Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(5): 101249, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592312

RESUMO

Caspases are a family of cysteinyl proteases that control programmed cell death and maintain homeostasis in multicellular organisms. The caspase family is an excellent model to study protein evolution because all caspases are produced as zymogens (procaspases [PCPs]) that must be activated to gain full activity; the protein structures are conserved through hundreds of millions of years of evolution; and some allosteric features arose with the early ancestor, whereas others are more recent evolutionary events. The apoptotic caspases evolved from a common ancestor (CA) into two distinct subfamilies: monomers (initiator caspases) or dimers (effector caspases). Differences in activation mechanisms of the two subfamilies, and their oligomeric forms, play a central role in the regulation of apoptosis. Here, we examine changes in the folding landscape by characterizing human effector caspases and their CA. The results show that the effector caspases unfold by a minimum three-state equilibrium model at pH 7.5, where the native dimer is in equilibrium with a partially folded monomeric (PCP-7, CA) or dimeric (PCP-6) intermediate. In comparison, the unfolding pathway of PCP-3 contains both oligomeric forms of the intermediate. Overall, the data show that the folding landscape was first established with the CA and was retained for >650 million years. Partially folded monomeric or dimeric intermediates in the ancestral ensemble provide mechanisms for evolutionary changes that affect stability of extant caspases. The conserved folding landscape allows for the fine-tuning of enzyme stability in a species-dependent manner while retaining the overall caspase-hemoglobinase fold.


Assuntos
Caspases Efetoras/química , Evolução Molecular , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Caspases Efetoras/genética , Caspases Efetoras/metabolismo , Humanos
2.
Bioorg Chem ; 105: 104352, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080494

RESUMO

PDE5 targeting represents a new and promising strategy for apoptosis induction and inhibition of tumor cell growth due to its over-expression in diverse types of human carcinomas. Accordingly, we report the synthesis of series of pyrazolo[3,4-d]pyrimidin-4-one carrying quinoline moiety (11a-r) with potential dual PDE5 inhibition and apoptotic induction for cancer treatment. These hybrids were structurally elucidated and characterized with variant spectroscopic techniques as 1H NMR, 13C NMR and elemental analysis. The assessment of their anticancer activities has been declared. All the rationalized compounds 11a-r have been selected for their cytotoxic activity screening by NCI against 60 cell lines. Compounds 11a, 11b, 11j and 11k were the most active hybrids. Among all, compound 11j was further selected for five dose tesing and it displayed outstanding activity with strong antitumor activity against the nine tumor subpanels tested with selectivity ratios ranging from 0.019 to 8.3 at the GI50 level. Further, the most active targets 11a, b, j and k were screened for their PDE5 inhibitory activity, compound 11j (with IC50 1.57 nM) exhibited the most potent PDE5 inhibitory activity. Moreover, compound 11j is also showed moderate EGFR inhibition with IC50 of 5.827 ± 0.46 µM, but significantly inhibited the Wnt/ß-catenin pathway with IC501286.96 ± 12.37 ng/mL. In addition, compound 11j induced the intrinsic apoptotic mitochondrial pathway in HepG2 cells as evidenced by the lower expression levels of the anti-apoptotic Bcl-2 protein, and the higher expression of the pro-apoptotic protein Bax, p53, cytochrome c and the up-regulated active caspase-9 and caspase-3 levels. All results confirmed by western blotting assay. Compound 11j exhibit pre G1 apoptosis and cell cycle arrest at G2/M phase. In conclusion, hybridization of quinoline moiety with the privileged pyrazolo[3,4-d]pyrimidinon-4-one structure resulted in highly potent anticancer agent, 11j, which deserves more study, in particular, in vivo and clinical investiagtions, and it is expected that these results would be applied for more drug discovery process.


Assuntos
Antineoplásicos/síntese química , Inibidores da Fosfodiesterase 5/síntese química , Quinolinas/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases Efetoras/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromos c/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolinas/farmacologia , Proteína X Associada a bcl-2/metabolismo
3.
Arch Toxicol ; 94(6): 2113-2130, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32185414

RESUMO

Doxorubicin is a widely used anticancer drug that causes dose-related cardiotoxicity. The exact mechanisms of doxorubicin toxicity are still unclear, partly because most in vitro studies have evaluated the effects of short-term high-dose doxorubicin treatments. Here, we developed an in vitro model of long-term low-dose administration of doxorubicin utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Moreover, given that current strategies for prevention and management of doxorubicin-induced cardiotoxicity fail to prevent cancer patients developing heart failure, we also investigated whether the GATA4-targeted compound 3i-1000 has cardioprotective potential against doxorubicin toxicity both in vitro and in vivo. The final doxorubicin concentration used in the chronic toxicity model in vitro was chosen based on cell viability data evaluation. Exposure to doxorubicin at the concentrations of 1-3 µM markedly reduced (60%) hiPSC-CM viability already within 48 h, while a 14-day treatment with 100 nM doxorubicin concentration induced only a modest 26% reduction in hiPCS-CM viability. Doxorubicin treatment also decreased DNA content in hiPSC-CMs. Interestingly, the compound 3i-1000 attenuated doxorubicin-induced increase in pro-B-type natriuretic peptide (proBNP) expression and caspase-3/7 activation in hiPSC-CMs. Moreover, treatment with 3i-1000 for 2 weeks (30 mg/kg/day, i.p.) inhibited doxorubicin cardiotoxicity by restoring left ventricular ejection fraction and fractional shortening in chronic in vivo rat model. In conclusion, the results demonstrate that long-term exposure of hiPSC-CMs can be utilized as an in vitro model of delayed doxorubicin-induced toxicity and provide in vitro and in vivo evidence that targeting GATA4 may be an effective strategy to counteract doxorubicin-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Fator de Transcrição GATA4/metabolismo , Cardiopatias/prevenção & controle , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Cardiotoxicidade , Caspases Efetoras/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/metabolismo , Precursores de Proteínas/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais , Volume Sistólico/efeitos dos fármacos , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
4.
Bioorg Chem ; 92: 103189, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31473473

RESUMO

Angiogenesis is a hallmark in cancer. Most antiangiogenic agents block the action of vascular endothelial growth factor (VEGF). In clinic, patients develop hypoxia-mediated resistance consistent with vascular responses to these agents. Recent studies underlying such resistance revealed hypoxia-inducible PIM-1 kinase upregulation which promotes cancer progression. PIM-1 kinase expression is thus viewed as a new resistance mechanism to antiangiogenic agents. Hence, combining PIM kinase inhibitors with anti-VEGF therapies provides synergistic antitumor response. Inspired by these facts, the current study aims at designing novel dual VEGFR-2/PIM-1 kinase inhibitors via molecular hybridization and repositioning of their pharmacophoric features. Moreover, enhancing the cytotoxic potential of the designed compounds was considered via incorporating moieties mimicking caspase 3/7 activators. Accordingly, series of novel pyridine and thieno[2,3-b]pyridine derivatives were synthesized and screened via MTT assay for cytotoxic activities against normal fibroblasts and four cancer cell lines (HepG-2, Caco-2, MCF-7 and PC-3). Compounds 3a, 9e, 10b and 10c exhibited anticancer activities at nanomolar IC50 with promising safety, activated caspase 3/7 and induced apoptosis as well as DNA fragmentation more than doxorubicin in the four cancer cell lines. Furthermore, they exerted promising dual VEGFR-2/PIM-1 kinase inhibition and significantly exhibited higher therapeutic potential to alter the expression levels of VEGF, p53 and cyclin D than doxorubicin. Interestingly, the most active anticancer compound 10b conferred the highest dual VEGFR-2/PIM-1 kinase inhibition. Finally, their in silico ligand efficiency metrics were acceptable.


Assuntos
Inibidores da Angiogênese/síntese química , Antineoplásicos/síntese química , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Piridinas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases Efetoras/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
5.
Exp Cell Res ; 381(2): 223-234, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31102594

RESUMO

We previously reported that the Bcl-2 family member human Bcl-rambo, also known as BCL2L13, induces apoptosis in human embryonic kidney 293T cells. Mouse Bcl-rambo has recently been reported to mediate mitochondrial fragmentation and mitophagy. In the present study, we showed that the transfection of human Bcl-rambo and its microtubule-associated protein light chain 3-interacting region motif mutant (W276A/I279A) caused mitochondrial fragmentation and the perinuclear accumulation of fragmented mitochondria in human lung adenocarcinoma A549 cells. In comprehensive screening using the Drosophila model in which human Bcl-rambo was ectopically expressed in eye imaginal discs, voltage-dependent anion channels (VDAC), also known as mitochondrial porin, were found to manifest a genetic interaction with human Bcl-rambo. In addition to human adenine nucleotide translocase (ANT) 1 and ANT2, the human Bcl-rambo protein bound to human VDAC1, albeit to a lesser extent than ANT2. Moreover, human VDAC1 and human VDAC2 in particular promoted the activation of effector caspases only when they were co-expressed with human Bcl-rambo in 293T cells. Bcl-rambo induced the perinuclear accumulation of fragmented mitochondria by the knockdown of VDAC1, VDAC2, and VDAC3 in A549 cells. Thus, the present study revealed that human Bcl-rambo and VDAC cooperatively promote the activation of effector caspases in human cultured cells.


Assuntos
Caspases Efetoras/metabolismo , Drosophila/genética , Epistasia Genética/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Canais de Ânion Dependentes de Voltagem/genética , Células A549 , Animais , Animais Geneticamente Modificados , Células Cultivadas , Ativação Enzimática/genética , Células HEK293 , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/genética
6.
J Innate Immun ; 10(2): 131-144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29306950

RESUMO

BACKGROUND: Oncolytic vesicular stomatitis virus (VSV) can be delivered intravenously to target primary and metastatic lesions, but the interaction between human peripheral blood leukocytes (PBLs) and VSV remains poorly understood. Our study aimed to assess the overall immunological consequences of ex vivo infection of PBLs with VSV. METHODS: Phenotypic analysis of lymphocyte subsets and apoptosis were evaluated with flow cytometry. Caspase 3/7 activity was detected by luminescence assay. Virus release was evaluated in a murine cell line (L929). Gene expression and cytokine/chemokine secretion were assessed by real-time PCR and multiplex assay, respectively. RESULTS: Ex vivo infection of PBLs with VSV elicited upregulated expression of RIG-I, MDA-5, tetherin, IFITM3, and MxA. VSV infection triggered rapid differentiation of blood monocytes into immature dendritic cells as well as their apoptosis, which depended on caspase 3/7 activation. Monocyte differentiation required infectious VSV, but loss of CD14+ cells was also associated with the presence of a cytokine/chemokine milieu produced in response to VSV infection. CONCLUSIONS: Systemic delivery is a major goal in the field of oncolytic viruses. Our results shed further light on immune mechanisms in response to VSV infection and the underlying VSV-PBL interactions bringing hope for improved cancer immunotherapies, particularly those based on intravenous delivery of oncolytic VSV.


Assuntos
Leucócitos Mononucleares/virologia , Vírus Oncolíticos/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Animais , Apoptose , Caspases Efetoras/metabolismo , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas , Fibroblastos/virologia , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Replicação Viral
7.
Blood ; 125(7): 1126-36, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25538042

RESUMO

Intrinsic and extrinsic apoptotic pathways converge to activate common downstream executioner caspases (caspase-3, -6, and -7), resulting in cell death. In chronic lymphocytic leukemia (CLL), neoplastic B cells evade apoptosis owing to the overexpression of survival proteins. We hypothesized that direct activation of procaspases could bypass the apoptosis resistance induced by the upstream prosurvival proteins. The procaspase-activating compounds (PAC-1), including B-PAC-1 (L14R8), convert inactive executioner procaspases to their active cleaved forms by chelation of labile zinc ions. Both at transcript and protein levels, primary CLL cells express high levels of latent procaspases (3, -7, and -9). B-PAC-1 treatment induced CLL lymphocyte death which was higher than that in normal peripheral blood mononuclear cells or B cells, and was independent of prognostic markers and microenvironmental factors. Mechanistically, B-PAC-1 treatment activated executioner procaspases and not other Zn-dependent enzymes. Exogenous zinc completely, and pancaspase inhibitors partially, reversed B-PAC-1-induced apoptosis, elucidating the zinc-mediated mechanism of action. The cell demise relied on the presence of caspase-3/7 but not caspase-8 or Bax/Bak proteins. B-PAC-1 in combination with an inhibitor of apoptosis protein antagonist (Smac066) synergistically induced apoptosis in CLL samples. Our investigations demonstrated that direct activation of executioner procaspases via B-PAC-1 treatment bypasses apoptosis resistance and is a novel approach for CLL therapeutics.


Assuntos
Caspases Efetoras/genética , Caspases Efetoras/metabolismo , Hidrazonas/farmacologia , Leucemia Linfocítica Crônica de Células B/enzimologia , Piperazinas/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Humanos , Células Jurkat , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Camundongos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Zinco/farmacologia
8.
Cancer Chemother Pharmacol ; 74(4): 787-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107568

RESUMO

PURPOSE: PS121912 has been developed as selective vitamin D receptor (VDR)-coregulator inhibitor starting from a high throughput screening campaign to identify new agents that modulate VDR without causing hypercalcemia. Initial antiproliferative effects of PS121912 were observed that are characterized herein to enable future in vivo investigation with this molecule. METHODS: Antiproliferation and apoptosis were determined using four different cancer cell lines (DU145, Caco2, HL-60 and SKOV3) in the presence of PS121912, 1,25-(OH)2D3, or a combination of 1,25-(OH)2D3 and PS121912. VDR si-RNA was used to identify the role of VDR during this process. The application of ChIP enabled us to determine the involvement of coregulator recruitment during transcription, which was investigated by RT-PCR with VDR target genes and those affiliated with cell cycle progression. Translational changes of apoptotic proteins were determined with an antibody array. The preclinical characterization of PS121912 includes the determination of metabolic stability and CYP3A4 inhibition. RESULTS: PS121912 induced apoptosis in all four cancer cells, with HL-60 cells being the most sensitive. At sub-micromolar concentrations, PS121912 amplified the growth inhibition of cancer cells caused by 1,25-(OH)2D3 without being antiproliferative by itself. A knockout study with VDR si-RNA confirmed the mediating role of VDR. VDR target genes induced by 1,25-(OH)2D3 were down-regulated with the co-treatment of PS121912. This process was highly dependent on the recruitment of coregulators that in case of CYP24A1 was SRC2. The combination of PS121912 and 1,25-(OH)2D3 reduced the presence of SRC2 and enriched the occupancy of corepressor NCoR at the promoter site. E2F transcription factors 1 and 4 were down-regulated in the presence of PS121912 and 1,25-(OH)2D3 that in turn reduced the transcription levels of cyclin A and D, thus arresting HL-60 cells in the S or G2/M phase. In addition, proteins with hematopoietic functions such as cyclin-dependent kinase 6, histone deacetylase 9 and transforming growth factor beta 2 and 3 were down-regulated as well. Elevated levels of P21 and GADD45, in concert with cyclin D1, also mediated the antiproliferative response of HL-60 in the presence of 1,25-(OH)2D3 and PS121912. Studies at higher concentration of P121912 identified a VDR-independent pathway of antiproliferation that included the enzymatic and transcriptional activation of caspase 3/7. CONCLUSION: Overall, we conclude that PS121912 behaves like a VDR antagonist at low concentrations but interacts with more targets at higher concentrations leading to apoptosis mediated by caspase 3/7 activation. In addition, PS121912 showed an acceptable metabolic stability to enable in vivo cancer studies.


Assuntos
Antimetabólitos Antineoplásicos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores de Calcitriol , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Células CACO-2 , Caspases Efetoras/metabolismo , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Células HL-60 , Humanos , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Ativação Transcricional/efeitos dos fármacos , Células Tumorais Cultivadas
9.
J Cell Biol ; 205(4): 477-92, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24862573

RESUMO

Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo.


Assuntos
Autofagia/fisiologia , Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autofagia/efeitos dos fármacos , Caspases/genética , Caspases Efetoras/genética , Caspases Efetoras/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Translocases Mitocondriais de ADP e ATP/genética , Oligomicinas/farmacologia , Oogênese/fisiologia , Ovário/citologia , Ovário/fisiologia , Inanição/metabolismo
10.
Metabolism ; 63(2): 283-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24286856

RESUMO

OBJECTIVE: Hepatic lipotoxicity is characterized by reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and excessive apoptosis, but the precise sequence of biochemical events leading to oxidative damage and cell death remains unclear. The goal of this study was to delineate the role of mitochondrial metabolism in mediating hepatocyte lipotoxicity. MATERIALS/METHODS: We treated H4IIEC3 rat hepatoma cells with free fatty acids in combination with antioxidants and mitochondrial inhibitors designed to block key events in the progression toward apoptosis. We then applied (13)C metabolic flux analysis (MFA) to quantify mitochondrial pathway alterations associated with these treatments. RESULTS: Treatment with palmitate alone led to a doubling in oxygen uptake rate and in most mitochondrial fluxes. Supplementing culture media with the antioxidant N-acetyl-cysteine (NAC) reduced ROS accumulation and caspase activation and partially restored cell viability. However, (13)C MFA revealed that treatment with NAC did not normalize palmitate-induced metabolic alterations, indicating that neither elevated ROS nor downstream apoptotic events contributed to mitochondrial activation. To directly limit mitochondrial metabolism, the complex I inhibitor phenformin was added to cells treated with palmitate. Phenformin addition eliminated abnormal ROS accumulation, prevented the appearance of apoptotic markers, and normalized mitochondrial carbon flow. Further studies revealed that glutamine provided the primary fuel for elevated mitochondrial metabolism in the presence of palmitate, rather than fatty acid beta-oxidation, and that glutamine consumption could be reduced through co-treatment with phenformin but not NAC. CONCLUSION: Our results indicate that ROS accumulation in palmitate-treated H4IIEC3 cells occurs downstream of altered mitochondrial oxidative metabolism, which is independent of beta-oxidation and precedes apoptosis initiation.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Apoptose , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Palmitatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Isótopos de Carbono , Caspases Efetoras/efeitos dos fármacos , Caspases Efetoras/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Análise do Fluxo Metabólico/métodos , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/metabolismo , Ratos
11.
Anticancer Drugs ; 25(1): 44-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24045365

RESUMO

Glioblastoma multiforme is the most lethal and aggressive astrocytoma among primary brain tumors in adults. However, most glioblastoma cells have been reported to be resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Here, we have shown that digitoxin (DT), a clinically approved cardiac glycoside for heart failure, can induce TRAIL-mediated apoptosis of glioblastoma cells. DT in noncytotoxic doses (20 nmol/l) can increase TRAIL-induced apoptosis in TRAIL-resistant U87MG glioblastoma cells. Treatment with DT led to apoptosis and a robust reduction in the levels of the antiapoptotic protein survivin by inducing its proteasomal degradation; however, it did not affect the levels of many other apoptosis regulators. Moreover, silencing survivin with small interfering RNAs sensitized glioma cells to TRAIL-induced apoptosis, underscoring the functional role of survivin depletion in the TRAIL-sensitizing actions of DT. We demonstrate that inactivation of survivin and death receptor 5 expression by DT is sufficient to restore TRAIL sensitivity in resistant glioma cells. Our results suggest that combining DT with TRAIL treatments may be useful in the treatment of TRAIL-resistant glioma cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Digitoxina/uso terapêutico , Glioblastoma/tratamento farmacológico , Proteínas Inibidoras de Apoptose/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Caspases Efetoras/metabolismo , Caspases Iniciadoras/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Humanos , Proteínas Inibidoras de Apoptose/genética , RNA Interferente Pequeno/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Survivina , Regulação para Cima
12.
RNA Biol ; 10(11): 1700-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24157646

RESUMO

microRNAs (miRNAs) are small RNAs endogenously expressed in multiple organisms that regulate gene expression largely by decreasing levels of target messenger RNAs (mRNAs). Over the past few years, numerous studies have demonstrated critical roles for miRNAs in the pathogenesis of many cancers, including lung cancer. Cellular miRNA levels can be easily manipulated, showing the promise of developing miRNA-targeted oligos as next-generation therapeutic agents. In a comprehensive effort to identify novel miRNA-based therapeutic agents for lung cancer treatment, we combined a high-throughput screening platform with a library of chemically synthesized miRNA inhibitors to systematically identify miRNA inhibitors that reduce lung cancer cell survival and those that sensitize cells to paclitaxel. By screening three lung cancer cell lines with different genetic backgrounds, we identified miRNA inhibitors that potentially have a universal cytotoxic effect on lung cancer cells and miRNA inhibitors that sensitize cells to paclitaxel treatment, suggesting the potential of developing these miRNA inhibitors as therapeutic agents for lung cancer. We then focused on characterizing the inhibitors of three miRNAs (miR-133a/b, miR-361-3p, and miR-346) that have the most potent effect on cell survival. We demonstrated that two of the miRNA inhibitors (miR-133a/b and miR-361-3p) decrease cell survival by activating caspase-3/7-dependent apoptotic pathways and inducing cell cycle arrest in S phase. Future studies are certainly needed to define the mechanisms by which the identified miRNA inhibitors regulate cell survival and drug response, and to explore the potential of translating the current findings into clinical applications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Pulmonares/genética , MicroRNAs/antagonistas & inibidores , Paclitaxel/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Caspases Efetoras/genética , Caspases Efetoras/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
13.
Biochim Biophys Acta ; 1833(10): 2279-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23747563

RESUMO

Apoptosis signaling crucially depends on caspase activities. Caspase-2 shares features of both initiator and effector caspases. Opinions are divided on whether caspase-2 activity is established during apoptosis initiation or execution in response to DNA damage, death receptor stimulation, or heat shock. So far, approaches towards measuring caspase-2 activity were restricted to analyses in cell homogenates and extracts, yielded inconsistent results, and were often limited in sensitivity, thereby contributing to controversies surrounding the role of caspase-2 during apoptosis. Furthermore, caspases overlap in substrate specificities, and caspase-8 as well as effector caspases may cleave the optimal VDVAD recognition motif as well. We therefore generated a highly sensitive Förster resonance energy transfer (FRET) substrate to determine the relative contribution of these caspases to VDVADase activity non-invasively inside living cells. We observed limited proteolysis of the substrate during apoptosis initiation in response to death receptor stimulation by FasL, TNFα and TRAIL. However, this activity was attributable to caspase-8 rather than caspase-2. Likewise, no caspase-2-specific activity was detected during apoptosis initiation in response to genotoxic stress (cisplatin, 5-FU), microtubule destabilization (vincristine), or heat shock. The contribution of caspase-2 to proteolytic activities during apoptosis execution was insignificant. Since even residual, ectopically introduced caspase-2 activity could readily be detected inside living cells in our measurements, we conclude, in contrast to several previous studies, that caspase-2 activity does not contribute to apoptosis in the scenarios investigated, and that instead caspase-8 and effector caspases are the most significant VDVADases during canonical apoptosis signaling.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 2/metabolismo , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Caspases Efetoras/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 2/química , Caspase 8/química , Caspases Efetoras/química , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Temperatura Alta , Humanos , Camundongos , Mitocôndrias/metabolismo , Espectrometria de Fluorescência
14.
Artigo em Inglês | MEDLINE | ID: mdl-23983323

RESUMO

Sutherlandia frutescens (SF), a popular traditional medicinal plant found in various parts of southern Africa, is used for treatment or management of HIV/AIDS and other diseases including cancer. However, its toxicity profile has not been fully established. The aims of this study were to examine the effects of 70% ethanol (SFE) and deionised water (SFW) extracts on normal isolated human T cells. An experimental study on normal human lymphocytes treated with doses SF extract doses ranging from 0.25 to 2.5 mg/ml. Untreated, vehicle-treated (Ethanol) and camptothecin (CPT) treated normal T cells were used as controls. Induction of cell death, changes in intracellular ATP, caspase-3/-7 activity and nuclear changes were analysed using flow cytometry, luminometry and nuclear staining (Hoechst) respectively. The highest concentration (2.5 mg/ml) of SFE extract induced significant necrosis (95%), depletion of ATP (76%), and inhibition of caspase-3/-7 activity (11%) following a 24 hour incubation period (p< 0.001). The 2.5 mg/ml concentration of SFW showed the same trend but were less effective (necrosis- 26%, ATP- 91%, & caspase-3/-7- 15%). These effects showed a time-dependence over 48 hours of incubation, with high doses of SFE extracts eliminating viable cells by necrosis, depleting ATP levels and decreasing caspase-3/-7 activity (p< 0.001). The activity of SFE extract was independent of ethanol. The SFW extract dilutions were less toxic than the SFE extracts. Significant DNA fragmentation as demonstrated by Hoechst staining was also seen over 48-hour incubation for high doses of both types of SF extracts. These results showed that although high concentrations of SF extracts can be toxic to normal T cells in vitro, SFW fractions were relatively safe for use.


Assuntos
Trifosfato de Adenosina/metabolismo , Caspases Efetoras/metabolismo , Fragmentação do DNA , Fabaceae/efeitos adversos , Necrose/induzido quimicamente , Extratos Vegetais/efeitos adversos , Linfócitos T/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Fitoterapia , Extratos Vegetais/uso terapêutico
15.
Mamm Genome ; 22(5-6): 306-17, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21499899

RESUMO

p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.


Assuntos
Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Fragmentos de Peptídeos/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Animais , Southern Blotting , Western Blotting , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases Efetoras/metabolismo , Cisplatino , Primers do DNA/genética , Retroalimentação Fisiológica , Fibroblastos , Vetores Genéticos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto/genética , Fragmentos de Peptídeos/genética , Reação em Cadeia da Polimerase
16.
Gut ; 59(8): 1101-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20442202

RESUMO

BACKGROUND AND AIMS: The transcription factor CUX1 is known as a regulator of cell differentiation and cell cycle progression. Previously, CUX1 was identified as a modulator of invasiveness in various cancers. Based on expression profiles suggesting a role for CUX1 in mediating chemoresistance, the aim of this study was to characterise the effect of CUX1 on apoptosis as well as its regulation by signalling pathways modulating drug resistance in pancreatic cancer. METHODS: The effect of CUX1 on TRAIL- (tumour necrosis factor-related apoptosis-inducing ligand) and drug-induced apoptosis was analysed using overexpression and knock-down strategies. Regulation of CUX1 by phosphatidylinositol-3-kinase (PI3K)/Akt signalling was examined at the mRNA and protein level. The effect of CUX1 knock-down by nanoparticle-complexed small interfering RNA (siRNA) in vivo was analysed in a murine xenograft model. Furthermore, CUX1 RNA and protein expression was evaluated in human pancreatic cancer and adjacent normal tissues. RESULTS: Knock-down of CUX1 resulted in significantly enhanced TRAIL- and drug-induced apoptosis, associated with increased PARP (poly ADP-ribose polymerase) cleavage and caspase activity. Vice versa, overexpression of CUX1 inhibited apoptosis. CUX1 expression was induced by activation of Akt/protein kinase B signalling, and decreased by PI3K inhibitors. The antiapoptotic effect of CUX1 was associated with upregulation of BCL2 and downregulation of tumour necrosis factor alpha. CUX1 was significantly overexpressed in pancreatic cancers, as analysed by in situ hybridisation and immunohistochemistry. In vivo, silencing of CUX1 by intratumourally administered polyethylenimine-complexed siRNA led to reduced tumour growth and increased apoptosis in pancreatic cancer xenografts. CONCLUSION: CUX1 was identified as an important mediator of tumour cell survival in pancreatic cancer in vitro and in vivo.


Assuntos
Apoptose/fisiologia , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares/fisiologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Repressoras/fisiologia , Animais , Apoptose/efeitos dos fármacos , Caspases Efetoras/metabolismo , Sobrevivência Celular/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteínas de Neoplasias/fisiologia , Transplante de Neoplasias , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Fatores de Transcrição , Transplante Heterólogo , Células Tumorais Cultivadas
17.
J Surg Res ; 161(1): 18-22, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20031166

RESUMO

BACKGROUND: Lung cancer remains the leading cause of cancer mortality in the United States. Resveratrol is a potent antioxidant found in grapes that inhibits several types of cancer, including lung cancer. Herein, we investigated the effects of pterostilbene, an analog of resveratrol found in blueberries, on lung cancer, in vitro. We hypothesized that pterostilbene would inhibit lung cancer cell growth in vitro by a pro-apoptotic mechanism. METHODS: Two lung cancer cell lines (NCI-H460 and SK-MES-1) were cultured using standard techniques. Cells were treated with increasing doses of pterostilbene (10-100 microM). Cell viability was measured at 24, 48, and 72h using a MTT assay. Apo-ONE Caspase-3/7 assay was used to evaluate caspase activity. T-test and two-way ANOVA were used for statistical analysis. RESULTS: Pterostilbene significantly decreased cell viability in lung cancer cells in a concentration- and time-dependent manner (P<0.001). Concentrations greater than 20 microM of pterostilbene produced significant growth inhibition by 72h (P<0.001). Apoptosis and caspase-3/7 activity were significantly increased by pterostilbene treatment (P<0.05). CONCLUSIONS: Pterostilbene inhibits growth via apoptosis induction in vitro. Further in vitro mechanistic studies and in vivo experiments are warranted to determine the potential role for pterostilbene in lung cancer treatment or prevention.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Estilbenos/uso terapêutico , Carcinoma/enzimologia , Caspases Efetoras/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias Pulmonares/enzimologia , Estilbenos/farmacologia , Regulação para Cima
18.
Nutr Cancer ; 61(6): 816-26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20155622

RESUMO

We have shown that a diet containing freeze-dried black raspberries (BRB) inhibits the development of chemically induced cancer in the rat esophagus. To provide insights into possible mechanisms by which BRB inhibit esophageal carcinogenesis, we evaluated an ethanol (EtOH) extract of BRB, and two component anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside) in BRB, for their effects on growth, apoptosis, and gene expression in rat esophageal epithelial cell lines. The EtOH extract and both anthocyanins selectively caused significant growth inhibition and induction of apoptosis in a highly tumorigenic cell line (RE-149 DHD) but not in a weakly tumorigenic line (RE-149). The uptake of anthocyanins from the EtOH extract into RE-149 DHD cells far exceeded their uptake into RE-149 cells, which may have accounted for the selective effects of the extract on growth and apoptosis of RE-149 DHD cells. The growth inhibitory and proapoptotic effects were enhanced by the daily addition of the EtOH extract and the anthocyanins to the medium. Interestingly, the EtOH extract did not alter cyclooxygenase-2 (COX-2) and nitric oxide synthase (i-NOS) expression in RE-149 DHD cells, whereas both anthocyanins downregulated the expressions of these genes. This differential effect may have been related to the relative amounts of anthocyanins in the extract vs. when they were added individually to the medium. We conclude that the selective effects of the EtOH extract on growth and apoptosis of highly tumorigenic rat esophageal epithelial cells in vitro may be due to preferential uptake and retention of its component anthocyanins, and this may also be responsible for the greater inhibitory effects of freeze-dried whole berries on tumor cells in vivo.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rosaceae/química , Animais , Animais Recém-Nascidos , Antocianinas/análise , Antocianinas/química , Antocianinas/farmacocinética , Antocianinas/farmacologia , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Caspases Efetoras/genética , Caspases Efetoras/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Neoplasias Esofágicas/metabolismo , Frutas/química , Glucosídeos/análise , Glucosídeos/química , Glucosídeos/farmacocinética , Glucosídeos/farmacologia , Transplante de Neoplasias , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo , Carga Tumoral
19.
J Virol ; 82(15): 7504-14, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18508888

RESUMO

Baculovirus proteins P49 and P35 are potent suppressors of apoptosis in diverse organisms. Although related, P49 and P35 inhibit initiator and effector caspases, respectively, during infection of permissive insect cells. The molecular basis of this novel caspase specificity is unknown. To advance strategies for selective inhibition of the cell death caspases, we investigated biochemical differences between these baculovirus substrate inhibitors. We report here that P49 and P35 use similar mechanisms for stoichiometric inhibition that require caspase cleavage of their reactive site loops (RSL) and chemical contributions of a conserved N-terminal cysteine to stabilize the resulting inhibitory complex. Our data indicated that P49 functions as a homodimer that simultaneously binds two caspases. In contrast, P35 is a monomeric, monovalent inhibitor. P49 and P35 also differ in their RSL caspase recognition sequences. We tested the role of the P(4)-P(1) recognition motif for caspase specificity by monitoring virus-induced proteolytic processing of Sf-caspase-1, the principal effector caspase of the host insect Spodoptera frugiperda. When P49's TVTD recognition motif was replaced with P35's DQMD motif, P49 was impaired for inhibition of the initiator caspase that cleaves and activates pro-Sf-caspase-1 and instead formed a stable inhibitory complex with active Sf-caspase-1. In contrast, the effector caspase specificity of P35 was unaltered when P35's DQMD motif was replaced with TVTD. We concluded that the TVTD recognition motif is required but not sufficient for initiator caspase inhibition by P49. Our findings demonstrate a critical role for the P(4)-P(1) recognition site in caspase specificity by P49 and P35 and indicate that additional determinants are involved in target selection.


Assuntos
Baculoviridae/fisiologia , Inibidores de Caspase , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Virais/metabolismo , Animais , Baculoviridae/genética , Sítios de Ligação , Caspases Efetoras/metabolismo , Caspases Iniciadoras/metabolismo , Linhagem Celular , Dimerização , Proteínas Inibidoras de Apoptose/genética , Spodoptera , Especificidade por Substrato , Proteínas Virais/genética
20.
Infect Immun ; 76(7): 2905-12, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18411295

RESUMO

The intracellular protozoan Toxoplasma gondii induces persistent infections in various hosts and is an important opportunistic pathogen of humans with immature or deficient immune responses. The ability to survive intracellularly largely depends on the blocking of different proapoptotic signaling cascades of its host cell. Fas/CD95 triggers an apoptotic cascade that is crucial for immunity and the outcome of infectious diseases. We have determined the mechanism by which T. gondii counteracts death receptor-mediated cell death in type II cells that transduce Fas/CD95 ligation via caspase 8-mediated activation of the mitochondrial amplification loop. The results showed that infection with T. gondii significantly reduced Fas/CD95-triggered apoptosis in HeLa cells by inhibiting the activities of initiator caspases 8 and 9 and effector caspase 3/7. Parasitic infection dose dependently diminished cleavage of caspase 8, the BH3-only protein Bid, and the downstream caspases 9 and 3. Importantly, interference with Fas/CD95-triggered caspase 8 and caspase 3/7 activities after parasitic infection was largely dependent on the presence of caspase 9. Within the mitochondrial amplification loop, T. gondii significantly inhibited the Fas/CD95-triggered release of cytochrome c into the host cell cytosol. These results indicate that T. gondii inhibits Fas/CD95-mediated apoptosis in type II cells primarily by decreasing the apoptogenic function of mitochondria.


Assuntos
Apoptose/fisiologia , Inibidores de Caspase , Mitocôndrias/enzimologia , Toxoplasma/patogenicidade , Receptor fas/metabolismo , Animais , Caspase 9/metabolismo , Caspases Efetoras/metabolismo , Caspases Iniciadoras/metabolismo , Citocromos c/metabolismo , Células HeLa , Humanos , Células Jurkat , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA