Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.131
Filtrar
1.
Breast Dis ; 43(1): 99-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758988

RESUMO

INTRODUCTION: Indonesian civilization extensively uses traditional medicine to cure illnesses and preserve health. The lack of knowledge on the security and efficacy of medicinal plants is still a significant concern. Although the precise chemicals responsible for this impact are unknown, ginger is a common medicinal plant in Southeast Asia that may have anticancer qualities. METHOD: Using data from Dudedocking, a machine-learning model was created to predict possible breast anticancer chemicals from ginger. The model was used to forecast substances that block KIT and MAPK2 proteins, essential elements in breast cancer. RESULT: Beta-carotene, 5-Hydroxy-74'-dimethoxyflavone, [12]-Shogaol, Isogingerenone B, curcumin, Trans-[10]-Shogaol, Gingerenone A, Dihydrocurcumin, and demethoxycurcumin were all superior to the reference ligand for MAPK2, according to molecular docking studies. Lycopene, [8]-Shogaol, [6]-Shogaol, and [1]-Paradol exhibited low toxicity and no Lipinski violations, but beta carotene had toxic predictions and Lipinski violations. It was anticipated that all three substances would have anticarcinogenic qualities. CONCLUSION: Overall, this study shows the value of machine learning in drug development and offers insightful information on possible anticancer chemicals from ginger.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Zingiber officinale , Zingiber officinale/química , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Extratos Vegetais/farmacologia , Simulação por Computador , Antineoplásicos Fitogênicos/farmacologia , Catecóis/farmacologia
2.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732529

RESUMO

The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.


Assuntos
Inibidores da Angiogênese , Azeite de Oliva , Fenóis , Álcool Feniletílico , Azeite de Oliva/química , Humanos , Fenóis/farmacologia , Inibidores da Angiogênese/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Dieta Mediterrânea , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Monoterpenos Ciclopentânicos , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Catecóis/farmacologia , Aldeídos/farmacologia , Animais , Antineoplásicos/farmacologia , Anti-Inflamatórios/farmacologia
3.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732549

RESUMO

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Assuntos
Catecóis , Monoterpenos Ciclopentânicos , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Fator de Necrose Tumoral alfa , Animais , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , Monoterpenos Ciclopentânicos/farmacologia , Catecóis/farmacologia , Linhagem Celular , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Desenvolvimento Muscular/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia/efeitos dos fármacos , Fenóis/farmacologia , Caquexia/prevenção & controle , Meios de Cultivo Condicionados/farmacologia , Aldeídos
4.
Pestic Biochem Physiol ; 200: 105802, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582605

RESUMO

Aphids are a major problem in agriculture, horticulture, and forestry by feeding on leaves and stems, causing discoloration, leaf curling, yellowing, and stunted growth. Although urushiol, a phenolic compound containing a catechol structure, is known for its antioxidant and anticancer properties, using small molecules to control aphids via catechol-mediated mechanisms is poorly understood. In this study, we investigated the effects of 3-methylcatechol (3-MC) on Myzus persicae fecundity. Our results showed that treatment with 3-MC significantly reduced the intrinsic transcriptional activity of the aphid estrogen-related receptor (MpERR), which regulates the expression of glycolytic genes. Additionally, 3-MC treatment suppressed the promoter activity of MpERR-induced rate-limiting enzymes in glycolysis, such as phosphofructokinase and pyruvate kinase, by inhibiting MpERR binding. Finally, 3-MC also suppressed MpERR-induced glycolytic gene expression and reduced the number of offspring produced by viviparous female aphids. Overall, our findings suggest that 3-MC has the potential to be used as a new strategy for managing aphid populations by controlling their offspring production.


Assuntos
Afídeos , Animais , Afídeos/genética , Catecóis/farmacologia , Expressão Gênica , Estrogênios/farmacologia
5.
Int J Biol Macromol ; 264(Pt 1): 130377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395279

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a threat to public health, and extensive research by scientists worldwide has also prompted the development of antiviral therapies. The 3C-like protease (3CLpro) is critical for SARS-CoV-2 replication and acts as an effective target for drug development. To date, numerous of natural products have been reported to exhibit inhibitory effects on 3CLpro, which encourages us to identify other novel inhibitors and elucidate their mechanism of action. In this study, we first screened an in-house compound library of 101 natural products using FRET assay, and found that oleuropein showed good inhibitory activity against SARS CoV-2 3CLpro with an IC50 value of 4.18 µM. Further studies revealed that the catechol core is essential for activity and can covalently bind to SARS-CoV-2 3CLpro. Among other 45 catechol derivatives, wedelolactone, capsazepine and brazilin showed better SARS-CoV-2 3CLpro inhibitory activities with IC50 values of 1.35 µM, 1.95 µM and 1.18 µM, respectively. These catechol derivatives were verified to be irreversible covalent inhibitors by time-dependent experiments, enzymatic kinetic studies, dilution and dialysis assays. It also exhibited good selectivity towards different cysteine proteases (SARS-CoV-2 PLpro, cathepsin B and cathepsin L). Subsequently, the binding affinity between brazilin and SARS-CoV-2 3CLpro was determined by SPR assay with KD value of 0.80 µM. Molecular dynamic (MD) simulations study showed the binding mode of brazilin in the target protein. In particular, brazilin displayed good anti-SARS-CoV-2 activity in A549-hACE2-TMPRSS2 cells with EC50 values of 7.85 ± 0.20 µM and 5.24 ± 0.21 µM for full time and post-infection treatments, respectively. This study provides a promising lead compound for the development of novel anti-SARS-CoV-2 drugs.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Cinética , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Diálise Renal , Catecóis/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular
6.
Cell Physiol Biochem ; 58(1): 49-62, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38329001

RESUMO

BACKGROUND/AIMS: Bladder cancer is considered one of the most aggressive neoplasms due to its recurrence and progression profile, and even with the improvement in diagnosis and treatment methods, the mortality rate has not shown a declining trend in recent decades. From this perspective, the search and development of more effective and safer therapeutic alternatives are necessary. Phytochemicals are excellent sources of active principles with therapeutic potential. [6]-Shogaol is a phenolic compound extracted from the ginger rhizomes that has shown antitumor effects in a wide variety of cancer models. However, there is no record in the literature of studies reporting these effects in models of bladder cancer. Thus, this study aimed to investigate the in vitro cytotoxic and pro-apoptotic potential of [6]-Shogaol against murine bladder cancer urothelial cells (MB49). METHODS: The cytotoxic effects of [6]-Shogaol on cell viability (MTT method), cell morphology (light microscopy), alteration of proliferative processes (clonogenic assay), oxidative stress pathway (levels of reactive oxygen species) and the induction of apoptotic events (flow cytometry and high-resolution epifluorescence imaging) were evaluated in murine urothelial bladder cancer cell lines (MB49), relative to non-tumor murine fibroblasts (L929). RESULTS: The results showed that [6]-Shogaol was able to induce concentration-dependent cytotoxic effects, which compromised cell viability, exhibiting an inhibitory concentration of 50% of cells (IC50) of 146.8 µM for MB49 tumor cells and 236.0 µM for L929 non-tumor fibroblasts. In addition to inhibiting and altering the proliferative processes if colony formation, it presented pro-apoptotic activity identified through a quantitative analysis and the observation of apoptotic phenotypes, events apparently mediated by the induction of nuclear fragmentation. CONCLUSION: The data presented suggest that [6]-Shogaol has a higher concentration-dependent cytotoxic and apoptosis-inducing potential in MB49 cells than in L929 fibroblasts. These results may contribute to the development of therapeutic alternatives for bladder cancer.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Camundongos , Animais , Humanos , Apoptose , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Catecóis/farmacologia , Catecóis/uso terapêutico , Catecóis/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
7.
Drug Des Devel Ther ; 18: 161-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298811

RESUMO

The dynamically evolving science of pharmacology requires AI technology to advance a new path for drug development. The author proposes generative AI for future drugs, identifying suitable drug molecules, uncharacteristically to previous generations of medicines, incorporating the wisdom, experience, and intuit of traditional materia medica and the respective traditional medicine practitioners. This paper describes the guiding principles of the new drug development, springing from the tradition and practice of Tibetan medicine, defined as the Interactive Nutrient Process (INP). The INP provides traditional knowledge and practitioner's experience, contextualizing and teaching the new drug therapy. An illustrative example of the outcome of the INP is a potential small molecule drug, 6-Shogaol and related shogaol derivatives, from ginger roots (Zingiber officinalis fam. Zingiberaceae) evaluated clinically for 12 months for biological markers of iron homeostasis in patients with the myelodysplastic syndromes (MDS). The study's preliminary results indicate that 6-Shogaol and related shogaols may improve iron homeostasis in low-risk/intermediate-1 MDS patients without objective or subjective side effects.


Assuntos
Catecóis , Nutrientes , Humanos , Catecóis/farmacologia , Ferro
8.
Inorg Chem ; 62(43): 17804-17817, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37858311

RESUMO

Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 µM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 µM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 µM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Humanos , Complexos de Coordenação/farmacologia , Vanádio/farmacologia , Compostos Organometálicos/farmacologia , Transferrina , Albuminas , Hipóxia , Catecóis/farmacologia
9.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686082

RESUMO

Oxidative stress is linked to a series of diseases; therefore, the development of efficient antioxidants might be beneficial in preventing or ameliorating these conditions. Based on the structure of a previously reported compound with good antioxidant properties and on computational studies, we designed several catechol derivatives with enhanced antioxidant potential. The compounds were synthesized and physicochemically characterized, and their antioxidant activity was assessed through different antiradical, electron transfer and metal ions chelation assays, their electrochemical behavior and cytotoxicity were studied. The results obtained in the in vitro experiments correlated very well with the in silico studies; all final compounds presented very good antioxidant properties, generally superior to those of the reference compounds used. Similarly, the results obtained from studying the compounds' electrochemical behavior were in good agreement with the results of the antioxidant activity evaluation assays. Regarding the compounds' cytotoxicity, compound 7b had a dose-dependent inhibitory effect against all cell lines. In conclusion, through computer-aided design, we developed several catechol thiazolyl-hydrazones with excellent antioxidant properties, of which compound 7b, with two catechol moieties in its structure, exhibited the best antioxidant activity.


Assuntos
Antioxidantes , Desenho Assistido por Computador , Antioxidantes/farmacologia , Catecóis/farmacologia , Hidrazonas/farmacologia , Tiazóis
10.
Viruses ; 15(7)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37515225

RESUMO

Viral replication often depends on RNA maturation and degradation processes catalyzed by viral ribonucleases, which are therefore candidate targets for antiviral drugs. Here, we synthesized and studied the antiviral properties of a novel nitrocatechol compound (1c) and other analogs that are structurally related to the catechol derivative dynasore. Interestingly, compound 1c strongly inhibited two DEDD box viral ribonucleases, HIV-1 RNase H and SARS-CoV-2 nsp14 3'-to-5' exoribonuclease (ExoN). While 1c inhibited SARS-CoV-2 ExoN activity, it did not interfere with the mRNA methyltransferase activity of nsp14. In silico molecular docking placed compound 1c in the catalytic pocket of the ExoN domain of nsp14. Finally, 1c inhibited SARS-CoV-2 replication but had no toxicity to human lung adenocarcinoma cells. Given its simple chemical synthesis from easily available starting materials, these results suggest that 1c might be a lead compound for the design of new antiviral compounds that target coronavirus nsp14 ExoN and other viral ribonucleases.


Assuntos
COVID-19 , HIV-1 , Humanos , SARS-CoV-2/genética , Exorribonucleases/genética , HIV-1/genética , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Replicação Viral , Catecóis/farmacologia , Ribonuclease H/farmacologia , Proteínas não Estruturais Virais/genética , RNA Viral/genética
11.
Biomacromolecules ; 24(8): 3603-3618, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450837

RESUMO

V(III) instead of commonly used Fe(III) provided a rich tris-catechol-metal coordination at pH 7.4, which is important for slow drug release at physiological pH. Bovine serum albumin (BSA) functionalized with catechol-containing dopamine (D) and cross-linked using tris-catechol-V(III) coordination yielded pH-responsive compact D-BSA NPs (253 nm). However, conversion to bis- and/or mono-catechol-V(III) complexes in an acidic medium resulted in degradation of NPs and rapid release of doxorubicin (DOX). It was shown that D-BSA NPs entered cancerous MCF-7 cells (66%) more efficiently than non-cancerous HEK293T (33%) in 3 h. Also, DOX-loaded NPs reduced cell viability of MCF-7 by 75% and induced apoptosis in a majority of cells after 24 h. Biodegradability and lack of hemolytic activity were shown in vitro, whereas a lack of toxicity was shown in histological sections of zebrafish. Furthermore, 30% of circulating tumor cells in vasculature in 24 h were killed by DOX-loaded NPs shown with the zebrafish CTC xenograft model.


Assuntos
Nanopartículas , Soroalbumina Bovina , Animais , Humanos , Soroalbumina Bovina/química , Peixe-Zebra , Dopamina , Compostos Férricos , Células HEK293 , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Catecóis/farmacologia , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Liberação Controlada de Fármacos
12.
Carbohydr Polym ; 318: 121049, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479426

RESUMO

Although hemostatic powders have excellent adaptability for irregular and inaccessible wounds, their hemostasis for continuous bleeding or bleeding wounds of non-compressible organs remains a critical challenge. Herein, a series of benzeneboronic acid-modified sodium alginate/catechol-modified quaternized chitosan (SA-BA/QCS-C, SBQCC) powders is developed by borate ester crosslinking for non-compressible hemorrhage control. SBQCC powders possess remarkable tissue adhesion, rapid self-gelation, good cytocompatibility and antibacterial activity against S. aureus and E. coil. The blood coagulation assays show that SBQCC powders display excellent blood clotting ability due to the synergistic effect of SA-BA and QCS-C. The SBQCC2 powder with the SA-BA to QCS-C mass ratio of 5 to 3 has the greatest effect on the blood-clotting rate. Upon depositing SBQCC2 powder to bleeding wounds of rabbit liver, the powder can absorb a large amount of blood and form a stable hydrogel physical barrier at the bleeding wounds in situ to achieve non-pressing rapid hemostasis. The SBQCC2 powder also has good biocompatibility and can be degraded in vivo. Altogether, the SBQCC powders can be a promising candidate for rapid hemostasis, and these findings may provide a new perspective for improving the hemostatic efficiency of the hemostatic powder in biomedical fields.


Assuntos
Quitosana , Hemostáticos , Animais , Coelhos , Aderências Teciduais , Quitosana/farmacologia , Pós , Staphylococcus aureus , Hemorragia/tratamento farmacológico , Catecóis/farmacologia , Hemostáticos/farmacologia , Alginatos , Antibacterianos/farmacologia
13.
Eur J Med Chem ; 257: 115528, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290184

RESUMO

Catechols have been reported to be potent covalent inhibitors of ureases, and they exhibit activity by modifying cysteine residues at the entrance to enzymatic active sites. Following these principles, we designed and synthesized novel catecholic derivatives that contained carboxylate and phosphonic/phosphinic functionalities and assumed expanded specific interactions. When studying the chemical stability of the molecules, we found that their intrinsic acidity catalyzes spontaneous esterification/hydrolysis reactions in methanol or water solutions, respectively. Regarding biological activity, the most promising compound, 2-(3,4-dihydroxyphenyl)-3-phosphonopropionic acid (15), exhibited significant anti-urease potential (Ki = 2.36 µM, Sporosarcinia pasteurii urease), which was reflected in the antiureolytic effect in live Helicobacter pylori cells at a submicromolar concentration (IC50 = 0.75 µM). As illustrated by molecular modeling, this compound was bound in the active site of urease through a set of concerted electrostatic and hydrogen bond interactions. The antiureolytic activity of catecholic phosphonic acids could be specific because these compounds were chemically inert and not cytotoxic to eukaryotic cells.


Assuntos
Helicobacter pylori , Ácidos Fosfínicos/farmacologia , Urease , Modelos Moleculares , Catecóis/farmacologia , Catecóis/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
14.
J Nanobiotechnology ; 21(1): 192, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316835

RESUMO

In the treatment of spinal cord injury (SCI), the complex process of secondary injury is mainly responsible for preventing SCI repair or even exacerbating the injury. In this experiment, we constructed the 8-gingerol (8G)-loaded mesoporous polydopamine (M-PDA), M@8G, as the in vivo targeting nano-delivery platform, and investigated the therapeutic effects of M@8G in secondary SCI and its related mechanisms. The results indicated that M@8G could penetrate the blood-spinal cord barrier to enrich the spinal cord injury site. Mechanism research has shown that all of the M-PDA,8G and M@8G displayed the anti-lipid peroxidation effect, and then M@8G can inhibit the secondary SCI by suppressing the ferroptosis and inflammation. In vivo assays showed that M@8G significantly diminished the local injury area, reduced axonal and myelin loss, thus improving the neurological and motor recovery in rats. Based on the analysis of cerebrospinal fluid samples from patients, ferroptosis occurred locally in SCI and continued to progress in patients during the acute phase of SCI as well as the stage after their clinical surgery. This study showcases effective treatment of SCI through the aggregation and synergistic effect of M@8G in focal areas, providing a safe and promising strategy for the clinical treatment of SCI.


Assuntos
Traumatismos da Medula Espinal , Animais , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico , Catecóis/farmacologia , Álcoois Graxos/farmacologia
15.
Int J Biol Macromol ; 244: 125321, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37307981

RESUMO

The interactions of catechol derivatives with model transportation protein-bovine serum albumin (BSA) were deciphered by the multispectral techniques, molecular docking and multifunctional wavefunction (Multiwfn). The representative catechol derivatives caffeic acid (CA) and 1-monocaffeoyl glycerol (1-MCG) with an (E)-but-2-enoic acid and a 2,3-dihydroxypropyl(E)-but-2-enoate side chain, respectively, were chosen in present study. The interaction results revealed the extra non-polar interactions and abundant binding sites facilitate the easier and stronger binding of 1-MCG-BSA. The α-helix content of BSA decreased and the hydrophilicity around Tyr and Trp changed due to the different interaction between catechol and BSA. The H2O2-damaged RAW 264.7, HaCat and SH-SY5Y were applied to investigate the anti-ROS properties of the catechol-BSA complexes. The results illuminated that the 2,3-dihydroxypropyl(E)-but-2-enoate side chain of 1-MCG facilitated the preferable biocompatibility and antioxidant property of its binding complex. These results revealed that the interaction of catechol-BSA binding complexes could influence their biocompatibility and antioxidant properties.


Assuntos
Antioxidantes , Neuroblastoma , Humanos , Antioxidantes/química , Espectrometria de Fluorescência , Ligação Proteica , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Peróxido de Hidrogênio , Sítios de Ligação , Catecóis/farmacologia , Termodinâmica , Espectrofotometria Ultravioleta
16.
Carbohydr Polym ; 316: 121083, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321753

RESUMO

The hydrogel wound dressing with self-healing and adhesive property can provide better protection to the wound and prolong the service life of the material. Inspired by mussels, a high-adhesion, injectable, self-healing and antibacterial hydrogel was designed in this study. The lysine (Lys) and the catechol compound 3,4-dihydroxyphenylacetic acid (DOPAC) were grafted onto chitosan (CS). The presence of catechol group endows the hydrogel strong adhesion and antioxidation. In the experiment of wound healing in vitro, the hydrogel can adhere to the wound surface and promote wound heal. In addition, it has been proved the hydrogel has good antibacterial properties against S. aureus and E. coli. The treatment of CLD hydrogel, the degree of wound inflammation was significantly alleviated. The levels of TNF-α, IL-1ß, IL-6 and TGF-ß1 were reduced from 39.8379 %, 31.6768 %, 32.1015 % and 38.4911 % to 18.5931 %, 12.2275 %, 13.0524 % and 16.9959 %, respectively. And the levels of PDGFD and CD31 were increased from 35.6054 %, 21.7394 % to 51.8555 %, 43.9326 %, respectively. These results indicated that the CLD hydrogel has a good ability to promote angiogenesis, thickening of skin and epithelial structures.


Assuntos
Quitosana , Prunella , Aderências Teciduais , Quitosana/farmacologia , Hidrogéis/farmacologia , Escherichia coli , Staphylococcus aureus , Bandagens , Antibacterianos/farmacologia , Catecóis/farmacologia
17.
Int J Biol Macromol ; 242(Pt 4): 125029, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244333

RESUMO

Because of the indiscriminate use of antibiotics and the increasing threat of drug-resist bacteria, there is an urgent need to develop novel antibacterial strategies to combat infected wounds. In this work, stable tricomplex molecules (PA@Fe) assembled by protocatechualdehyde (PA) and ferric iron (Fe) were successfully synthesized and then embedded in the gelatin matrix to obtain a series of Gel-PA@Fe hydrogels. The embedded PA@Fe served as a crosslinker to improve the mechanical, adhesive and antioxidant properties of hydrogels through coordination bonds (catechol-Fe) and dynamic Schiff base bonds, meanwhile acting as a photothermal agent to convert near-infrared (NIR) light into heat to kill bacteria effectively. Importantly, in vivo evaluation through an infected full-thickness skin wound mice model revealed that Gel-PA@Fe hydrogel developed collagen deposition, and accelerated reconstruction of wound closure, indicating great potential of Gel-PA@Fe hydrogel in promoting the healing process of infected full-thickness wounds.


Assuntos
Gelatina , Infecção dos Ferimentos , Animais , Camundongos , Hidrogéis/farmacologia , Antioxidantes/farmacologia , Cicatrização , Catecóis/farmacologia , Antibacterianos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Ferro
18.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176027

RESUMO

A number of novel di- and triorganotin(IV) complexes 1-5 (Ph2SnL1, Ph2SnL2, Et2SnL2, Ph3SnL3, Ph3SnL4) with mono- or dianionic forms of thio-Schiff bases containing antioxidant sterically hindered phenol or catechol fragments were synthesized. Compounds 1-5 were characterized by 1H, 13C NMR, IR spectroscopy, and elemental analysis. The molecular structures of complexes 1 and 2 in the crystal state were established by single-crystal X-ray analysis. The antioxidant activity of new complexes as radical scavengers was estimated in DPPH and ABTS assays. It was found that compounds 4 and 5 with free phenol or catechol fragments are more active in these tests than complexes 1-3 with tridentate O,N,S-coordinated ligands. The effect of compounds 1-5 on the promoted oxidative damage of the DNA by 2,2'-azobis(2-amidinopropane) dihydrochloride and in the process of rat liver (Wistar) homogenate lipid peroxidation in vitro was determined. Complexes 4 and 5 were characterized by more pronounced antioxidant activity in the reaction of lipid peroxidation in vitro than compounds 1-3. The antiproliferative activity of compounds 1-5 was investigated against MCF-7, HTC-116, and A-549 cell lines by an MTT test. The values of IC50 are significantly affected by the presence of free antioxidant fragments and the coordination site for binding.


Assuntos
Complexos de Coordenação , Compostos Orgânicos de Estanho , Ratos , Animais , Antioxidantes/farmacologia , Fenol , Bases de Schiff/química , Ratos Wistar , Compostos Orgânicos de Estanho/química , Fenóis/farmacologia , Catecóis/farmacologia , Complexos de Coordenação/química , Ligantes
19.
Sci Rep ; 13(1): 5275, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002248

RESUMO

The interplay between α-synuclein (α-syn) and catechols plays a central role in Parkinson's disease. This may be related to the modulating effects of catechols on the various aspects of α-syn fibrillization. Some of these effects may be attributed to the membrane-binding properties of the protein. In this work, we compare the effect of some catechols, including dopamine, epinephrine, DOPAL, and levodopa in micromolar concentrations, on the in vitro cytotoxicity of α-syn fibrils on human neuroblastoma SH-SY5Y cells. The study was followed by comparing the interactions of resulting structures with rat brain mitochondria used as an in vitro biological model. The obtained results demonstrate that catechols-induced structures have lost their cytotoxicity mimicking apoptotic cell death mediated by α-syn aggregates in different proportions. Moreover, α-syn fibrils-induced mitochondrial dysfunction, evaluated by a range of biochemical assays, was modulated by catechols-modified α-syn oligomers in different manners, as levodopa and DOPAL demonstrated the maximal and minimal effects, respectively. The plausible mechanism causing the inhibition of α-syn cytotoxic fibrillization and mitochondrial dysfunction by catechols is discussed. Taken together, we propose that catechols can prevent the cytotoxic assembly of α-syn and its destructive effects on mitochondria at various stages, suggesting that decreased levels of catechols in dopaminergic neurons might accelerate the α-syn cytotoxicity and mitochondrial dysfunction implicating Parkinson's disease.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Levodopa , Catecóis/farmacologia , Amiloide/metabolismo , Proteínas Amiloidogênicas
20.
Int J Med Sci ; 20(2): 238-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794162

RESUMO

Objective: Natural products in diet have shown a potential role in the prevention and treatment of cancer. Ginger (Zingiber officinale Roscoe) is a great candidate because of its properties of anti-inflammatory, antioxidant, and anti-cancer, but little is known about its effect on head and neck cancer. 6-Shogaol is an active compound derived from Ginger. Thus, this study aimed to investigate the possible anticancer effects of 6-shogaol, a major ginger derivate, on head and neck squamous cell carcinomas (HNSCCs) and the underlying mechanisms. Material and Methods: Two HNSCC cell lines, SCC4 and SCC25, were used in this study. Both SCC4 and SCC25 cells were kept as control or treated with 6-shogaol for 8 and 24 hours and then the cell apoptosis and cell cycle progression of treated cells were examined by PI and Annexin V-FITC double stain and flow cytometry analysis. The Cleaved caspase 3, phosphorylations of ERK1/2 and p38 kinases were examined by Western blot analysis. Results: The results showed that 6-shogaol significantly initiated the G2/M phase arrest of the cell cycle and apoptosis to inhibit the survival of both cell lines. Moreover, these responses could be regulated by ERK1/2 and p38 signaling. And, finally, we also demonstrated that 6-shogaol could enhance the cytotoxicity of cisplatin in HNSCC cells. Conclusion: Our data provided new insights to understand the potential pharmaceutical efficacy of a ginger derivate, 6-shogaol, in antagonizing HNSCC survival. The present study suggests that 6-shogaol is a potential novel candidate for anti-HNSCCs therapy.


Assuntos
Catecóis , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Catecóis/farmacologia , Catecóis/uso terapêutico , Apoptose , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA