Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 413(20): 5085-5093, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34169347

RESUMO

The protein heterogeneity at the single-cell level has been recognized to be vital for an understanding of various life processes during animal development. In addition, the knowledge of accurate quantity of relevant proteins at cellular level is essential for appropriate interpretation of diagnostic and therapeutic results. Some low-copy-number proteins are known to play a crucial role during cell proliferation, differentiation, and also in apoptosis. The fate decision is often based on the concentration of these proteins in the individual cells. This is likely to apply also for caspases, cysteine proteases traditionally associated with cell death via apoptosis but recently being discovered also as important factors in cell proliferation and differentiation. The hypothesis was tested in bone-related cells, where modulation of fate from apoptosis to proliferation/differentiation and vice versa is particularly challenging, e.g., towards anti-osteoporotic treatments and anti-cancer strategies. An ultrasensitive and highly selective method based on bioluminescence photon counting was used to quantify activated caspase-3/7 in order to demonstrate protein-level heterogeneity in individual cells within one population and to associate quantitative measurements with different cell fates (proliferation, differentiation, apoptosis). The results indicate a gradual increase of caspase-3/7 activation from the proliferative status to differentiation (more than three times) and towards apoptosis (more than six times). The findings clearly support one of the putative key mechanisms of non-apoptotic functions of pro-apoptotic caspases based on fine-tuning of their activation levels.


Assuntos
Caspase 3/química , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/metabolismo , Osteoblastos/citologia , Animais , Apoptose , Caspase 3/genética , Caspase 7/genética , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Camundongos , Osteoblastos/fisiologia
2.
Biochem J ; 478(13): 2681-2696, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34156061

RESUMO

Apoptosis is a regulated form of cell death essential to the removal of unwanted cells. At its core, a family of cysteine peptidases named caspases cleave key proteins allowing cell death to occur. To do so, each caspase catalytic pocket recognizes preferred amino acid sequences resulting in proteolysis, but some also use exosites to select and cleave important proteins efficaciously. Such exosites have been found in a few caspases, notably caspase-7 that has a lysine patch (K38KKK) that binds RNA, which acts as a bridge to RNA-binding proteins favoring proximity between the peptidase and its substrates resulting in swifter cleavage. Although caspase-7 interaction with RNA has been identified, in-depth characterization of this interaction is lacking. In this study, using in vitro cleavage assays, we determine that RNA concentration and length affect the cleavage of RNA-binding proteins. Additionally, using binding assays and RNA sequencing, we found that caspase-7 binds RNA molecules regardless of their type, sequence, or structure. Moreover, we demonstrate that the N-terminal peptide of caspase-7 reduces the affinity of the peptidase for RNA, which translates into slower cleavages of RNA-binding proteins. Finally, employing engineered heterodimers, we show that a caspase-7 dimer can use both exosites simultaneously to increase its affinity to RNA because a heterodimer with only one exosite has reduced affinity for RNA and cleavage efficacy. These findings shed light on a mechanism that furthers substrate recognition by caspases and provides potential insight into its regulation during apoptosis.


Assuntos
Apoptose , Caspase 7/metabolismo , Lisina/metabolismo , RNA/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/genética , Células HCT116 , Células HEK293 , Humanos , Immunoblotting , Lisina/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Multimerização Proteica , Proteólise , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
Mol Immunol ; 132: 8-20, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524772

RESUMO

The cysteine-containing aspartate specific proteinase (caspase) family plays important roles in apoptosis and the maintenance of homeostasis in lampreys. We conducted genomic and functional comparisons of six distinct lamprey caspase groups with human counterparts to determine how these expanded molecules evolved to adapt to the changing caspase-mediated signaling pathways. Our results showed that lineage-specific duplication and rearrangement were responsible for expanding lamprey caspases 3 and 7, whereas caspases 1, 6, 8, and 9 maintained a relatively stable genome and protein structure. Lamprey caspase family molecules displayed various expression patterns and were involved in the innate immune response. Caspase 1 and 7 functioned as a pattern recognition receptor with a broad-spectrum of microbial recognition and bactericidal effect. Additionally, caspases 1 and 7 may induce cell apoptosis in a time- and dose-dependent manner; however, apoptosis was inhibited by caspase inhibitors. Thus, these molecules may reflect the original state of the vertebrates caspase family. Our phylogenetic and functional data provide insights into the evolutionary history of caspases and illustrate their functional characteristics in primitive vertebrates.


Assuntos
Apoptose/genética , Caspases/genética , Imunidade Inata , Lampreias/genética , Transdução de Sinais/imunologia , Animais , Apoptose/efeitos dos fármacos , Caspase 1/química , Caspase 1/genética , Caspase 1/isolamento & purificação , Caspase 1/metabolismo , Caspase 3/química , Caspase 3/genética , Caspase 3/metabolismo , Caspase 6/química , Caspase 6/genética , Caspase 6/metabolismo , Caspase 7/química , Caspase 7/genética , Caspase 7/isolamento & purificação , Caspase 7/metabolismo , Caspase 8/química , Caspase 8/genética , Caspase 8/metabolismo , Caspase 9/química , Caspase 9/genética , Caspase 9/metabolismo , Inibidores de Caspase/farmacologia , Caspases/química , Caspases/isolamento & purificação , Caspases/metabolismo , Evolução Molecular , Duplicação Gênica , Rearranjo Gênico , Genoma , Genômica , Células HeLa , Humanos , Imunidade Inata/genética , Lampreias/crescimento & desenvolvimento , Lampreias/imunologia , Lampreias/metabolismo , Filogenia , Proteínas Recombinantes , Alinhamento de Sequência , Transdução de Sinais/genética , Staphylococcus aureus/efeitos dos fármacos , Regulação para Cima , Vibrio/efeitos dos fármacos
4.
FEBS J ; 288(4): 1259-1270, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619291

RESUMO

Many proteases recognize their substrates with high specificities, with this in mind, it should theoretically be possible to utilize the substrate binding cleft of a protease as a scaffold to engineer an affinity reagent. In this study, we sought to develop reagents that would differentiate between substrates and products of proteolysis, based on a caspase 7 scaffold. Firstly, we engineered a form of caspase 7 that can undergo conversion to a substrate binding conformation without catalysis. Seeking to generate a product-only trap, we further engineered this construct by incorporating mutations that compensate for the generation of a negative charge in the neo C terminus of a newly generated product. This was accomplished with only three substitutions within the substrate binding cleft. Moreover, the affinity of the product trap for peptides was comparable to the affinity of caspase 7 to parental substrates. Finally, generation of a hybrid fluorescent protein with the product trap provided a reagent that specifically recognized apoptotic cells and highlights the versatility of such an approach in developing affinity and imaging agents for a variety of cysteine and serine proteases.


Assuntos
Caspase 7/genética , Proteínas Mutantes/metabolismo , Mutação , Engenharia de Proteínas/métodos , Apoptose/efeitos dos fármacos , Sítios de Ligação/genética , Caspase 7/química , Caspase 7/metabolismo , Linhagem Celular Tumoral , Endopeptidases/metabolismo , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Ligação Proteica , Domínios Proteicos , Proteólise , Especificidade por Substrato , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
5.
Eur J Med Chem ; 175: 162-171, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082763

RESUMO

We have designed novel tropinone-thiazole derivatives that showed high antiproliferative activity against a variety of cancer cell lines via caspase 3/7 activation mechanism. Among the derivatives, compounds 3b-3h were found to exhibit high activity against human leukemia (MV4-11), human lung carcinoma (A549), human breast carcinoma (MCF-7), and skin melanoma (B16-F10) cancer cell lines, with IC50 values of 5.43-11.06 µM. The lead compound 3g increases caspase 3/7 activity in A549 cells 25 times more than the control, and 2 times more than reference drug camptothecin. We have also found that tropinone-thiazole derivatives exhibit high tyrosinase inhibitory activity. The lead compounds 3g and 3h showed tyrosinase inhibition effect, with IC50 values 3.22 and 3.51 µM, respectively. These inhibitory activities are 22 times higher than the activity of kojic acid (IC50 72.27 µM) and 120 times higher than activity of ascorbic acid (IC50 386.5 µM). For compounds 3g and 3h, the experimentally determined lipophilicity correlates very well with their enzymatic activities. These data suggest that presented compounds could constitute lead anticancer drug candidates.


Assuntos
Caspase 3/metabolismo , Caspase 7/farmacologia , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Tiazóis/química , Tropanos/química , Células 3T3 , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Caspase 7/química , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Ativadores de Enzimas/química , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray/métodos , Relação Estrutura-Atividade
6.
J Biomol Struct Dyn ; 37(13): 3456-3466, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30175666

RESUMO

Caspases are members of a highly regulated aspartate-cysteine protease family which have important roles in apoptosis. Pharmaceutical studies focused on these molecules since they are involved in diseases such as cancer and neurodegenerative disorders. A small molecule which binds to the dimeric interface away from the binding site induces a conformational change that resembles the pro-caspase form of the molecule by shifting loop positions. The fluctuation mechanisms caused by mutations or binding of a ligand can explain the key mechanism for the function of that molecule. In this study, we performed molecular dynamics simulations on wild-type and mutated structures (C290N, R187M, Y223A, G188L and G188P) as well as allosterically inhibited structure (DICA-bound caspase-7) to observe the effects of the single mutations on intrinsic dynamics. The results show that previously known changes in catalytic activity upon mutations or allosteric ligand binding are reflected in corresponding changes in the global dynamics of caspase-7. Communicated by Ramaswamy H. Sarma.


Assuntos
Caspase 7/genética , Caspase 7/metabolismo , Inibidores Enzimáticos/metabolismo , Simulação de Dinâmica Molecular , Mutação , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Caspase 7/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Ligantes , Ligação Proteica , Conformação Proteica
7.
Sci Rep ; 8(1): 2189, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391535

RESUMO

The Endoplasmic Reticulum (ER) plays a fundamental role in executing multiple cellular processes required for normal cellular function. Accumulation of misfolded/unfolded proteins in the ER triggers ER stress which contributes to progression of multiple diseases including neurodegenerative disorders. Recent reports have shown that ER stress inhibition could provide positive response against neuronal injury, ischemia and obesity in in vivo models. Our search towards finding an ER stress inhibitor has led to the functional discovery of kaempferol, a phytoestrogen possessing ER stress inhibitory activity in cultured mammalian cells. We have shown that kaempferol pre-incubation significantly inhibits the expression of GRP78 (a chaperone) and CHOP (ER stress associated pro-apoptotic transcription factor) under stressed condition. Also, our investigation in the inhibitory specificity of kaempferol has revealed that it inhibits cell death induced by diverse stimuli. Further study on exploring the molecular mechanism implied that kaempferol renders protection by targeting caspases. Both the in silico docking and in vitro assay using recombinant caspase-3 enzyme confirmed the binding of kaempferol to caspases, through an allosteric mode of competitive inhibition. Altogether, we have demonstrated the ability of kaempferol to alleviate ER stress in in vitro model.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Caspase 3/química , Caspase 7/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Quempferóis/farmacologia , Neuroblastoma/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/enzimologia , Células Tumorais Cultivadas
8.
Angew Chem Int Ed Engl ; 56(46): 14443-14447, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28940929

RESUMO

The caspase family of cysteine proteases are highly sought-after drug targets owing to their essential roles in apoptosis, proliferation, and inflammation pathways. High-throughput screening efforts to discover inhibitors have gained little traction. Fragment-based screening has emerged as a powerful approach for the discovery of innovative drug leads. This method has become a central facet of drug discovery campaigns in the pharmaceutical industry and academia. A fragment-based drug discovery campaign against human caspase-7 resulted in the discovery of a novel series of allosteric inhibitors. An X-ray crystal structure of caspase-7 bound to a fragment hit and a thorough kinetic characterization of a zymogenic form of the enzyme were used to investigate the allosteric mechanism of inhibition. This work further advances our understanding of the mechanisms of allosteric control of this class of pharmaceutically relevant enzymes, and provides a new path forward for drug discovery efforts.


Assuntos
Caspase 7/metabolismo , Descoberta de Drogas/métodos , Regulação Alostérica/efeitos dos fármacos , Apoptose , Caspase 7/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Isótopos/química , Cinética , Solventes/química , Ressonância de Plasmônio de Superfície
9.
Biomed Pharmacother ; 92: 1-6, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28525794

RESUMO

Signal transducer and activator of transcription-6 (STAT6) is highly expressed in various human cancers and considered a regulator of multiple biological processes in cancers, including cell apoptosis. Evidence has indicated that STAT6 predicts a worse prognosis in hepatocellular carcinoma (HCC) patients. The objective of this study was to investigate the effects and mechanism of STAT6 in human HCC cells. We found that STAT6 silencing significantly inhibited HepG2 and Hep3B cell survival and proliferation. We observed that depletion of STAT6 increased HepG2 and Hep3B cell apoptosis by using a histone DNA ELISA detection kit. STAT6 silencing induced expression of apoptosis-associated genes Bax and caspase-3/7 and inhibited anti-apoptosis gene Bcl-2 levels. We also observed that STAT6 silencing downregulated the expression of receptor activator of NF-κB ligand (RANKL). Our results demonstrated that treatment with pcDNA3.1-RANKL abolished STAT6 depletion-induced HepG2 and Hep3B cell apoptosis and growth inhibition. Based on these findings, we believe that RANKL plays a major role in STAT6-induced HCC cell apoptosis.


Assuntos
Apoptose , Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Ligante RANK/metabolismo , Fator de Transcrição STAT6/metabolismo , Caspase 3/química , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Células Hep G2 , Humanos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ligante RANK/antagonistas & inibidores , Ligante RANK/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/genética , Proteína X Associada a bcl-2/agonistas , Proteína X Associada a bcl-2/metabolismo
10.
J Biol Chem ; 292(12): 4885-4897, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28154009

RESUMO

Caspases are cysteine aspartate proteases that are major players in key cellular processes, including apoptosis and inflammation. Specifically, caspase-6 has also been implicated in playing a unique and critical role in neurodegeneration; however, structural similarities between caspase-6 and other caspase active sites have hampered precise targeting of caspase-6. All caspases can exist in a canonical conformation, in which the substrate binds atop a ß-strand platform in the 130's region. This caspase-6 region can also adopt a helical conformation that has not been seen in any other caspases. Understanding the dynamics and interconversion between the helical and strand conformations in caspase-6 is critical to fully assess its unique function and regulation. Here, hydrogen/deuterium exchange mass spectrometry indicated that caspase-6 is inherently and dramatically more conformationally dynamic than closely related caspase-7. In contrast to caspase-7, which rests constitutively in the strand conformation before and after substrate binding, the hydrogen/deuterium exchange data in the L2' and 130's regions suggested that before substrate binding, caspase-6 exists in a dynamic equilibrium between the helix and strand conformations. Caspase-6 transitions exclusively to the canonical strand conformation only upon substrate binding. Glu-135, which showed noticeably different calculated pK a values in the helix and strand conformations, appears to play a key role in the interconversion between the helix and strand conformations. Because caspase-6 has roles in several neurodegenerative diseases, exploiting the unique structural features and conformational changes identified here may provide new avenues for regulating specific caspase-6 functions for therapeutic purposes.


Assuntos
Caspase 6/metabolismo , Caspase 6/química , Caspase 7/química , Caspase 7/metabolismo , Estabilidade Enzimática , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Prótons
11.
Structure ; 25(1): 27-39, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27889207

RESUMO

Caspases, the cysteine proteases that execute apoptosis, are tightly regulated via phosphorylation by a series of kinases. Although all apoptotic caspases work in concert to promote apoptosis, different kinases regulate individual caspases. Several sites of caspase-7 phosphorylation have been reported, but without knowing the molecular details, it has been impossible to exploit or control these complex interactions, which normally prevent unwanted proliferation. During dysregulation, PAK2 kinase plays an alternative anti-apoptotic role, phosphorylating caspase-7 and promoting unfettered cell growth and chemotherapeutic resistance. PAK2 phosphorylates caspase-7 at two sites, inhibiting activity using two different molecular mechanisms, before and during apoptosis. Phosphorylation of caspase-7 S30 allosterically obstructs its interaction with caspase-9, preventing intersubunit linker processing, slowing or preventing caspase-7 activation. S239 phosphorylation renders active caspase-7 incapable of binding substrate, blocking later events in apoptosis. Each of these mechanisms is novel, representing new opportunities for synergistic control of caspases and their counterpart kinases.


Assuntos
Caspase 7/química , Caspase 7/metabolismo , Neoplasias/metabolismo , Serina/metabolismo , Quinases Ativadas por p21/metabolismo , Apoptose , Sítios de Ligação , Caspase 9/metabolismo , Proliferação de Células , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Humanos , Células MCF-7 , Modelos Moleculares , Fosforilação
12.
Nutr Cancer ; 68(7): 1210-24, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27618154

RESUMO

ABSTACT Artemisia nilagirica (Clarke) is a widely used medicinal herb in Indian traditional system of medicine. Therefore, the present study was designed to evaluate the effects of A. nilagirica extracts/fractions on inhibition of proliferation and apoptosis in a human monocytic leukemia (THP-1) cell line. The crude extracts (A. nilagirica ethyl acetate extract [ANE] and A. nilagirica methanolic extract [ANA]) showed cytotoxic activity toward THP-1 cells with the IC50 values of 38.21 ± 7.37 and 132.41 ± 7.19 µg/ml, respectively. However, the cytotoxic activity of active fractions (ANE-B and ANM-9) obtained after column chromatography was found to be much more pronounced than their parent extracts. The IC50 values of ANE-B and ANM-9 were found to be 27.04 ± 2.54 µg/ml and 12.70 ± 4.79 µg/ml, respectively, suggesting greater susceptibility of the malignant cells. Cell cycle analysis and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL) assay revealed that inhibition of cell growth by A. nilagirica fractions on THP-1 cells was mediated by apoptosis. Active fractions of A. nilagirica increased the expression levels of caspase-3, -7, and poly-ADP-ribose polymerase (PARP), a critical member of the apoptotic pathway. These results suggested that active fractions of A. nilagirica may play a promising role in growth suppression by inducing apoptosis in human monocytic leukemic cells via mitochondria-dependent and death receptor-dependent apoptotic pathways.


Assuntos
Anticarcinógenos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Artemisia/química , Leucemia Monocítica Aguda/tratamento farmacológico , Macrófagos Peritoneais/efeitos dos fármacos , Animais , Anticarcinógenos/efeitos adversos , Anticarcinógenos/química , Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bioensaio , Caspase 3/química , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/genética , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Índia , Concentração Inibidora 50 , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Macrófagos Peritoneais/citologia , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Células THP-1
13.
Biochem Pharmacol ; 118: 9-17, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27544320

RESUMO

The lack of effective chemotherapies in hepatocellular carcinoma (HCC) is still an unsolved problem and underlines the need for new strategies in liver cancer treatment. In this study, we present a novel approach to improve the efficacy of Sorafenib, today's only routinely used chemotherapeutic drug for HCC, in combination with triterpenoid oleanolic acid (OA). Our data show that cotreatment with subtoxic concentrations of Sorafenib and OA leads to highly synergistic induction of cell death. Importantly, Sorafenib/OA cotreatment triggers cell damage in a sustained manner and suppresses long-term clonogenic survival. Sorafenib/OA cotreatment induces DNA fragmentation and caspase-3/7 cleavage and the addition of the pan-caspase inhibitor zVAD.fmk shows the requirement of caspase activation for Sorafenib/OA-triggered cell death. Furthermore, Sorafenib/OA co-treatment stimulates a significant increase in reactive oxygen species (ROS) levels. Most importantly, the accumulation of intracellular ROS is required for cell death induction, since the addition of ROS scavengers (i.e. α-tocopherol, MnTBAP) that prevent the increase of intracellular ROS levels completely rescues cells from Sorafenib/OA-triggered cell death. In conclusion, OA represents a novel approach to increase the sensitivity of HCC cells to Sorafenib via oxidative stress.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Ácido Oleanólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores/metabolismo , Carcinoma Hepatocelular/metabolismo , Caspase 3/química , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/metabolismo , Inibidores de Caspase/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Humanos , Neoplasias Hepáticas/metabolismo , Niacinamida/efeitos adversos , Niacinamida/antagonistas & inibidores , Niacinamida/farmacologia , Ácido Oleanólico/efeitos adversos , Ácido Oleanólico/antagonistas & inibidores , Compostos de Fenilureia/efeitos adversos , Compostos de Fenilureia/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe
14.
Sci Rep ; 5: 15132, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26459935

RESUMO

The biological effects of microRNAs (miRNAs) and TNF-α in atherosclerosis have been widely studied. The circulating miR-17-92 cluster has been recently shown to be significantly downregulated in patients with injured vascular endothelium. However, it remains unclear whether the miR-17-92 cluster plays a significant role in vascular endothelial repair. The aim of this study was to investigate the relationship between the miR-17-92 cluster and TNF-α-induced endothelial cell apoptosis. We determined that the down-regulation of miR-19b level among patients with coronary artery disease was consistent with miRNA expression changes in endothelial cells following 24 h of TNF-α treatment. In vitro, the overexpression of miR-19b significantly alleviated the endothelial cells apoptosis, whereas the inhibition of miR-19b significantly enhanced apoptosis. The increased levels of Afap1 and caspase7 observed in our apoptosis model could be reduced by miR-19b, and this effect could be due to miR-19b binding 3'-UTRs of Afap1 and caspase7 mRNA. Therefore our results indicate that miR-19b plays a key role in the attenuation of TNF-α-induced endothelial cell apoptosis and that this function is closely linked to the Apaf1/caspase-dependent pathway.


Assuntos
Apoptose/genética , Doença da Artéria Coronariana/genética , Células Endoteliais/metabolismo , MicroRNAs/genética , Apoptose/efeitos dos fármacos , Fator Apoptótico 1 Ativador de Proteases/química , Fator Apoptótico 1 Ativador de Proteases/genética , Sítios de Ligação , Caspase 7/química , Caspase 7/genética , Doença da Artéria Coronariana/metabolismo , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , MicroRNAs/sangue , MicroRNAs/química , Família Multigênica , PTEN Fosfo-Hidrolase/genética , Interferência de RNA , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
15.
Future Med Chem ; 7(9): 1173-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132525

RESUMO

Caspases-3 and -7 play an essential role in apoptosis. Isatin sulfonamides have been identified as potent inhibitors of these executing caspases. Besides pharmacological application, these compounds can also serve as recognition units to target caspases using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) when labeled with a positron or a gamma emitter. Fluorinated, alkylated, arylated isatin derivatives, in addition to derivatives modified with heterocycles, have been prepared in order to improve their binding potency, selectivity and metabolic stability. Structural optimization has led to stable, highly active inhibitors, which after labeling have been applied in PET studies in tumor mouse models and for first preclinical and clinical investigations with healthy human volunteers. The results support further development of such radiotracers for clinical apoptosis imaging.


Assuntos
Caspase 3/química , Caspase 7/química , Inibidores de Caspase/química , Isatina/análogos & derivados , Sulfanilamidas/química , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Inibidores de Caspase/metabolismo , Inibidores de Caspase/farmacologia , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Tomografia por Emissão de Pósitrons , Ligação Proteica , Radiografia , Relação Estrutura-Atividade , Sulfanilamida , Sulfanilamidas/metabolismo , Sulfanilamidas/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único
16.
Cell Prolif ; 47(6): 564-77, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25345555

RESUMO

OBJECTIVES: Anti-cancer effects of melatonin (N-acetyl-5-methoxytryptamine, an indole-amine), have been widely reported, however, little has been known, regarding its mechanism(s) of action in lung cancer. Thus, we investigated its induction of apoptosis through biomolecular changes (lipid, protein and nucleic acid/DNA) in the SK-LU-1 human lung cancer cell line. MATERIALS AND METHODS: We used Fourier transform infrared (FTIR) microspectroscopy, and conventional methods, to confirm changes in lipid (annexin V/PI staining for membrane alteration), protein (caspase-3/7 protein activity) and DNA (DAPI staining for DNA fragmentation). RESULTS: We observed from FTIR data that melatonin increased lipid content and reduced intensity of nucleic acid/DNA, confirmed by annexin V/PI and DAPI respectively. Secondary protein structure at 1656 cm(-1) (α-helix) was reduced and peak position of ß-sheet structure (1637 cm(-1) ) was shifted to lower frequency. Alteration in apoptotic proteins was demonstrated via caspase-3/7 activity induction. CONCLUSIONS: High melatonin concentration exerted anti-cancer effects by changing biomolecular structure of lipids, nucleic acids and proteins, supporting its enhancement of apoptotic induction.


Assuntos
Apoptose/efeitos dos fármacos , Melatonina/toxicidade , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Caspase 3/química , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Lipídeos de Membrana/química , Análise de Componente Principal , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Curr Protoc Chem Biol ; 6(3): 169-189, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25205565

RESUMO

The great complexity of many human pathologies, such as cancer, diabetes, and neurodegenerative diseases, requires new tools for studies of biological processes on the whole organism level. The discovery of novel biocompatible reactions has tremendously advanced our understanding of basic biology; however, no efficient tools exist for real-time non-invasive imaging of many human proteases that play very important roles in multiple human disorders. We recently reported that the "split luciferin" biocompatible reaction represents a valuable tool for evaluation of protease activity directly in living animals using bioluminescence imaging (BLI). Since BLI is the most sensitive in vivo imaging modality known to date, this method can be widely applied for the evaluation of the activity of multiple proteases, as well as identification of their new peptide-specific substrates. In this unit, we describe several applications of this "split luciferin" reaction for quantification of protease activities in test tube assays and living animals.


Assuntos
Benzotiazóis/química , Corantes Fluorescentes/química , Imagem Molecular/métodos , Peptídeo Hidrolases/química , Animais , Animais Geneticamente Modificados , Caspase 3/química , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/metabolismo , Modelos Animais de Doenças , Luminescência , Camundongos , Peptídeo Hidrolases/metabolismo , Trombina/química , Trombina/metabolismo
18.
Reproduction ; 148(2): 221-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850868

RESUMO

AKT, also referred to as protein kinase B (PKB or RAC), plays a critical role in controlling cell survival and apoptosis. To gain insights into the mechanisms regulating sperm survival after ejaculation, the role of AKT was investigated in stallion spermatozoa using a specific inhibitor and a phosphoflow approach. Stallion spermatozoa were washed and incubated in Biggers-Whitten-Whittingham medium, supplemented with 1% polyvinyl alcohol (PVA) in the presence of 0 (vehicle), 10, 20 or 30 µM SH5, an AKT inhibitor. SH5 treatment reduced the percentage of sperm displaying AKT phosphorylation, with inhibition reaching a maximum after 1 h of incubation. This decrease in phosphorylation was attributable to either dephosphorylation or suppression of the active phosphorylation pathway. Stallion spermatozoa spontaneously dephosphorylated during in vitro incubation, resulting in a lack of a difference in AKT phosphorylation between the SH5-treated sperm and the control after 4 h of incubation. AKT inhibition decreased the proportion of motile spermatozoa (total and progressive) and the sperm velocity. Similarly, AKT inhibition reduced membrane integrity, leading to increased membrane permeability and reduced the mitochondrial membrane potential concomitantly with activation of caspases 3 and 7. However, the percentage of spermatozoa exhibiting oxidative stress, the production of mitochondrial superoxide radicals, DNA oxidation and DNA fragmentation were not affected by AKT inhibition. It is concluded that AKT maintains the membrane integrity of ejaculated stallion spermatozoa, presumably by inhibiting caspases 3 and 7, which prevents the progression of spermatozoa to an incomplete form of apoptosis.


Assuntos
Caspase 3/química , Caspase 7/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides/citologia , Animais , Apoptose , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Cavalos , Técnicas Imunoenzimáticas , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Análise do Sêmen , Espermatozoides/metabolismo
19.
Biochem J ; 461(2): 279-90, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24779913

RESUMO

Caspases play important roles during apoptosis, inflammation and proliferation. The high homology among family members makes selective targeting of individual caspases difficult, which is necessary to precisely define the role of these enzymes. We have selected caspase-7-specific binders from a library of DARPins (designed ankyrin repeat proteins). The DARPins D7.18 and D7.43 bind specifically to procaspase 7 and active caspase 7, but not to other members of the family. Binding of the DARPins does not affect the active enzyme, but interferes with its activation by other caspases. The crystal structure of the caspase 7-D7.18 complex elucidates the high selectivity and the mode of inhibition. Combining these caspase-7-specific DARPins with the previously reported caspase-3-inhibitory DARPin D3.4S76R reduces the activity of caspase 3 and 7 in double-transfected HeLa cells during apoptosis. In addition, these cells showed less susceptibility to TRAIL (tumour-necrosis-factor-related apoptosis-inducing ligand)-induced apoptosis in living cell experiments. D7.18 and D7.43 are therefore novel tools for in vitro studies on procaspase 7 activation as well as for clarifying the role of its activation in different cellular processes. If applied in combination with D3.4S76R, they represent an excellent instrument to increase our understanding of these enzymes during various cellular processes.


Assuntos
Caspase 3/metabolismo , Caspase 7/metabolismo , Inibidores de Caspase/farmacologia , Proteínas Nucleares/farmacologia , Repetição de Anquirina , Apoptose/efeitos dos fármacos , Caspase 3/química , Caspase 7/química , Inibidores de Caspase/química , Células HeLa , Humanos , Modelos Moleculares , Imagem Molecular , Proteínas Nucleares/química , Biblioteca de Peptídeos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
20.
Int J Mol Sci ; 15(2): 2722-37, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24549175

RESUMO

We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0-60 µmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Quempferóis/toxicidade , Clorometilcetonas de Aminoácidos/farmacologia , Caspase 3/química , Caspase 3/metabolismo , Caspase 7/química , Caspase 7/metabolismo , Caspase 8/química , Caspase 8/metabolismo , Caspase 9/química , Caspase 9/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Células HT29 , Humanos , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA