Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 220, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880695

RESUMO

BACKGROUND: Normally, a salt amount greater than 3.5% (w/v) is defined as hypersaline. Large amounts of hypersaline wastewater containing organic pollutants need to be treated before it can be discharged into the environment. The most critical aspect of the biological treatment of saline wastewater is the inhibitory/toxic effect exerted on bacterial metabolism by high salt concentrations. Although efforts have been dedicated to improving the performance through the use of salt-tolerant or halophilic bacteria, the diversities of the strains and the range of substrate spectrum remain limited, especially in chlorophenol wastewater treatment. RESULTS: In this study, a salt-tolerant chlorophenol-degrading strain was generated from Rhodococcus rhodochrous DSM6263, an original aniline degrader, by adaptive laboratory evolution. The evolved strain R. rhodochrous CP-8 could tolerant 8% NaCl with 4-chlorophenol degradation capacity. The synonymous mutation in phosphodiesterase of strain CP-8 may retard the hydrolysis of cyclic adenosine monophosphate (cAMP), which is a key factor reported in the osmoregulation. The experimentally verified up-regulation of intracellular cAMP level in the evolved strain CP-8 contributes to the improvement of growth phenotype under high osmotic condition. Additionally, a point mutant of the catechol 1,2-dioxygenase, CatAN211S, was revealed to show the 1.9-fold increment on activity, which the mechanism was well explained by molecular docking analysis. CONCLUSIONS: This study developed one chlorophenol-degrading strain with extraordinary capacity of salt tolerance, which showed great application potential in hypersaline chlorophenol wastewater treatment. The synonymous mutation in phosphodiesterase resulted in the change of intracellular cAMP concentration and then increase the osmotic tolerance in the evolved strain. The catechol 1,2-dioxygenase mutant with improved activity also facilitated chlorophenol removal since it is the key enzyme in the degradation pathway.


Assuntos
Clorofenóis , Dioxigenases , Rhodococcus , Catecol 1,2-Dioxigenase/metabolismo , Águas Residuárias , Biodegradação Ambiental , Simulação de Acoplamento Molecular , Rhodococcus/metabolismo , Clorofenóis/química , Clorofenóis/metabolismo , Diester Fosfórico Hidrolases/metabolismo
2.
Chemosphere ; 307(Pt 1): 135609, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35809750

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent organic pollutants in soil, which have carcinogenic, teratogenic and mutagenic hazards. The effects of rhamnolipid (RL), nano zero-valent iron (nZVI), and anthraquinone-2,6-disulfonic acid (AQDS) on the degradation of PAHs in soil were studied. It was found that the treatment of 5 mg·kg-1RL + 1% nZVI +0.2 mmol·kg-1AQDS had the highest degradation rate. The degradation rate of total PAHs and HMW-PAHs was 72.81% and 79.47% respectively after 90 days. High-throughput sequencing showed that in RL + nZVI + AQDS enhanced soil, Clostridium, Geobacter, Anaeromyxobacter and Sphingomonas were the dominant species for anaerobic degradation of PAHs. Rhodococcus, Nocardioides, and Microvirga are the dominant species for aerobic degradation of PAHs. The activities of methyltransferase, dehydrogenase and catechol 1,2-dioxygenase in the anaerobic-aerobic degradation process of PAHs were consistent with the degradation process of PAHs, indicating the role of these enzymes in the degradation of PAHs. RL, nZVI, and AQDS combined enhanced microbial anaerobic-aerobic degradation has great application potential in remediation of PAHs-contaminated soil.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Anaerobiose , Antraquinonas , Catecol 1,2-Dioxigenase/metabolismo , Glicolipídeos , Ferro , Metiltransferases/metabolismo , Poluentes Orgânicos Persistentes , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
3.
Microb Cell Fact ; 20(1): 114, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098954

RESUMO

BACKGROUND: The current shift from a fossil-resource based economy to a more sustainable, bio-based economy requires development of alternative production routes based on utilization of biomass for the many chemicals that are currently produced from petroleum. Muconic acid is an attractive platform chemical for the bio-based economy because it can be converted in chemicals with wide industrial applicability, such as adipic and terephthalic acid, and because its two double bonds offer great versatility for chemical modification. RESULTS: We have constructed a yeast cell factory converting glucose and xylose into muconic acid without formation of ethanol. We consecutively eliminated feedback inhibition in the shikimate pathway, inserted the heterologous pathway for muconic acid biosynthesis from 3-dehydroshikimate (DHS) by co-expression of DHS dehydratase from P. anserina, protocatechuic acid (PCA) decarboxylase (PCAD) from K. pneumoniae and oxygen-consuming catechol 1,2-dioxygenase (CDO) from C. albicans, eliminated ethanol production by deletion of the three PDC genes and minimized PCA production by enhancing PCAD overexpression and production of its co-factor. The yeast pitching rate was increased to lower high biomass formation caused by the compulsory aerobic conditions. Maximal titers of 4 g/L, 4.5 g/L and 3.8 g/L muconic acid were reached with glucose, xylose, and a mixture, respectively. The use of an elevated initial sugar level, resulting in muconic acid titers above 2.5 g/L, caused stuck fermentations with incomplete utilization of the sugar. Application of polypropylene glycol 4000 (PPG) as solvent for in situ product removal during the fermentation shows that this is not due to toxicity by the muconic acid produced. CONCLUSIONS: This work has developed an industrial yeast strain able to produce muconic acid from glucose and also with great efficiency from xylose, without any ethanol production, minimal production of PCA and reaching the highest titers in batch fermentation reported up to now. Utilization of higher sugar levels remained conspicuously incomplete. Since this was not due to product inhibition by muconic acid or to loss of viability, an unknown, possibly metabolic bottleneck apparently arises during muconic acid fermentation with high sugar levels and blocks further sugar utilization.


Assuntos
Carboxiliases/metabolismo , Catecol 1,2-Dioxigenase/metabolismo , Hidroliases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/análogos & derivados , Xilose/metabolismo , Carboxiliases/genética , Catecol 1,2-Dioxigenase/genética , Clonagem Molecular , DNA Fúngico , Fermentação , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Hidroliases/genética , Hidroxibenzoatos/metabolismo , Microbiologia Industrial , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Piruvato Descarboxilase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/metabolismo , Ácido Sórbico/isolamento & purificação , Ácido Sórbico/metabolismo
4.
Sci Rep ; 10(1): 5279, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210346

RESUMO

Melia azedarach-rhizosphere mediated degradation of benzo(a)pyrene (BaP), in the presence of cadmium (Cd) was studied, using efficient rhizobacterial isolate. Serratia marcescens S2I7, isolated from the petroleum-contaminated site, was able to tolerate up to 3.25 mM Cd. In the presence of Cd, the isolate S2I7 exhibited an increase in the activity of stress-responsive enzyme, glutathione-S-transferase. Gas Chromatography-Mass spectroscopy analysis revealed up to 59% in -vitro degradation of BaP after 21 days, while in the presence of Cd, the degradation was decreased by 14%. The bacterial isolate showed excellent plant growth-promoting attributes and could enhance the growth of host plant in Cd contaminated soil. The 52,41,555 bp genome of isolate S. marcescens S2I7 was sequenced, assembled and annotated into 4694 genes. Among these, 89 genes were identified for the metabolism of aromatic compounds and 172 genes for metal resistance, including the efflux pump system. A 2 MB segment of the genome was identified to contain operons for protocatechuate degradation, catechol degradation, benzoate degradation, and an IclR type regulatory protein pcaR, reported to be involved in the regulation of protocatechuate degradation. A pot trial was performed to validate the ability of S2I7 for rhizodegradation of BaP when applied through Melia azedarach rhizosphere. The rhizodegradation of BaP was significantly higher when augmented with S2I7 (85%) than degradation in bulk soil (68%), but decreased in the presence of Cd (71%).


Assuntos
Benzo(a)pireno/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Cádmio/toxicidade , Melia azedarach/efeitos dos fármacos , Rizosfera , Serratia marcescens/metabolismo , Microbiologia do Solo , Poluentes do Solo/toxicidade , Proteínas de Bactérias/metabolismo , Catecol 1,2-Dioxigenase/metabolismo , Catecol 2,3-Dioxigenase/metabolismo , Catecóis/metabolismo , DNA Bacteriano/genética , Cromatografia Gasosa-Espectrometria de Massas , Genoma Bacteriano , Glutationa Transferase/metabolismo , Hidroxibenzoatos/metabolismo , Melia azedarach/crescimento & desenvolvimento , Óperon , Filogenia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Ácido Succínico/farmacologia
5.
Electron. j. biotechnol ; 34: 83-90, july. 2018. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1047375

RESUMO

Background: Although the functional redundancy of catechol 1,2-dioxygenase (C12O) genes has been reported in several microorganisms, limited enzymes were characterised, let alone the advantage of the coexistence of the multiple copies of C12O genes. Results: In this study, four novel C12O genes, designated catA, catAI, catAII and catAIII, in the naphthalene-degrading strain Pseudomonas putida ND6, were cloned and characterised. Phylogenetic analysis of their deduced amino acid sequences revealed that the four C12O isozymes each formed independent subtrees, together with homologues from other organisms. All four enzymes exhibited maximum activity at pH 7.4 and higher activity in alkaline than in acidic conditions. Furthermore, CatA, CatAI and CatAIII were maximally active at a temperature of 45°C, whereas a higher optimum temperature was observed for CatAII at a temperature of 50°C. CatAI exhibited superior temperature stability compared with the other three C12O isozymes, and kinetic analysis indicated similar enzyme activities for CatA, CatAI and CatAII, whereas that of CatAIII was lower. Significantly, among metal ions tested, only Cu2+ substantially inhibited the activity of these C12O isozymes, thus indicating that they have potential to facilitate bioremediation in environments polluted with aromatics in the presence of metals. Moreover, gene expression analysis at the mRNA level and determination of enzyme activity clearly indicated that the redundancy of the catA genes has increased the levels of C12O. Conclusion: The results clearly imply that the redundancy of catA genes increases the available amount of C12O in P. putida ND6, which would be beneficial for survival in challenging environments.


Assuntos
Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Catecol 1,2-Dioxigenase/genética , Temperatura , Biodegradação Ambiental , Clonagem Molecular , Catecol 1,2-Dioxigenase/análise , Catecol 1,2-Dioxigenase/metabolismo , Genes Bacterianos , Concentração de Íons de Hidrogênio , Isoenzimas , Metais
6.
Prep Biochem Biotechnol ; 46(7): 673-8, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26760080

RESUMO

The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858 bp encoding a polypeptide of 285 amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2 µM and 0.987 µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.


Assuntos
Candida tropicalis/enzimologia , Catecol 1,2-Dioxigenase/genética , Fenóis/metabolismo , Sequência de Aminoácidos , Candida tropicalis/metabolismo , Catecol 1,2-Dioxigenase/química , Catecol 1,2-Dioxigenase/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Oxigenases de Função Mista/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
7.
J Hazard Mater ; 278: 454-63, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24997261

RESUMO

The potential of fungal co-culture of the filamentous Pestalotiopsis sp. NG007 with four different basidiomycetes--Trametes versicolor U97, Pleurotus ostreatus PL1, Cerena sp. F0607, and Polyporus sp. S133--for accelerating biodegradation of petroleum hydrocarbons (PHCs) was studied using three different physicochemical characteristic PHCs in soil. All the combinations showed a mutual intermingling mycelial interaction on the agar plates. However, only NG007/S133 (50/50) exhibited an optimum growth rate and enzymatic activities that supported the degradation of asphalt in soil. The co-culture also degraded all fractions at even higher concentrations of the different PHCs. In addition, asphaltene, which is a difficult fraction for a single microorganism to degrade, was markedly degraded by the co-culture, which indicated that the simultaneous biodegradation of aliphatic, aromatic, resin, and asphaltene fractions had occurred in the co-culture. An examination of in-vitro degradation by the crude enzymes and the retrieval fungal culture from the soil after the experiment confirmed the accelerated biodegradation due to enhanced enzyme activities in the co-culture. The addition of piperonyl butoxide or AgNO3 inhibited biodegradation by 81-99%, which demonstrated the important role of P450 monooxygenases and/or dioxygenases in the initial degradation of the aliphatic and aromatic fractions in PHCs.


Assuntos
Basidiomycota/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Basidiomycota/efeitos dos fármacos , Basidiomycota/enzimologia , Biodegradação Ambiental , Catecol 1,2-Dioxigenase/metabolismo , Técnicas de Cocultura , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Peroxidases/metabolismo , Butóxido de Piperonila/farmacologia , Nitrato de Prata/farmacologia
8.
Bioresour Technol ; 167: 398-406, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25000395

RESUMO

A 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degrading bacterium strain IITR03 producing trehalolipid was isolated and characterized from a pesticides contaminated soil. The strain IITR03 was identified as a member of the genus Rhodococcus based on polyphasic studies. Under aqueous culture conditions, the strain IITR03 degraded 282 µM of DDT and could also utilize 10mM concentration each of 4-chlorobenzoic acid, 3-chlorobenzoic acid and benzoic acid as sole carbon and energy source. The catechol 1,2-dioxygenase enzyme activity resulted in conversion of catechol to form cis,cis-muconic acid. Cloning and sequencing of partial nucleotide sequence of catechol 1,2-dioxygenase gene (cat) from strain IITR03 revealed its similarity to catA gene present in Rhodococcus sp. strain Lin-2 (97% identity) and Rhodococcus strain AN22 (96% identity) degrading benzoate and aniline, respectively. The results suggest that the strain IITR03 could be useful for field bioremediation studies of DDT-residues and chlorinated aromatic compounds present in contaminated sites.


Assuntos
DDT/metabolismo , Glicolipídeos/biossíntese , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Catecol 1,2-Dioxigenase/genética , Catecol 1,2-Dioxigenase/metabolismo , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Dados de Sequência Molecular , Fenótipo , Filogenia , Ácido Pirúvico/farmacologia , RNA Ribossômico 16S/genética , Padrões de Referência , Rhodococcus/enzimologia , Rhodococcus/crescimento & desenvolvimento , Espectrofotometria Ultravioleta , Ácido Succínico/farmacologia
9.
Electron. j. biotechnol ; 17(2): 83-88, Mar. 2014. graf, tab
Artigo em Inglês | LILACS | ID: lil-714277

RESUMO

Background In biodegradation processes free enzymes often undergo deactivation. Thus, it is very important to obtain highly stable enzymes by different methods. Immobilization allows for successful stabilization of many multimeric enzymes by increasing the rigidity of the enzyme structure. This study aimed to evaluate some environmental factors that affect catechol 1,2-dioxygenase from Stenotrophomonas maltophilia KB2 immobilized in alginate hydrogel. The goal of the present work was to improve the functional stability of the enzyme by increasing its structural rigidity. Results Immobilization yield and expressed activity were 100% and 56%, respectively. Under the same storage conditions, the activity of the immobilized enzyme was still observed on the 28th d of incubation at 4°C, whereas the free enzyme lost its activity after 14 d. The immobilized enzyme required approximately 10°C lower temperature for its optimal activity than the free enzyme. Immobilization shifted the optimal pH from 8 for the soluble enzyme to 7 for the immobilized enzyme. The immobilized catechol 1,2-dioxygenase showed activity against 3-methylcatechol, 4-methylcatechol, 3-chlorocatechol, 4-chlorocatechol, and 3,5-dichlorocatechol. The immobilization of the enzyme promoted its stabilization against any distorting agents: aliphatic alcohols, phenols, and chelators. Conclusions The entrapment of the catechol 1,2-dioxygenase from S. maltophilia KB2 has been shown to be an effective method for improving the functional properties of the enzyme. Increased resistance to inactivation by higher substrate concentration and other factors affecting enzyme activity as well as broadened substrate specificity compared to the soluble enzyme, makes the immobilized catechol 1,2-dioxygenase suitable for the bioremediation and detoxification of xenobiotic-contaminated environments.


Assuntos
Biodegradação Ambiental , Stenotrophomonas maltophilia , Catecol 1,2-Dioxigenase/metabolismo , Especificidade por Substrato , Temperatura , Cinética , Técnicas de Cultura de Células , Alginatos , Enzimas Imobilizadas , Géis , Concentração de Íons de Hidrogênio
10.
Microb Cell Fact ; 12: 65, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23815792

RESUMO

BACKGROUND: Ribosome assembly cofactor RimP is one of the auxiliary proteins required for maturation of the 30S subunit in Escherichia coli. Although RimP in protein synthesis is important, its role in secondary metabolites biosynthesis has not been reported so far. Considering the close relationship between protein synthesis and the production of secondary metabolites, the function of ribosome assembly cofactor RimP on antibiotics production was studied in Streptomyces coelicolor and Streptomyces venezuelae. RESULTS: In this study, the rimP homologue rimP-SC was identified and cloned from Streptomyces coelicolor. Disruption of rimP-SC led to enhanced production of actinorhodin and calcium-dependent antibiotics by promoting the transcription of actII-ORF4 and cdaR. Further experiments demonstrated that MetK was one of the reasons for the increment of antibiotics production. In addition, rimP-SC disruption mutant could be used as a host to produce more peptidyl nucleoside antibiotics (polyoxin or nikkomycin) than the wild-type strain. Likewise, disruption of rimP-SV of Streptomyces venezuelae also significantly stimulated jadomycin production, suggesting that enhanced antibiotics production might be widespread in many other Streptomyces species. CONCLUSION: These results established an important relationship between ribosome assembly cofactor and secondary metabolites biosynthesis and provided an approach for yield improvement of secondary metabolites in Streptomyces.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/genética , Streptomyces coelicolor/metabolismo , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos , Aminoglicosídeos/biossíntese , Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Biomassa , Catecol 1,2-Dioxigenase/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Isoquinolinas/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Dados de Sequência Molecular , Naftoquinonas/metabolismo , Nucleosídeos de Pirimidina/biossíntese , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/metabolismo , Alinhamento de Sequência , Transcrição Gênica
11.
Inorg Chem ; 52(3): 1559-69, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23320898

RESUMO

Six dichloroiron(III) complexes of 1,3-bis(2'-arylimino)isoindoline (BAIH) with various N-donor aryl groups have been characterized by spectroscopy (infrared, UV-vis), electrochemistry (cyclic voltammetry), microanalysis, and in two cases X-ray crystallography. The structurally characterized Fe(III)Cl(2)(L(n)) complexes (n = 3, L(3) = 1,3-bis(2'-thiazolylimino)isoindoline and n = 5, L(5) = 1,3-bis(4-methyl-2'-piridylimino)isoindoline) are five-coordinate, trigonal bipyramidal with the isoindoline ligands occupying the two axial and one equatorial positions meridionally. These compounds served as precursors for catechol dioxygenase models that were formed in solution upon addition of 3,5-di-tert-butylcatechol (H(2)DBC) and excess triethylamine. These adducts react with dioxygen in N,N-dimethylformamide, and the analysis of the products by chromatography and mass spectrometry showed high intradiol over extradiol selectivity (the intradiol/extradiol product ratios varied between 46.5 and 6.5). Kinetic measurements were performed by following the change in the intensity of the catecholate to iron ligand-to-metal charge transfer (LMCT) band, the energy of which is influenced by the isoindolinate-ligand (827-960 nm). In combination with electrochemical investigations the kinetic studies revealed an inverse trend between reaction rates and oxidation potentials associated with the coordinated DBC(2-). On the basis of these results, a substrate activation mechanism is suggested for this system in which the geometry of the peroxide-bridged intermediate may be of key importance in regioselectivity.


Assuntos
Catecol 1,2-Dioxigenase/química , Compostos Férricos/química , Catecol 1,2-Dioxigenase/metabolismo , Cristalografia por Raios X , Compostos Férricos/síntese química , Isoindóis/química , Ligantes , Modelos Moleculares , Estrutura Molecular
12.
J Phys Chem B ; 115(16): 4781-9, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21462943

RESUMO

We theoretically investigated the ligand-to-metal charge-transfer (LMCT) excitation of the native iron(III)-dependent catechol dioxygenase and its functional model complexes with multistate complete active space second-order perturbation theory (MS-CASPT2) because the LMCT (catecholate-to-iron(III) charge-transfer) excitation energy is believed to relate to the reactivity of the native enzyme and its functional model complexes. The ground state calculated by the MS-CASPT2 method mainly consists of the iron(III)-catecholate electron configuration and moderately of the iron(II)-semiquinonate electron configuration for both of the enzyme active centers and the model complexes when the active center exists in the protein environment and the model complexes exist in the solution. However, the ground-state wave function mainly consists of the iron(II)-semiquinonate electron configuration for both the enzyme active site without a protein environment and the model complexes in vacuo. These results clearly show that the protein environment and solvent play important roles to determine the electronic structure of the catecholatoiron(III) complex. The LMCT excitation energy clearly relates to the weight of the iron(III)-catecholate configuration in the ground state. The reactivity and the LMCT excitation energy directly relate to the ionization potential of the catecholate (IP(CAT)) in the model complex. This is because the charge transfer from the catecholate moiety to the dioxygen molecule plays a key role to activate the dioxygen molecule. However, the reactivity of the native catechol dioxygenase is much larger than those of the model complexes, despite the similar IP(CAT) values, suggesting that other factors such as the coordinatively unsaturated iron(III) center of the native enzyme play a crucial role in the reactivity.


Assuntos
Catecol 1,2-Dioxigenase/química , Ferro/química , Ligantes , Metais/química , Modelos Teóricos , Domínio Catalítico , Catecol 1,2-Dioxigenase/metabolismo , Elétrons , Teoria Quântica , Solventes/química
13.
Dalton Trans ; 39(40): 9611-25, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20835480

RESUMO

The iron(iii) complexes of the bis(phenolate) ligands 1,4-bis(2-hydroxy-4-methyl-benzyl)-1,4-diazepane H(2)(L1), 1,4-bis(2-hydroxy-4-nitrobenzyl)-1,4-diazepane H(2)(L2), 1,4-bis(2-hydroxy-3,5-dimethylbenzyl)-1,4-diazepane H(2)(L3) and 1,4-bis(2-hydroxy-3,5-di-tert-butylbenzyl)-1,4-diazepane H(2)(L4) have been isolated and studied as structural and functional models for 3,4-PCD enzymes. The complexes [Fe(L1)Cl] 1, [Fe(L2)(H(2)O)Cl] 2, [Fe(L3)Cl] 3 and [Fe(L4)Cl] 4 have been characterized using ESI-MS, elemental analysis, and absorption spectral and electrochemical methods. The single crystal X-ray structure of 3 contains the FeN(2)O(2)Cl chromophore with a novel square pyramidal (τ, 0.20) coordination geometry. The Fe-O-C bond angle (135.5°) and Fe-O bond length (1.855 Å) are very close to the Fe-O-C bond angles (133, 148°) and Fe-O(tyrosinate) bond distances (1.81, 1.91 Å) in 3,4-PCD enzyme. All the complexes exhibit two intense absorption bands in the ranges 335-383 and 493-541 nm, which are assigned respectively to phenolate (pπ) → Fe(iii) (dσ*) and phenolate (pπ) → Fe(iii) (dπ*) LMCT transitions. The Fe(iii)/Fe(ii) redox potentials of 1, 3 and 4 (E(1/2), -0.882--1.010 V) are more negative than that of 2 (E(1/2), -0.577 V) due to the presence of two electron-withdrawing p-nitrophenolate moieties in the latter enhancing the Lewis acidity of the iron(iii) center. Upon adding H(2)DBC pretreated with two equivalents of Et(3)N to the iron(iii) complexes, two catecholate-to-iron(iii) LMCT bands (656, ε, 1030; 515 nm, ε, 1330 M(-1) cm(-1)) are observed for 2; however, interestingly, an intense catecholate-to-iron(iii) LMCT band (530-541 nm) is observed for 1, 3 and 4 apart from a high intensity band in the range 451-462 nm. The adducts [Fe(L)(DBC)](-) generated from 1-4in situ in DMF/Et(3)N solution react with dioxygen to afford almost exclusively the simple two-electron oxidation product 3,5-di-tert-butylbenzoquinone (DBQ), which is discerned from the appearance and increase in intensity of the electronic spectral band around 400 nm, and smaller amounts of cleavage products. Interestingly, in DMF/piperidine the amount of quinone product decreases and those of the cleavage products increase illustrating that the stronger base piperidine enhances the concentration of the catecholate adduct. The rates of both dioxygenation and quinone formation observed in DMF/Et(3)N solution vary in the order 1 > 3 > 4 < 2 suggesting that the ligand steric hindrance to molecular oxygen attack, the Lewis acidity of the iron(iii) center and the ability of the complexes to rearrange the Fe-O phenolate bonds to accommodate the catecholate substrate dictate the extent of interaction of the complexes with substrate and hence determine the rates of reactions. This is in line with the observation of DBSQ/H(2)DBC reduction wave for the adduct [Fe(L2)(DBC)](-) at a potential (E(1/2): -0.285 V) more positive than those for the adducts of 1, 3 and 4 (E(1/2): -0.522 to -0.645 V).


Assuntos
Catecol 1,2-Dioxigenase/metabolismo , Complexos de Coordenação/química , Compostos Férricos/química , Protocatecoate-3,4-Dioxigenase/metabolismo , Quinonas/química , Catálise , Domínio Catalítico , Catecol 1,2-Dioxigenase/química , Catecóis/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Ligantes , Modelos Moleculares , Conformação Molecular , Protocatecoate-3,4-Dioxigenase/química
14.
Dalton Trans ; (39): 8317-28, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19789784

RESUMO

A series of new 1 : 1 iron(iii) complexes of the type [Fe()Cl(3)], where is a tridentate 3N donor ligand, has been isolated and studied as functional models for catechol dioxygenases. The ligands (1-methyl-1H-imidazol-2-ylmethyl)pyrid-2-ylmethyl-amine (), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine () and N-(1-methyl-1H-imidazol-2-ylmethyl)-N'-phenylethane-1,2-diamine () are linear while the ligands tris(1-pyrazolyl)methane (), tris(3,5-dimethyl-1-pyrazolyl)methane () and tris(3-iso-propylpyrazolyl)methane () are tripodal ones. All the complexes have been characterized by spectral and electrochemical methods. The X-ray crystal structure of the dinuclear catecholate adduct [Fe()(TCC)](2)O, where TCC(2-) is a tetrachlorocatecholate dianion, has been successfully determined. In this complex both the iron(iii) atoms are bridged by a mu-oxo group and each iron(iii) center possesses a distorted octahedral coordination geometry in which the ligand is facially coordinated and the remaining coordination sites are occupied by the TCC(2-) dianion. Spectral studies suggest that addition of a base like Et(3)N induces the mononuclear complex species [Fe()(TCC)Cl] to dimerize forming a mu-oxo-bridged complex. The spectral and electrochemical properties of the catecholate adducts of the complexes generated in situ reveal that a systematic variation in the ligand donor atom type significantly influences the Lewis acidity of the iron(iii) center and hence the interaction of the complexes with simple and substituted catechols. The 3,5-di-tert-butylcatecholate (DBC(2-)) adducts of the type [Fe()(DBC)Cl], where is a linear tridentate ligand (), undergo mainly oxidative intradiol cleavage of the catechol in the presence of dioxygen. Also, the extradiol-to-intradiol product selectivity (E : I) is enhanced upon removal of the coordinated chloride ion in these adducts to obtain [Fe()(DBC)(Sol)](+) and upon incorporating coordinated N-methylimidazolyl nitrogen in them. In contrast to the iron(iii) complexes of imidazole-based ligands, those of the tripodal pyrazole-based ligands yield major amounts of the oxidized product benzoquinone and small amounts of both intra- and extradiol products. One of the pyrazole arms coordinated in the equatorial plane of these sterically constrained complexes is substituted by a solvent molecule upon adduct formation with DBC(2-), which encourages molecular oxygen to attack this site leading to benzoquinone formation. The DBSQ/DBC(2-) redox potentials of both the imidazole- and pyrazole-based complexes fall in the narrow range of -0.186 to -0.214 V supporting this proposal.


Assuntos
Catecol 1,2-Dioxigenase/metabolismo , Imidazóis/química , Ferro/química , Pirazóis/química , Cristalografia por Raios X , Cinética , Ligantes , Conformação Molecular
15.
J Phys Chem B ; 113(14): 4826-36, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19284795

RESUMO

Dioxygen binding process of nonheme iron(III) center in intradiol catechol dioxygenase was investigated with CASSCF/CASPT2 method to incorporate multiconfigurational character participating in Fe-O(2) interaction. In this process, two alternative mechanisms were proposed: one is called "oxygen activation" and the other is called "substrate activation". Our CASSCF/CASPT2-calculated results support the oxygen activation. Potential energy curves and electronic structure evaluated with SA(state-averaged)-CASSCF/CASPT2 method indicate that the charge transfer directly occurs from the catecholate moiety to the dioxygen moiety in the O(2) binding process, to produce eta(1)-end-on type iron(III)-superoxo complex. This is the key step of the dioxygen activation. Interestingly, the iron center always keeps high spin d(5) character during the O(2) binding process, indicating the iron(III) center does not receive charge transfer from the catecholate moiety. However, this does not mean that the iron(III) center is not necessary to the dioxygen activation. The important role which the iron(III) center plays in catechol dioxygenase is to adjust the energy level of O(2) to induce the charge transfer from the catecholate moiety to the dioxygen moiety. Besides the eta(1)-end-on iron(III)-superoxo complex, eta(2)-side-on type iron(III)-superoxo complex is also optimized. This species is more stable than the eta(1)-end-on type iron(III)-superoxo complex, suggesting that this is considered as a stable isomer in the early stage of the catalytic cycle.


Assuntos
Catecol 1,2-Dioxigenase/metabolismo , Simulação por Computador , Ferro/metabolismo , Modelos Químicos , Oxigênio/química , Sítios de Ligação , Catecol 1,2-Dioxigenase/química , Ferro/química , Estrutura Molecular , Oxigênio/metabolismo
16.
J Biotechnol ; 131(4): 371-8, 2007 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-17826858

RESUMO

This work describes a new genetic organization and co-regulation of a cluster of genes involved in the first steps of phenol and benzene catabolic pathways in Pseudomonas sp. M1, different from the established models for Pseudomonas upper pathway. Pseudomonas sp. M1 was isolated by others from the sediments of the Rhine River and exhibits an exceptional biodegradation ability towards a wide range of toxic and/or recalcitrant compounds. Although the taxonomic classification of strain M1 could not be determined, we found in a previous study that Pseudomonas citronellolis is the closest species. The genetic organization characterized in this study, the phc (phenol catabolism) genes, includes eight clustered genes, encoding a catechol 1,2-dioxygenase (phcA), a multicomponent phenol hydroxylase (phcKLMNOP) and the transcriptional regulator PhcR (phcR). PhcR controls the transcription of the referred seven clustered genes from two catabolic promoters: Pa (for phcA) and Pk (for phcKLMNOP). In agreement with in silico prediction, the activity of Pa and Pk promoters was proved to depend on the presence of sigma(54). Both promoters are phenol and benzene inducible and evidence supporting the unique sigma(54)-dependent co-regulation of the phenol/benzene inducible genes phcA and phcKLMNOP, mediated by PhcR, was obtained.


Assuntos
Benzeno/metabolismo , Genes Bacterianos/genética , Família Multigênica/genética , Fenol/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Sequência de Bases , Catecol 1,2-Dioxigenase/metabolismo , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Mutagênese , Mutação/genética , Proteoma , Pseudomonas/enzimologia , Pseudomonas/crescimento & desenvolvimento , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA , beta-Galactosidase/metabolismo
17.
Inorg Chem ; 46(20): 8391-402, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17722878

RESUMO

The structural and spectroscopic characterization of mononuclear iron(III)-catecholato complexes of ligand L4 (methyl bis(1-methylimidazol-2-yl)(2-hydroxyphenyl)methyl ether, HL4) are described, which closely mimic the enzyme-substrate complex of the intradiol-cleaving catechol dioxygenases. The tridentate, tripodal monoanionic ligand framework of L4 incorporates one phenolato and two imidazole donor groups and thus well reproduces the His2Tyr endogenous donor set. In fact, regarding the structural features of [FeIII(L4)(tcc)(H2O)] (5.H2O, tcc = tetrachlorocatechol) in the solid state, the complex constitutes the closest structural model reported to date. The iron(III)-catecholato complexes mimic both the structural features of the active site and its spectroscopic characteristics. As part of its spectroscopic characterization, the electron paramagnetic resonance (EPR) spectra were successfully simulated using a simple model that accounts for D strain. The simulation procedure showed that the observed g = 4.3 line is an intrinsic part of the EPR envelope of the studied complexes and should not necessarily be attributed to a highly rhombic impurity. [FeIII(L4)(dtbc)(H2O)] (dtbc = 3,5-di-tert-butylcatechol) was studied with respect to its dioxygen reactivity, and oxidative cleavage of the substrate was observed. Intradiol- and extradiol-type cleavage products were found in roughly equal amounts. This shows that an accurate structural model of the first-coordination sphere of the active site is not sufficient for obtaining regioselectivity.


Assuntos
Catecol 1,2-Dioxigenase/metabolismo , Compostos Férricos/química , Catecol 1,2-Dioxigenase/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Hidrólise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA