISA. To detect apoptosis and autophagy-related markers, we used flow cytometry, immunofluorescence, and transmission electron microscopy (TEM). Finally, we measured the level of oxidative stress. We also used RNA-seq to identify the APOD-regulated downstream signaling pathways. We used an in vivo mice OA model of the anterior cruciate ligament transection (ACLT) and administered intra-articular adenovirus overexpressing APOD. To examine cartilage damage severity, we used immunohistochemical analysis (IHC), micro-CT, scanning electron microscopy (SEM), and Safranin O-fast green staining. RESULTS: Our results showed that APOD inhibited chondrocyte inflammation, degeneration, and apoptosis induced by IL-1ß. Additionally, APOD reversed autophagy inhibition and oxidative stress and also blocked activation of the PI3K/AKT/mTOR signaling pathway induced by IL-1ß. Finally, overexpression of the APOD gene through adenovirus was sufficient to mitigate OA progression. CONCLUSIONS: Our findings revealed that APOD had a chondroprotective role in OA progression by the PI3K/AKT/mTOR signaling pathway.


Assuntos
Apolipoproteínas D , Condrócitos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Condrócitos/metabolismo , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Apolipoproteínas D/genética , Apolipoproteínas D/metabolismo , Masculino , Células Cultivadas , Apoptose , Autofagia , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Estresse Oxidativo
8.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570055

RESUMO

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Assuntos
Cartilagem Articular , Emodina , Osteoporose , Ratos Sprague-Dawley , Microtomografia por Raio-X , Animais , Emodina/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Ratos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Feminino , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia
9.
Mol Med ; 30(1): 55, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664616

RESUMO

BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.


Assuntos
Apoptose , Condrócitos , Matriz Extracelular , Hialuronoglucosaminidase , NF-kappa B , Osteoartrite , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Proteômica/métodos
10.
ACS Appl Mater Interfaces ; 16(17): 21383-21399, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626424

RESUMO

Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1ß-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.


Assuntos
Fatores Ativadores da Transcrição , Condrócitos , Exossomos , Mitocôndrias , Osteoartrite , RNA Mensageiro , Resposta a Proteínas não Dobradas , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Exossomos/metabolismo , Exossomos/química , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fatores Ativadores da Transcrição/metabolismo , Fatores Ativadores da Transcrição/química , Fatores Ativadores da Transcrição/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos
11.
Med Sci Monit ; 30: e943738, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664941

RESUMO

BACKGROUND The pathological mechanism of osteoarthritis is still unclear. The regulation of the immune microenvironment has been of growing interest in the progression and treatment of osteoarthritis. Macrophages with different phenotypes, producing different cytokines, have been linked to the mechanism of cartilage injury in osteoarthritis. Copper ions play a role in the immune response and are involved in the pathological mechanisms of osteoarthritis by affecting the metabolism of the cartilage matrix. Bioactive glass (BG) is an osteogenic material with superior biocompatibility. Here, we report on the regulatory behavior of macrophages using a copper-based composite BG material. MATERIAL AND METHODS Cu-BGC powder was prepared by sol-gel method, and scaffolds were fabricated and characterized using 3D printing. Macrophage cultures grown with Cu-BGC were examined for cell culture and proliferation. The effect of Cu-BGC on the degradation metabolism of chondrocytes, cultured in the environment of inflammatory cytokine IL-1ß, was determined. In addition, the morphology of macrophages, secretion of inflammatory cytokines, and expression of surface markers were examined. RESULTS The results show that Cu-BGC promotes macrophage proliferation at a range of concentrations and increases the secretion of anti-inflammatory cytokines while inhibiting proinflammatory cytokines. At the same time, M2-type cell surface markers are definitely expressed and the morphology of macrophages is altered. In addition, Cu-BGC inhibited the degradation metabolism of chondrocytes in the inflammatory environment induced by IL-1ß. CONCLUSIONS These results suggest that Cu-BGC induced macrophage polarization into an M2 type anti-inflammatory phenotype, and inhibition of immune injury response may play a role in delaying cartilage matrix damage in osteoarthritis.


Assuntos
Proliferação de Células , Condrócitos , Cobre , Citocinas , Macrófagos , Osteoartrite , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Cobre/metabolismo , Cobre/farmacologia , Citocinas/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Células RAW 264.7 , Vidro , Alicerces Teciduais
12.
Adv Rheumatol ; 64(1): 24, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553767

RESUMO

BACKGROUND: Osteoarthritis (OA) affects the entire joint, causing structural changes in articular cartilage, subchondral bone, ligaments, capsule, synovial membrane, and periarticular muscles that afflicts millions of people globally, leading to persistent pain and diminished quality of life. The intra-articular use of platelet-rich plasma (PRP) is gaining recognition as a secure therapeutic approach due to its potential regenerative capabilities. However, there is controversial clinical data regarding efficacy of PRP for OA treatment. In this context, gathering scientific evidence on the effects of PRP in treating OA in animal models could provide valuable insights into understanding its impact on aspects like cartilage health, synovial tissue integrity, and the inflammatory process in affected joints. Thus, the objective of this study was to assess the effects of PRP injections on inflammation and histopathological aspects of cartilage and synovium in animal models of OA through a comprehensive systematic review with meta-analysis. METHODS: A electronic search was conducted on Medline, Embase, Web of Science, The Cochrane Library, LILACS, and SciELO databases for relevant articles published until June 2022. A random-effects meta-analysis was employed to synthesize evidence on the histological characteristics of cartilage and synovium, as well as the inflammatory process. The GRADE approach was utilized to categorize the quality of evidence, and methodological quality was assessed using SYRCLE's RoB tool. RESULTS: Twenty-one studies were included in the review, with twelve of them incorporated into the meta-analysis. PRP treatment demonstrated superior outcomes compared to the control group in terms of cartilage histology (very low quality; p = 0.0002), synovium histology (very low quality; p < 0.0001), and reductions in proinflammatory markers, including IL-1 (low quality; p = 0.002), IL-6 (very low quality; p < 0.00001), and TNF-α (very low; p < 0.00001). However, PRP treatment did not yield a significant impact on PDGF-A levels (very low quality; p = 0.81). CONCLUSION: PRP appears capable of reducing proinflammatory markers (IL-1, IL-6, TNF-α) and mitigating cartilage and synovium damage in animals with OA. However, the levels of evidence of these findings are low to very low. Therefore, more rigorous studies with larger samples are needed to improve the quality of evidence. PROSPERO REGISTRATION: CRD42022250314.


Assuntos
Cartilagem Articular , Osteoartrite , Plasma Rico em Plaquetas , Animais , Humanos , Fator de Necrose Tumoral alfa , Interleucina-6 , Qualidade de Vida , Osteoartrite/terapia , Membrana Sinovial , Injeções Intra-Articulares , Cartilagem Articular/patologia , Interleucina-1
13.
Int J Immunogenet ; 51(3): 130-142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462560

RESUMO

Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1ß/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.


Assuntos
Quimiocinas , Macrófagos , Monócitos , Osteoartrite , Humanos , Osteoartrite/imunologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Quimiocinas/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Cartilagem Articular/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo
14.
Magn Reson Imaging ; 110: 7-16, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547934

RESUMO

BACKGROUND: To explore the ability of three-dimensional texture analyses based on gray-level run-length matrix (GLRLM) for examining the spatial distribution of pixel values on magnetic resonance imaging (MRI) relaxation time maps and detecting the compositional variation of cartilage repair following treatment with allogeneic human adipose-derived mesenchymal progenitor cells (haMPCs). METHODS: Participants with knee osteoarthritis were randomly divided into three groups with intra-articular haMPCs injections: low-, medium-, and high-dose groups. We analyzed five GLRLM parameters in the T1rho, T2 and T2star maps, including run length non-uniformity (RLNonUni), gray-level non-uniformity (GLevNonU), long run emphasis (LngREmph), short run emphasis (ShrtREmp), and fraction of images in runs. We used the relative D values (the ratio of difference values to baseline) as the objective to avoid errors caused by individual differences. We calculated the two-tailed Pearson's linear correlation coefficient (r) to investigate the correlations of the texture parameters with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. RESULTS: Compared with the base time, significant reduction of WOMAC score was observed in both high and medium doses groups at terminal time, indicating relief of pain symptoms in high and medium groups with the treatment of allogeneic haMPCs. Significant differences were observed in the GLRLM parameters of cartilage MR relaxation time maps in different doses groups. In both T1rho and T2 relaxation time maps, the high-dose group showed significant increases in relative D values of RLNonUni, GLevNonU, LngREmph and ShrtREmp, which indicated significant changes in the uniformity of relaxation time maps. For T2star map, GLRLM parameters such as GLevNonU and ShrtREmp, especially LngREmph, showed significant increases in relative D values in high-dose group. Among all GLRLM features, LngREmph of three relaxation time maps had performed excellent linear correlations with WOMAC scores. CONCLUSIONS: Texture analysis of the cartilage may allow the detection of compositional variation in cartilage repair with the treatment of allogeneic haMPCs. This technique displays potential applications in understanding the mechanism of stem cell repair of the cartilage and assessing the treatment response.


Assuntos
Tecido Adiposo , Cartilagem Articular , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Imageamento Tridimensional/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/cirurgia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Idoso , Transplante Homólogo
15.
Eur J Orthop Surg Traumatol ; 34(4): 1901-1910, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456943

RESUMO

The aim of the present review is to systematically analyse the current literature about gender differences in hip or knee cartilage composition and degeneration, to help explaining how and why osteoarthritis affects women more often and more severely than men. A systematic review of the literature in English was performed. Eleven studies on 1962 patients (905 females and 787 males) that reported differences on cartilage composition between males and females were included. Nine evaluated the knee, one the hip, and one both. They were heterogeneous in their methods: one conducted histological analyses, and all the others evaluated cartilage characteristics (volume, width, and composition) through magnetic resonance imaging. All authors reported gender differences in both volume and morphology of the cartilage, from infancy to menopause. In fact, a study on 92 healthy children statistically showed significant gender differences in cartilage thickness at all sites, even after adjustment for age, body, and bone size. Gender differences become more evident after menopause, when women have a lower cartilage volume and a higher cartilage loss. Men show significantly higher knee and hip cartilage volumes than women, and women carry a significantly greater risk to develop osteoarthritis. This is in part due to body and bone size, but also depends on qualitative and quantitative differences in the composition of cartilage and its degeneration rate after menopause. Structural changes in cartilage that occur between genders during ageing have significance in the development of osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Cartilagem Articular/patologia , Cartilagem Articular/diagnóstico por imagem , Feminino , Masculino , Osteoartrite do Quadril/patologia , Osteoartrite do Quadril/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/diagnóstico por imagem , Fatores Sexuais , Imageamento por Ressonância Magnética , Articulação do Joelho/patologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/patologia , Pessoa de Meia-Idade , Adulto , Idoso , Criança
16.
Acta Biomater ; 179: 220-233, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554890

RESUMO

An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects. The microsphere was grafted with an E7 peptide after loading the microsphere with kartogenin (KGN) and modifying the outer layer through dopamine self-polymerization. The microsphere could adhere to the cartilage defect, recruit synovial mesenchymal stem cells (SMSCs) in situ, and stimulate their differentiation into chondrocytes after injection into the articular cavity. Through in vivo and in vitro experiments, we demonstrated the ability of multifunctional microspheres to adhere to cartilage matrix, recruit SMSCs, and promote their differentiation into cartilage. Following treatment, the cartilage surface of the model group with partial-thickness cartilage defect showed smooth recovery, and the glycosaminoglycan content remained normal; the untreated control group showed significant progression of OA. The microsphere, a framework for cartilage tissue engineering, promoted the expression of SMSCs involved in cartilage repair while adapting to cell migration and growth. Thus, for treating partial-thickness cartilage defects in OA, this innovative carrier system based on stem cell therapy can potentially improve therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells (MSCs) therapy is effective in the repair of cartilage injury. However, because of the particularity of partial-thickness cartilage injury, it is difficult to recruit enough seed cells in situ, and there is a lack of suitable scaffolds for cell migration and growth. Here, we developed polydopamine surface-modified PLGA microspheres (PMS) containing KGN and E7 peptides. The adhesion ability of the microspheres is facilitated by the polydopamine layer wrapped in them; thus, the microspheres can adhere to the injured cartilage and recruit MSCs, thereby promoting their differentiation into chondrocytes and accomplishing cartilage repair. The multifunctional microspheres can be used as a safe and potential method to treat partial-thickness cartilage defects in OA.


Assuntos
Anilidas , Células-Tronco Mesenquimais , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Coelhos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Diferenciação Celular/efeitos dos fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Cartilagem Articular/patologia , Ácido Poliglicólico/química , Ácido Láctico/química , Injeções , Matriz Extracelular/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Engenharia Tecidual/métodos
17.
Am J Sports Med ; 52(5): 1336-1349, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482805

RESUMO

BACKGROUND: Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS: Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS: Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION: Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE: IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.


Assuntos
Cartilagem Articular , Fator de Crescimento Insulin-Like I , Osteoartrite , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Dependovirus/genética , Terapia Genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/uso terapêutico , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , Vírus Satélites/genética , Vírus Satélites/metabolismo , Ovinos/genética , Microtomografia por Raio-X
18.
Orthop Surg ; 16(5): 1187-1195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488230

RESUMO

OBJECTIVE: The decision on whether or not and how to treat a local cartilage defect is still made intraoperatively based on the visual presentation of the cartilage and findings from indentations with an arthroscopic probe. The treatment decision is then usually based on grading according to established classifications systems, which, therefore, need to have high reliability and accuracy. The aim of the present study was to evaluate the reliability and accuracy of the Outerbridge classification in staging cartilage defects. METHODS: We performed an observer arthroscopic study using the Outerbridge classification on seven fresh-frozen human cadaveric knees, which collectively exhibited nine cartilage defects. To evaluate accuracy, defect severity was verified through histological examination. Interrater and intrarater reliabilites were calculated using Cohen's kappa and the intra-class correlation coefficient (ICC 3.1). RESULTS: The interrater and intrarater reliability for the Outerbridge classification ranged from poor to substantial, with 0.24 ≤ κ ≤ 0.70 and κ = 0.55 to κ = 0.66, respectively. The accuracy evaluated by comparison with the histological examination was 63% overall. The erroneous evaluations were, however, still often at the discrimination of grade 2 and 3. We did not find any relationship between higher experience and accuracy or intraobserver reliability. Taken together, these results encourage surgeons to further use diagnostic arthroscopy for evaluating cartilage lesions. Nevertheless, especially in grade 2 and 3, deviations from the histology were observed. This is, however, the point where a decision is made on whether to surgically address the defect or not. CONCLUSION: Diagnostic arthroscopy is the standard for cartilage lesion assessment, yet interobserver reliability is fair to substantial. Caution is warranted in interpreting varied observer results. The accuracy of the "simpler" Outerbridge classification is insufficient compared to histological examinations, highlighting the need for improved techniques in guideline-based intraoperative decision-making.


Assuntos
Artroscopia , Cadáver , Cartilagem Articular , Variações Dependentes do Observador , Humanos , Reprodutibilidade dos Testes , Artroscopia/métodos , Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Idoso , Masculino , Feminino , Doenças das Cartilagens/patologia , Pessoa de Meia-Idade
19.
J Cell Mol Med ; 28(7): e18242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509736

RESUMO

Articular cartilage defect is challenged by insufficient regenerative ability of cartilage. Catalpol (CA), the primary active component of Rehmanniae Radix, could exert protective effects against various diseases. However, the impact of CA on the treatment of articular cartilage injuries is still unclear. In this study, full-thickness articular cartilage defect was induced in a mouse model via surgery. The animals were intraperitoneally injected with CA for 4 or 8 weeks. According to the results of macroscopic observation, micro-computed tomography CT (µCT), histological and immunohistochemistry staining, CA treatment could promote mouse cartilage repair, resulting in cartilage regeneration, bone structure improvement and matrix anabolism. Specifically, an increase in the expression of CD90, the marker of mesenchymal stem cells (MSCs), in the cartilage was observed. In addition, we evaluated the migratory and chondrogenic effects of CA on MSCs. Different concentration of CA was added to C3H10 T1/2 cells. The results showed that CA enhanced cell migration and chondrogenesis without affecting proliferation. Collectively, our findings indicate that CA may be effective for the treatment of cartilage defects via stimulation of endogenous MSCs.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Glucosídeos Iridoides , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Camundongos , Cartilagem Articular/patologia , Microtomografia por Raio-X , Diferenciação Celular , Doenças das Cartilagens/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Condrogênese
20.
Rom J Morphol Embryol ; 65(1): 89-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527988

RESUMO

The present research study aimed to assess magnetic resonance imaging (MRI) changes and histological findings in the therapeutic effects of microfractures in the treatment of complex animal knee lesions resulting from osteochondral and meniscal defects resulting from non-total meniscectomies. The anterior cruciate ligament lesions are also proven to facilitate the development of osteoarthritis in the knee and worsen the prognosis. Surgery was performed on the right knee joint of 22 male rabbits in order to partially remove the anterior horn of the internal meniscus and to induce an osteochondral defect at the level of the internal femoral condyle. The induced lesion complex was aimed to simulate a clinical situation that occurs frequently in orthopedic practice when young adults undergo partial meniscectomy and at the time of surgery, an osteochondral defect is diagnosed. Rabbits were separated into two study groups: the control (C1) group and the microfractures (MF2) group. After the induced cartilage defect and partial meniscectomy, both groups were followed-up for six months using detailed MRI. Also, anatomical specimens were histologically analyzed to show modifications and signs of healing process, along with complications, in the study group. The results showed that the microfracture group had better results concerning articular surface defect healing in comparison to the control group. Our results suggest that microfractures do improve results concerning surface contact healing and serial MRI studies can be useful in observing the remodeling process in dynamics.


Assuntos
Cartilagem Articular , Fraturas de Estresse , Animais , Masculino , Coelhos , Fraturas de Estresse/patologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Ligamento Cruzado Anterior , Imageamento por Ressonância Magnética/métodos , Fêmur/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Cartilagem Articular/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA