Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant J ; 107(3): 713-726, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974298

RESUMO

As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Resposta ao Choque Térmico/fisiologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Caules de Planta/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Técnicas de Silenciamento de Genes , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Caules de Planta/enzimologia , Subunidades Proteicas , Interferência de RNA , Transdução de Sinais
2.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467778

RESUMO

In the methyl-D-erythritol-4-phosphate (MEP) pathway, 1-deoxy-D-xylose-5-phosphate synthase (DXS) is considered the key enzyme for the biosynthesis of terpenoids. In this study, PmDXS (MK970590) was isolated from Pinus massoniana. Bioinformatics analysis revealed homology of MK970590 with DXS proteins from other species. Relative expression analysis suggested that PmDXS expression was higher in roots than in other plant parts, and the treatment of P. massoniana seedlings with mechanical injury via 15% polyethylene glycol 6000, 10 mM H2O2, 50 µM ethephon (ETH), 10 mM methyl jasmonate (MeJA), and 1 mM salicylic acid (SA) resulted in an increased expression of PmDXS. pET28a-PmDXS was expressed in Escherichia coli TransB (DE3) cells, and stress analysis showed that the recombinant protein was involved in resistance to NaCl and drought stresses. The subcellular localization of PmDXS was in the chloroplast. We also cloned a full-length 1024 bp PmDXS promoter. GUS expression was observed in Nicotiana benthamiana roots, stems, and leaves. PmDXS overexpression significantly increased carotenoid, chlorophyll a, and chlorophyll b contents and DXS enzyme activity, suggesting that DXS is important in isoprenoid biosynthesis. This study provides a theoretical basis for molecular breeding for terpene synthesis regulation and resistance.


Assuntos
Pentosefosfatos/química , Pinus/enzimologia , Terpenos/química , Transferases/metabolismo , Acetatos/química , Clorofila/química , Clorofila A/química , Biologia Computacional , Ciclopentanos/química , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Oxilipinas/química , Pigmentação , Folhas de Planta , Caules de Planta/enzimologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Ácido Salicílico/química , Nicotiana/metabolismo , Transferases/genética , Xilose
3.
J Food Sci ; 85(4): 1140-1150, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32220139

RESUMO

Alterations of aroma properties and aroma-related attributes of sugarcane juice during thermal processing under different temperatures (90, 100, and 110 ℃) and treating time (10 s, 20 s, and 30 s) were assessed in this study. Changes in the volatility of aroma compounds were extremely complicated and respected to thermal processing conditions. Fructose, serine, and glutanic acid of sugarcane juice were increased at first and decreased at the end of treatment at high temperature. Phenolic compounds and PPO activity presented the decrease trends throughout the thermal treatment. The thermal processing of sugarcane juice could be roughly divided into three stages based on the cluster analysis of all the data in this study. Sugars, amino acids, and phenolic compounds might be important potential precursors of aroma deteriorating reactions. The comprehensive analysis of aroma relevant compounds and enzyme activities was beneficial for the investigation of degradation mechanism of aroma for sugarcane juice, and providing a theoretical basis for optimization of juice processing. PRACTICAL APPLICATION: This study demonstrated the changing process of aroma quality and associated compounds in sugarcane juice during thermal processing. This could help to find out the reasons of aroma degradations in sugarcane juice and other thermal sensitive juice. Our manuscript created a paradigm for future studies on the aroma quality control and parameter optimization during the processing of fruit and vegetable juice.


Assuntos
Antioxidantes/química , Catecol Oxidase/química , Aromatizantes/química , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Proteínas de Plantas/química , Saccharum/química , Manipulação de Alimentos/instrumentação , Temperatura Alta , Odorantes/análise , Fenóis/química , Caules de Planta/química , Caules de Planta/enzimologia , Saccharum/enzimologia , Volatilização
4.
Mol Biotechnol ; 61(9): 703-713, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286381

RESUMO

Lycopene ε-cyclases (LCYEs) are key enzymes in carotenoid biosynthesis converting red lycopene to downstream lutein. The flowers of marigold (Tagetes erecta) have been superior sources to supply lutein. However, the transcriptional regulatory mechanisms of LCYe in lutein synthesis are still unclear in marigold. In this work, the expression pattern of the TeLCYe gene in marigold indicated that TeLCYe mainly expressed in floral organs. To gain a better understanding of the expression and regulatory mechanism of TeLCYe gene, the TeLCYe promoter was isolated, sequenced, and analyzed through bioinformatics tools. The results suggested that the sequence of TeLCYe promoter contained various putative cis-acting elements responsive to exogenous and endogenous factors. The full-length TeLCYe promoter and three 5'-deletion fragments were fused to the GUS reporter gene and transferred into tobacco to test the promoter activities. A strong GUS activity was observed in stems of seedlings, leaves of seedlings, middle stems, top leaves, petals, stamens, and stigmas in transgenic tobacco containing full-length TeLCYe promoter LP0-2086. Deletion of - 910 to - 429 bp 5' to ATG significantly increased the GUS activity in chloroplast-rich tissues and floral organs, while deletion occurring from 1170 to 910 bp upstream ATG decreased the TeLCYe promoter strength in stems of seedlings, leaves of seedlings, top leaves and sepals. Functional characterization of the full-length TeLCYe promoter and its' deletion fragments in stable transgenic tobacco indicated that the LP0-2086 contains some specific cis-acting elements, which might result in the high-level expression of in floral organs, and LP2-910 might contain some specific cis-acting elements which improved GUS activities in vegetable tissues.


Assuntos
Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Nicotiana/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Tagetes/genética , Biologia Computacional/métodos , Flores/enzimologia , Flores/genética , Genes Reporter , Glucuronidase/genética , Glucuronidase/metabolismo , Liases Intramoleculares/metabolismo , Luteína/biossíntese , Licopeno/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Plântula/enzimologia , Plântula/genética , Tagetes/enzimologia , Nicotiana/enzimologia
5.
Microb Pathog ; 130: 71-80, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30844473

RESUMO

Mandacaru (Cereus jamacaru DC.), is a cactaceous symbol of caatinga vegetation at Brazilian Northeast region, however, there are no much studies about biochemical properties of this species. Here, the pioneering study brings very relevant data to highlight the importance of research with endemic plants of the caatinga. Afterward, the presence of enzymes such as peroxidase, protease, chitinase, ß-1,3-glucanase, and serine (trypsin) and cysteine (papain) protease inhibitors were evaluated. The peroxidase activity was higher in roots than other tissues. The ß-1,3-glucanase and proteolytic activity were prominent in stem and roots. The chitinase activity and protease inhibitor for both classes analyzed were detected in the stem and fruit peel. Antifungal activity against Colletotrichum gloeosporioides showed the root extract has a promising inhibitory activity on this economical important phytopathogenic fungus. After the contact of the hyphae with root extract increase in membrane permeability, based on Propidium Iodide (PI) uptake, and production of reactive oxygen species (ROS) were detected, compared to negative control. In addition, Scanning Electron Microscopy (SEM) analysis showed morphological damage on hyphae structure indicating that the treatment debilitates either cell membrane or cell wall leading to the cell death C. gloeosporioides.


Assuntos
Antifúngicos/farmacologia , Cactaceae/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Colletotrichum/crescimento & desenvolvimento , Proteínas de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antifúngicos/isolamento & purificação , Cactaceae/enzimologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/enzimologia , Colletotrichum/ultraestrutura , Enzimas/análise , Frutas/química , Frutas/enzimologia , Hifas/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Permeabilidade/efeitos dos fármacos , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Caules de Planta/química , Caules de Planta/enzimologia
6.
Sci Rep ; 8(1): 14512, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267019

RESUMO

Although straw decomposition is important for ecosystem fertility and carbon balance, influence of ultraviolet-B (UV-B) radiation and nitrogen (N) deposition on this process is unclear. In this study, UV-B-exposed rice straw was decomposed under different N addition treatments for 15 months to investigate the indirect effects of UV-B radiation on straw chemistry and direct effects of N deposition on decomposition. UV-B exposure during rice plant growth changed the rice straw chemical composition, increasing the concentrations of acid-insoluble fraction (AIF), acid-soluble fraction, and UV-B-absorbing compounds. High N content had a negative effect on decomposition of rice straw exposed to enhanced and ambient UV-B radiation. Both AIF concentration and FTIR peak intensities indicated that lignin in rice straw was selectively preserved following N addition and UV-B radiation, reducing straw decomposition rate, which corresponded to lower activities of lignin-degrading enzymes in the later stage of decomposition. Thus, enhanced UV-B radiation during rice plant growth produced more recalcitrant substrates (lignin) and N reacted with lignin to produce more resistant compounds, further decreasing straw decomposition rate. UV-B radiation during plant growth and N deposition inhibit litter decomposition in agroecosystem, and their effects should be considered when establishing biogeochemical models in response to global changes.


Assuntos
Biodegradação Ambiental/efeitos da radiação , Nitrogênio/análise , Oryza/efeitos da radiação , Solo/química , Raios Ultravioleta , Carboidratos/análise , Carbono/análise , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Lipídeos/análise , Monofenol Mono-Oxigenase/metabolismo , Nitrogênio/farmacologia , Ciclo do Nitrogênio , Oryza/metabolismo , Peroxidases/metabolismo , Proteínas de Plantas/análise , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos da radiação , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Plant Biol (Stuttg) ; 20(6): 978-985, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30047203

RESUMO

Breadfruit (Artocarpus altilis) is primarily grown as a staple tree crop for food security in Oceania. Significant wind damage has driven interest in developing its dwarfing rootstocks. Due to the predominantly vegetative propagation of the species, grafting onto interspecific seedlings is an approach to identifying dwarfing rootstocks. However, grafting of breadfruit onto unrelated Artocarpus species has not been investigated. Here we first report the success of breadfruit grafting onto interspecific rootstocks, marang (A. odoratissimus) and pedalai (A. sericicarpus). To address the low graft survival, we investigated the relationship of plasma membrane (PM) H+ -ATPase activity to graft success. We provide the first evidence for a positive correlation between PM H+ -ATPase activity and graft survival. The graft unions of successful grafts had higher PM H+ -ATPase activity compared to those of failed grafts. Rootstocks with low PM H+ -ATPase activity in leaf microsomes before grafting had lower graft survival than those with high enzyme activity, with graft success of 10% versus 60% and 0% versus 30% for marang and pedalai rootstocks, respectively. There was a positive correlation between graft success and the PM H+ -ATPase activity measured from the rootstock stem microsomes 2 months after grafting [marang, r(7) = 0.9203, P = 0.0004; pedalai (r(7) = 0. 8820, P = 0.0017]. Removal of scion's own roots decreased the leaf PM H+ -ATPase activity of grafted plants regardless of the final graft outcome. Recovery of the enzyme activity was only found in the successful grafts. The function of PM H+ -ATPase in graft union development and graft success improvement is discussed.


Assuntos
Artocarpus/enzimologia , Membrana Celular/enzimologia , Produção Agrícola , Raízes de Plantas/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Artocarpus/crescimento & desenvolvimento , Produção Agrícola/métodos , Microssomos/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/enzimologia , Caules de Planta/crescimento & desenvolvimento
8.
Int J Mol Sci ; 17(7)2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27376270

RESUMO

In this report, the effects of two oligochitosans, i.e., oligochitosan A (OCHA) and oligochitosan B (OCHB), on control of dry rot of Zanthoxylum bungeanum (Z. bungeanum) caused by Fusarium sambucinum (F. sambucinum) were evaluated. First, both oligochitosans show desirable ability to decrease the infection of F. sambucinum. Second, the oligochitosans strongly inhibit the radial colony and submerged biomass growth of F. sambucinum. Lastly, these oligochitosans are capable of increasing the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO) and peroxidase (POD) significantly, as well as enhancing the content of total phenolics in Z. bungeanum stems. These findings indicate that the protective effects of OCHA and OCHB on Z. bungeanum stems against dry rot may be associated with the direct fungitoxic function against pathogen and the elicitation of biochemical defensive responses in Z. bungeanum stems. The outcome of this report suggests that oligochitosans may serve as a promising natural fungicide to substitute, at least partially, for synthetic fungicides in the disease management of Z. bungeanum.


Assuntos
Quitina/análogos & derivados , Zanthoxylum/química , Catecol Oxidase/metabolismo , Quitina/química , Quitina/farmacologia , Quitosana , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Oligossacarídeos , Peroxidase/metabolismo , Fenóis/química , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Zanthoxylum/enzimologia , Zanthoxylum/metabolismo
9.
Plant J ; 86(5): 363-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27037613

RESUMO

Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.


Assuntos
Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Esterases/metabolismo , Medicago truncatula/enzimologia , Panicum/enzimologia , Populus/enzimologia , Vias Biossintéticas , Brachypodium/genética , Esterases/genética , Regulação da Expressão Gênica de Plantas , Lignina/análise , Lignina/química , Lignina/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Mutagênese Insercional , Panicum/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Populus/genética , Proteínas Recombinantes , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Zea mays/genética
10.
Plant Cell Environ ; 39(1): 103-19, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26138759

RESUMO

Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hordeum/enzimologia , Peroxirredoxinas/metabolismo , Solanum tuberosum/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Flores/enzimologia , Flores/genética , Flores/fisiologia , Frutas/enzimologia , Frutas/genética , Frutas/fisiologia , Hordeum/genética , Hordeum/fisiologia , Luz , Oxirredução , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxinas/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/fisiologia , Polimerização , Conformação Proteica , Transporte Proteico , Proteínas Recombinantes , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Especificidade da Espécie , Tiorredoxinas/metabolismo
11.
Plant Physiol Biochem ; 97: 70-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433636

RESUMO

Flavonoid 3'-hydroxylase (F3'H), a member of cytochrome P450 protein family, introduces B-ring hydroxyl group in the 3' position of the flavonoid. In this study, the cDNA sequence of a F3'H gene (VviF3'H), which contains an open reading frame of 1530 bp encoding a polypeptide of 509 amino acids, was cloned and characterized from Vitis vinifera L. cv. Cabernet Sauvignon. VviF3'H showed high homology to known F3'H genes, especially F3'Hs from the V. vinifera reference genome (Pinot Noir) and lotus. Expression profiling analysis using real-time PCR revealed that VviF3'H was ubiquitously expressed in all tested tissues including berries, leaves, flowers, roots, stems and tendrils, suggesting its important physiological role in plant growth and development. Moreover, the transcript level of VviF3'H gene in grape berries was relatively higher at early developmental stages and gradually decreased during véraison, and then increased in the mature phase. In addition, the promoter of VviF3'H was isolated by using TAIL-PCR. Yeast one-hybrid screening of the Cabernet Sauvignon cDNA library and subsequent in vivo/vitro validations revealed the interaction between VviF3'H promoter and several transcription factors, including members of HD-Zip, NAC, MYB and EIN families. A transcriptional regulation mechanism of VviF3'H expression is proposed for the first time.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas de Plantas/metabolismo , Vitis/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , Flores/enzimologia , Flores/genética , Flores/efeitos da radiação , Frutas/enzimologia , Frutas/genética , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/efeitos da radiação , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/efeitos da radiação , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética , Vitis/efeitos da radiação
12.
Ecotoxicol Environ Saf ; 120: 184-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26074311

RESUMO

The aims of this study were: (1) the study of cadmium (Cd) accumulation and toxicity in different castor cultivars (Ricinus communis L.); (2) to investigate changes in antioxidant enzymatic activities and the subcellular distribution of Cd in young and old leaves from two different castor cultivars, after exposure to two different Cd concentrations, and explore the underlying mechanism of Cd detoxification focusing on antioxidant enzymes and subcellular compartmentalization. The Cd concentration, toxicity, and subcellular distribution, as well as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were measured in Zibo-3 and Zibo-9 cultivars after exposure to two different concentrations of Cd (2mg/L and 5mg/L) for 10 days. This research revealed Cd accumulation characteristics in castor are root>stem>young leaf>old leaf. Castor tolerance was Cd dose exposure and the cultivars themselves dependent. Investigation of subcellular Cd partitioning showed that Cd accumulated mainly in the heat stable protein (HSP) and cellular debris fractions, followed by the Cd rich granule (MRG), heat denatured protein (HDP), and organelle fractions. With increasing Cd concentration in nutrient solution, the decreased detoxified fractions (BDM) and the increased Cd-sensitive fractions (MSF) in young leaves may indicate the increased Cd toxicity in castor cultivars. The BDM-Cd fractions or MSF-Cd in old leaves may be linked with Cd tolerance of different cultivars of castor. The antioxidant enzymes that govern Cd detoxification were not found to be active in leaves. Taken together, these results indicate Cd tolerance and toxicity in castor can be explained by subcellular partitioning.


Assuntos
Antioxidantes/metabolismo , Cádmio/metabolismo , Folhas de Planta/enzimologia , Ricinus communis/enzimologia , Catalase/metabolismo , Inativação Metabólica , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Caules de Planta/enzimologia , Superóxido Dismutase/metabolismo
13.
Plant Cell Environ ; 38(3): 525-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25041194

RESUMO

Spathiphyllum wallisii plants were used to study the effect of chilling stress under high illumination on photosynthesis and chlororespiration. Leaves showed different responses that depended on root temperature. When stem, but not root, was chilled, photosystem II (PSII) was strongly photoinhibited. However, when the whole plant was chilled, the maximal quantum yield of PSII decreased only slightly below the normal values and cyclic electron transport was stimulated. Changes were also observed in the chlororespiration enzymes and PGR5. In whole plants chilled under high illumination, the amounts of NADH dehydrogenase (NDH) complex and plastid terminal oxidase (PTOX) remained similar to control and increased when only stem was chilled. In contrast, the amount of PGR5 polypeptide was higher in plants when both root and stem were chilled than in plants in which only stem was chilled. The results indicated that the contribution of chlororespiration to regulating photosynthetic electron flow is not relevant when the whole plant is chilled under high light, and that another pathway, such as cyclic electron flow involving PGR5 polypeptide, may be more important. However, when PSII activity is strongly photoinhibited in plants in which only stem is chilled, chlororespiration, together with other routes of electron input to the electron transfer chain, is probably essential.


Assuntos
Araceae/fisiologia , Estresse Fisiológico , Araceae/enzimologia , Araceae/genética , Respiração Celular , Clorofila/metabolismo , Cloroplastos/metabolismo , Temperatura Baixa , Transporte de Elétrons , Luz , Oxirredução , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/fisiologia , Caules de Planta/enzimologia , Caules de Planta/fisiologia
14.
J Sci Food Agric ; 95(9): 1868-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25171771

RESUMO

BACKGROUND: The effect of pulsed electric field (PEF) treatment variables (electric field strength and treatment time) on the glucosinolate content of broccoli flowers and stalks was evaluated. Samples were subjected to electric field strengths from 1 to 4 kV cm(-1) and treatment times from 50 to 1000 µs at 5 Hz. RESULTS: Data fitted significantly (P < 0.0014) the proposed second-order response functions. The results showed that PEF combined treatment conditions of 4 kV cm(-1) for 525 and 1000 µs were optimal to maximize glucosinolate levels in broccoli flowers (ranging from 187.1 to 212.5%) and stalks (ranging from 110.6 to 203.0%) respectively. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values, with low average mean deviations (E%) ranging from 0.59 to 8.80%. CONCLUSION: The use of PEF processing at moderate conditions could be a suitable method to stimulate production of broccoli with high health-promoting glucosinolate content.


Assuntos
Brassica/química , Manipulação de Alimentos , Alimentos em Conserva/análise , Glucosinolatos/análise , Inflorescência/química , Modelos Biológicos , Caules de Planta/química , Anticarcinógenos/análise , Anticarcinógenos/metabolismo , Brassica/enzimologia , Brassica/metabolismo , Estimulação Elétrica , Liofilização , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Imidoésteres/análise , Imidoésteres/metabolismo , Indóis/análise , Indóis/metabolismo , Inflorescência/enzimologia , Inflorescência/metabolismo , Oximas , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/metabolismo , Metabolismo Secundário , Estatística como Assunto , Sulfóxidos
15.
Sheng Wu Gong Cheng Xue Bao ; 31(8): 1219-29, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26762043

RESUMO

We analyzed the best light intensity for callus induction and maintenance in Vitis vinifera and explored the mechanism of grape callus browning. Tender stem segments of grape cultivar "gold finger" were used to study the effects of different light intensities (0, 500, 1 000, 1 500, 2 000, 2 500, 3 000 and 4 000 Lx) on the induction rate, browning rate and associated enzyme activity and gene expression during Vitis vinifera callus formation. The callus induction rate under 0, 500, 1 000 and 1 500 Lx was more than 92%, significantly higher than in other treatments (P < 0.05). A lower browning rate and better callus growth were also observed during subculture under 1 000 and 1 500 Lx treatments. We found that chlorogenic acid, caffeic acid, p-hydroxybenzoic acid and coumaric acid contents were correlated with the browning rate of callus, among which chlorogenic acid content was positively correlated with the browning rate (P < 0.05). Peroxidase (POD) and polyphenol oxidase (PPO) activities were negatively correlated with the browning rate of callus (P < 0.01). The POD, PPO and phenylalanine ammonialyase (PAL) expression levels were positively correlated with the browning rate at P < 0.05 or P < 0.01. An appropriate light intensity for the tissue culture of Vitis vinifera was 1 000-1 500 Lx, higher or lower light intensities significantly impaired normal callus growth.


Assuntos
Luz , Técnicas de Cultura de Tecidos , Vitis/enzimologia , Vitis/efeitos da radiação , Ácidos Cafeicos/química , Catecol Oxidase/química , Meios de Cultura/química , Regulação da Expressão Gênica de Plantas , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Caules de Planta/enzimologia , Caules de Planta/efeitos da radiação
16.
Plant Physiol ; 166(4): 1956-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25315601

RESUMO

ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Lignina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Celulose/metabolismo , Elétrons , Flavonóis/metabolismo , Glucosinolatos/metabolismo , Hidrólise , Inflorescência/enzimologia , Inflorescência/genética , Mutação , NADP/metabolismo , Oxirredução , Fenóis/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Metabolismo Secundário
17.
Plant Mol Biol ; 86(4-5): 443-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25150410

RESUMO

As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.


Assuntos
Adaptação Fisiológica/genética , Betaína-Aldeído Desidrogenase/genética , Betaína/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Interferência de RNA , Betaína-Aldeído Desidrogenase/metabolismo , Temperatura Baixa , Secas , Flores/enzimologia , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Estresse Oxidativo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal/genética , Estresse Fisiológico
18.
Nat Prod Res ; 28(22): 2066-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24931146

RESUMO

The phytochemical screening and protein profiling of Allamanda cathartica was performed. Biochemical analysis revealed that peroxidase (8730 ± 307 units/g), superoxide dismutase (181 ± 3.79 units/g), catalase (529 ± 28.9 units/g), protease (3598 ± 79.8 units/g), total phenolic contents (19,344 ± 657 µM/g), ß-esterases (342 ± 46.5 units/g) and the total oxidant status were highest in the roots as compared to other plant parts. However, total soluble proteins (128 ± 1.54 mg/g), lycopene (5.70 ± 0.61 mg/g), chlorophyll a (161 ± 24.9 µg/g), total chlorophyll content (267 ± 34.3 µg/g) and total carotenoid content (12.4 ± 1.71 mg/g) were found to be highest in leaves. Moreover, total antioxidant capacity (5.43 ± 0.29 µM/g) detected by using ABTS method and α-esterase (714.580 ± 23.6 units/g) were highest in shoots. The protein profiling was performed using SDS-PAGE. In leaves, 13 peptides with molecular weight (M.wt.) from 27 to 168 kDa were detected while in shoots 10 peptides with M.wt. from 30 to 95 kDa were resolved. Similarly, in roots, 10 peptides of 30-880 kDa and in flower seven peptides of 30-88 kDa were detected.


Assuntos
Antioxidantes/farmacologia , Apocynaceae/química , Clorofila/análise , Peptídeos/análise , Antioxidantes/química , Catalase/metabolismo , Eletroforese em Gel de Poliacrilamida , Flores/enzimologia , Peso Molecular , Peptídeo Hidrolases/metabolismo , Peroxidase/metabolismo , Fenóis/análise , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Caules de Planta/enzimologia , Superóxido Dismutase/metabolismo
19.
Acta Biol Hung ; 65(2): 189-204, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24873912

RESUMO

Studies in Arabidopsis thaliana and Nicotiana tabacum L. variety Samsun NN demonstrated that expression of the CESA3 cellulose synthase gene that contains a point mutation, named ixr1-2, results in greater conversion of plant-derived cellulose to fermentable sugars. The present study was designed to examine the improved enzymatic saccharification efficiency of lignocellulosic biomass of tobacco plants expressing AtCESA3ixr1-2. Three-month-old AtCESA3ixr1-2 transgenic and wild-type tobacco plants (Nicotiana tabacum L. variety Samsun NN) were grown in the presence and absence of isoxaben. Biomass obtained from leaf, stem, and root tissues were analyzed for enzymatic saccharification rates. During enzymatic saccharification, 45% and 25% more sugar was released from transgenic leaf and stem samples, respectively, when compared to the wild-type samples. This gain in saccharification efficiency was achieved without chemical or heat pretreatment. Additionally, leaf and stem biomass from transgenic AtCESA3ixr1-2 requires a reduced amount of enzyme for saccharification compared to biomass from wild-type plants. From a practical standpoint, a similar strategy could be employed to introduce the mutated CESA into energy crops like poplar and switchgrass to improve the efficiency of biomass conversion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Celulose/metabolismo , Fermentação , Glucosiltransferases/metabolismo , Nicotiana/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Proteínas de Arabidopsis/genética , Benzamidas/farmacologia , Biomassa , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Herbicidas/farmacologia , Hidrólise , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Mutação Puntual , Fatores de Tempo , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
20.
PLoS One ; 9(3): e90700, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595064

RESUMO

In order to find a way to induce rooting on cuttings of Hemarthria compressa cv. Ya'an under controlled conditions, a project was carried out to study the effect of naphthalene acetic acid (NAA) on rooting in stem cuttings and related physiological changes during the rooting process of Hemarthria compressa. The cuttings were treated with five concentrations of NAA (0, 100, 200 300, 400 mg/l) at three soaking durations (10, 20, 30 minutes), and cuttings without treatment were considered as control. Samples were planted immediately into pots after treatment. IAA-oxidase (IAAO) activity, peroxidase (POD) activity and polyphenol oxidase (PPO) activity were determined after planting. Results showed that NAA had positive effect on rooting at the concentration of 200 mg/l compared to other concentrations at 30 days after planting (DAP). Among the three soaking durations, 20 minutes (min) of 200 mg/l NAA resulted in higher percentages of rooting, larger numbers of adventitious roots and heavier root dry weight per cutting. The lowest IAAO activity was obtained when soaked at 200 mg/l NAA for 20 min soaking duration. This was consistent with the best rooting ability, indicating that the lower IAAO activity, the higher POD activity and PPO activity could be used as an indicator of better rooting ability for whip grass cuttings and might serve as a good marker for rooting ability in cuttings.


Assuntos
Ácidos Naftalenoacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/fisiologia , Caules de Planta/enzimologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Poaceae/enzimologia , Poaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA