Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Plant J ; 119(2): 1039-1058, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38804740

RESUMO

Plant stems constitute the most abundant renewable resource on earth. The function of lysine (K)-2-hydroxyisobutyrylation (Khib), a novel post-translational modification (PTM), has not yet been elucidated in plant stem development. Here, by assessing typical pepper genotypes with straight stem (SS) and prostrate stem (PS), we report the first large-scale proteomics analysis for protein Khib to date. Khib-modifications influenced central metabolic processes involved in stem development, such as glycolysis/gluconeogenesis and protein translation. The high Khib level regulated gene expression and protein accumulation associated with cell wall formation in the pepper stem. Specially, we found that CaMYB61 knockdown lines that exhibited prostrate stem phenotypes had high Khib levels. Most histone deacetylases (HDACs, e.g., switch-independent 3 associated polypeptide function related 1, AFR1) potentially function as the "erasing enzymes" involved in reversing Khib level. CaMYB61 positively regulated CaAFR1 expression to erase Khib and promote cellulose and hemicellulose accumulation in the stem. Therefore, we propose a bidirectional regulation hypothesis of "Khib modifications" and "Khib erasing" in stem development, and reveal a novel epigenetic regulatory network in which the CaMYB61-CaAFR1 molecular module participating in the regulation of Khib levels and biosynthesis of cellulose and hemicellulose for the first time.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Lisina , Proteínas de Plantas , Caules de Planta , Proteômica , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Parede Celular/metabolismo , Parede Celular/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Plant Cell Physiol ; 65(5): 770-780, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38424724

RESUMO

Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glutationa , Folhas de Planta , Caules de Planta , Sulfatos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Sulfatos/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glutationa/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Transporte Biológico , Enxofre/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo
3.
Nat Plants ; 8(4): 346-355, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347264

RESUMO

Gene duplications are a hallmark of plant genome evolution and a foundation for genetic interactions that shape phenotypic diversity1-5. Compensation is a major form of paralogue interaction6-8 but how compensation relationships change as allelic variation accumulates is unknown. Here we leveraged genomics and genome editing across the Solanaceae family to capture the evolution of compensating paralogues. Mutations in the stem cell regulator CLV3 cause floral organs to overproliferate in many plants9-11. In tomato, this phenotype is partially suppressed by transcriptional upregulation of a closely related paralogue12. Tobacco lost this paralogue, resulting in no compensation and extreme clv3 phenotypes. Strikingly, the paralogues of petunia and groundcherry nearly completely suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic complementation analyses show that this potent compensation partially degenerated in tomato due to a single amino acid change in the paralogue and cis-regulatory variation that limits its transcriptional upregulation. Our findings show how genetic interactions are remodelled following duplications and suggest that dynamic paralogue evolution is widespread over short time scales and impacts phenotypic variation from natural and engineered mutations.


Assuntos
Sinais Direcionadores de Proteínas , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Meristema/metabolismo , Peptídeos/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983847

RESUMO

Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of Nicotiana tabacum at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( SI Appendix, Table S1) provides a valuable exploratory tool for sieve element biology.


Assuntos
Retículo Endoplasmático/metabolismo , Nicotiana/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteômica , Retículo Endoplasmático/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Caules de Planta/citologia , Caules de Planta/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Nicotiana/citologia , Nicotiana/genética
5.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884432

RESUMO

Red clover (Trifolium pratense L.) is used as forage and contains a high level of isoflavonoids. Although isoflavonoids in red clover were discovered a long time ago, the transcriptional regulation of isoflavonoid biosynthesis is virtually unknown because of the lack of accurate and comprehensive characterization of the transcriptome. Here, we used a combination of long-read (PacBio Iso-Seq) and short-read (Illumina) RNAseq sequencing to develop a more comprehensive full-length transcriptome in four tissues (root, stem, leaf, and flower) and to identify transcription factors possibly involved in isoflavonoid biosynthesis in red clover. Overall, we obtained 50,922 isoforms, including 19,860 known genes and 2817 novel isoforms based on the annotation of RefGen Tp_v2.0. We also found 1843 long non-coding RNAs, 1625 fusion genes, and 34,612 alternatively spliced events, with some transcript isoforms validated experimentally. A total of 16,734 differentially expressed genes were identified in the four tissues, including 43 isoflavonoid-biosynthesis-related genes, such as stem-specific expressed TpPAL, TpC4H, and Tp4CL and root-specific expressed TpCHS, TpCHI1, and TpIFS. Further, weighted gene co-expression network analysis and a targeted compound assay were combined to investigate the association between the isoflavonoid content and the transcription factors expression in the four tissues. Twelve transcription factors were identified as key genes for isoflavonoid biosynthesis. Among these transcription factors, the overexpression of TpMYB30 or TpRSM1-2 significantly increased the isoflavonoid content in tobacco. In particular, the glycitin was increased by 50-100 times in the plants overexpressing TpRSM1-2, in comparison to that in the WT plants. Our study provides a comprehensive and accurate annotation of the red clover transcriptome and candidate genes to improve isoflavonoid biosynthesis and accelerate research into molecular breeding in red clover or other crops.


Assuntos
Perfilação da Expressão Gênica/métodos , Isoflavonas/biossíntese , Fatores de Transcrição/genética , Trifolium/metabolismo , Processamento Alternativo , Vias Biossintéticas , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Análise de Sequência de RNA , Trifolium/genética
6.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830140

RESUMO

The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.


Assuntos
Basidiomycota/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/genética , Tumores de Planta/genética , Poaceae/genética , Sequência de Aminoácidos , Basidiomycota/metabolismo , Basidiomycota/patogenicidade , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Hifas/genética , Hifas/metabolismo , Hifas/patogenicidade , Ácidos Indolacéticos/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Tumores de Planta/microbiologia , Poaceae/metabolismo , Poaceae/microbiologia , Homologia de Sequência de Aminoácidos , Virulência/genética
7.
Plant J ; 108(3): 781-792, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492144

RESUMO

The cotton (Gossypium hirsutum) pigment gland is a distinctive structure that functions as the main deposit organ of gossypol and its derivatives. It is also an ideal system in which to study cell differentiation and organogenesis. However, only a few genes that determine the process of gland formation have been reported, including GoPGF, CGP1, and CGFs; the molecular mechanisms underlying gland initiation are still largely unclear. Here, we report the discovery of the novel stem pigment gland-forming gene GoSPGF by map-based cloning; annotated as a GRAS transcription factor, this gene is responsible for the glandless trait specifically on the stem. In the stem glandless mutant T582, a point mutation (C to A) was found to create a premature stop codon and truncate the protein. Similarly, virus-induced gene silencing of GoSPGF resulted in glandless stems and dramatically reduced gossypol content. Comparative transcriptomic data showed that loss of GoSPGF significantly suppressed expression of many genes involved in gossypol biosynthesis and altered expression of genes involved in gibberellic acid signaling/biosynthesis. Overall, these findings provide more insight into the networks regulating glandular structure differentiation and formation in cotton, which will be helpful for understanding other plants bearing special gland structures such as tobacco (Nicotiana benthamiana), artemisia annua, mint (Mentha spp.), and rubber (Hevea brasiliensis).


Assuntos
Gossypium/genética , Proteínas de Plantas/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Giberelinas/metabolismo , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Gossipol/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transdução de Sinais , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant J ; 107(6): 1663-1680, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34218490

RESUMO

Adventitious root (AR) formation is a critical factor in the vegetative propagation of forestry and horticultural plants. Competence for AR formation declines in many species during the miR156/SPL-mediated vegetative phase change. Auxin also plays a regulatory role in AR formation. In apple rootstock, both high miR156 expression and exogenous auxin application are prerequisites for AR formation. However, the mechanism by which the miR156/SPL module interacts with auxin in controlling AR formation is unclear. In this paper, leafy cuttings of juvenile (Mx-J) and adult (Mx-A) phase Malus xiaojinensis were used in an RNA-sequencing experiment. The results revealed that numerous genes involved in phytohormone signaling, carbohydrate metabolism, cell dedifferentiation, and reactivation were downregulated in Mx-A cuttings in response to indole butyric acid treatment. Among the differentially expressed genes, an HD-ZIP transcription factor gene, MxHB13, was found to be under negative regulation of MdSPL26 by directly binding to MxHB13 promoter. MxTIFY9 interacts with MxSPL26 and may play a role in co-repressing the expression of MxHB13. The expression of MxTIFY9 was induced by exogenous indole butyric acid. MxHB13 binds to the promoter of MxABCB19-2 and positively affects the expression. A model is proposed in which MxHB13 links juvenility-limited and auxin-limited AR recalcitrance mechanisms in Mx-A.


Assuntos
Malus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Malus/efeitos dos fármacos , Malus/genética , Malus/metabolismo , Células Vegetais , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Nicotiana/genética , Fatores de Transcrição/genética
9.
Plant Cell Environ ; 44(8): 2765-2776, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33837973

RESUMO

Resistance (R) genes usually compete in a coevolutionary arms race with reciprocal effectors to confer strain-specific resistance to pathogens or herbivorous insects. Here, we investigate the specificity of SLI1, a recently identified R gene in Arabidopsis that encodes a small heat shock-like protein involved in resistance to Myzus persicae aphids. In a panel with several aphid and whitefly species, SLI1 compromised reproductive rates of three species: the tobacco aphid M. persicae nicotianae, the cabbage aphid Brevicoryne brassicae and the cabbage whitefly Aleyrodes proletella. Electrical penetration graph recording of aphid behaviour, revealed shorter salivations and a 3-to-5-fold increase in phloem feeding on sli1 loss-of-function plants. The mustard aphid Lipaphis erysimi and Bemisia tabaci whitefly were not affected by SLI1. Unlike the other two aphid species, L. erysimi exhibited repetitive salivations preceding successful phloem feeding, indicating a role of salivary effectors in overcoming SLI1-mediated resistance. Microscopic characterization showed that SLI1 proteins localize in the sieve tubes of virtually all above- and below-ground tissues and co-localize with the aphid stylet tip after penetration of the sieve element plasma membrane. These observations reveal an unconventional R gene that escapes the paradigm of strain specificity and confers broad-spectrum quantitative resistance to phloem-feeding insects.


Assuntos
Afídeos/fisiologia , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Chaperonas Moleculares/genética , Floema/fisiologia , Animais , Proteínas de Arabidopsis/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica de Plantas , Hemípteros/fisiologia , Herbivoria , Chaperonas Moleculares/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Saliva/fisiologia
10.
Viruses ; 13(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922755

RESUMO

Tobacco etch virus (TEV; genus Potyvirus) is flexuous rod shaped with a single molecule of single-stranded RNA and causes serious yield losses in species in the Solanaceae. Three TEV strains (HAT, Mex21, and N) are genetically distinct and cause different disease symptoms in plants. Here, a transcriptomic RNA sequencing approach was taken for each TEV strain to evaluate gene expression of the apical stem segment of pepper plants during two stages of disease development. Distinct profiles of Differentially Expressed Genes (DEGs) were identified for each TEV strain. DEG numbers increased with degree of symptom severity: 24 from HAT, 1190 from Mex21, and 4010 from N. At 7 days post-inoculation (dpi), when systemic symptoms were similar, there were few DEGs for HAT- and Mex21-infected plants, whereas N-infected plants had 2516 DEGs. DEG patterns from 7 to 14 dpi corresponded to severity of disease symptoms: milder disease with smaller DEG changes for HAT and Mex21 and severe disease with larger DEG changes for N. Strikingly, in each of these comparisons, there are very few overlapping DEGs among the TEV strains, including no overlapping DEGs between all three strains at 7 or 14 dpi.


Assuntos
Capsicum/genética , Capsicum/virologia , Perfilação da Expressão Gênica , Caules de Planta/virologia , Potyvirus/patogenicidade , Transcriptoma , Capsicum/anatomia & histologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/virologia , Caules de Planta/genética , Potyvirus/classificação , Potyvirus/genética , Potyvirus/crescimento & desenvolvimento
11.
J Sci Food Agric ; 101(14): 6010-6019, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33855720

RESUMO

BACKGROUND: Chia (Salvia hispanica L.) is a functional food from Central America. Interest in it is growing rapidly due to the many health benefits from the seed. However, when chia is grown at high latitudes, seed yield may be low whereas a high stem biomass and immature inflorescences are produced. Little is known about the chemical composition and the properties of stems and flowers. In this work, the metabolite profile, the antioxidant activity, and the total polyphenol content of stems and inflorescences were evaluated in a factorial experiment with different chia populations (commercial black chia and long-day flowering mutants G3, G8, and G17) and irrigation (100% and 50% of evapotranspiration). RESULTS: The results show the influence of irrigation and seed source on the antioxidant activity and total polyphenol content of chia flower and stem. Inflorescences exhibit higher antioxidant activity, suggesting their potential use as natural antioxidant. The mutants G3 and G8, at 50% irrigation, contained the highest amounts of compounds with nutraceutical value, especially within the flower. The mutant G17 showed lower antioxidant activity and polyphenol content compared to other seed sources but exhibited high omega 3 content in flowers but low in stems. This indicates that chia varieties should be chosen according to the objective of cultivation. CONCLUSION: These findings, indicating a close relation of metabolite content with irrigation and seed source, may provide the basis for the use of chia flower and stem for their nutraceutical value in the food, feed, and supplement industries. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes/química , Extratos Vegetais/química , Salvia/crescimento & desenvolvimento , Salvia/metabolismo , Irrigação Agrícola , Antioxidantes/metabolismo , América Central , Suplementos Nutricionais/análise , Flores/química , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Metabolômica , Mutação , Extratos Vegetais/metabolismo , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Salvia/química , Salvia/genética , Água/análise , Água/metabolismo
12.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669030

RESUMO

Potato tuber dormancy is critical for the post-harvest quality. Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family genes are involved in the plants' defense against pathogens and in growth and development, but the effect of Snakin-2 (SN2) on tuber dormancy and sprouting is largely unknown. In this study, a transgenic approach was applied to manipulate the expression level of SN2 in tubers, and it demonstrated that StSN2 significantly controlled tuber sprouting, and silencing StSN2 resulted in a release of dormancy and overexpressing tubers showed a longer dormant period than that of the control. Further analyses revealed that the decrease expression level accelerated skin cracking and water loss. Metabolite analyses revealed that StSN2 significantly down-regulated the accumulation of lignin precursors in the periderm, and the change of lignin content was documented, a finding which was consistent with the precursors' level. Subsequently, proteomics found that cinnamyl alcohol dehydrogenase (CAD), caffeic acid O-methyltransferase (COMT) and peroxidase (Prx), the key proteins for lignin synthesis, were significantly up-regulated in silencing lines, and gene expression and enzyme activity analyses also supported this effect. Interestingly, we found that StSN2 physically interacts with three peroxidases catalyzing the oxidation and polymerization of lignin. In addition, SN2 altered the hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and catalase (CAT). These results suggest that StSN2 negatively regulates lignin biosynthesis and H2O2 accumulation, and ultimately inhibits the sprouting of potato tubers.


Assuntos
Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Oxirredutases do Álcool/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Lignina/metabolismo , Peroxidase/metabolismo , Dormência de Plantas/genética , Proteínas de Plantas/genética , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/metabolismo , Tubérculos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Proteína O-Metiltransferase/metabolismo , Proteômica , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Superóxido Dismutase-1/metabolismo
13.
BMC Plant Biol ; 21(1): 10, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407136

RESUMO

BACKGROUND: Low temperature is a major abiotic stress that seriously limits mangrove productivity and distribution. Kandelia obovata is the most cold-resistance specie in mangrove plants, but little is known about the molecular mechanism underlying its resistance to cold. Osmotin is a key protein associated with abiotic and biotic stress response in plants but no information about this gene in K. obovata was reported. RESULTS: In this study, a cDNA sequence encoding osmotin, KoOsmotin (GenBank accession no. KP267758), was cloned from mangrove plant K. obovata. The KoOsmotin protein was composed of 221 amino acids and showed a calculated molecular mass of 24.11 kDa with pI 4.92. The KoOsmotin contained sixteen cysteine residues and an N-terminal signal peptide, which were common signatures to most osmotins and pathogenesis-related 5 proteins. The three-dimensional (3D) model of KoOsmotin, contained one α-helix and eleven ß-strands, was formed by three characteristic domains. Database comparisons of the KoOsmotin showed the closest identity (55.75%) with the osmotin 34 from Theobroma cacao. The phylogenetic tree also revealed that the KoOsmotin was clustered in the branch of osmotin/OLP (osmotin-like protien). The KoOsmotin protein was proved to be localized to both the plasma membrane and cytoplasm by the subcellular localization analysis. Gene expression showed that the KoOsmotin was induced primarily and highly in the leaves of K. obovata, but less abundantly in stems and roots. The overexpressing of KoOsmotin conferred cold tolerance in Escherichia coli cells. CONCLUSION: As we known, this is the first study to explore the osmotin of K. obovata. Our study provided valuable clues for further exploring the function of KoOsmotin response to stress.


Assuntos
Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Análise de Sequência de DNA
14.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466786

RESUMO

Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of plant height. GUS assay and qRT-PCR analysis in Arabidopsis showed that GPAT1 is highly expressed in flowers, siliques, and seeds. A loss of function mutation in GPAT1 was shown to decrease seed yield but increase plant height through enhanced cell length. Transcriptomic and qRT-PCR data revealed that the expression levels of genes related to gibberellin (GA) biosynthesis and signaling, as well as those of cell wall organization and biogenesis, were significantly upregulated. These led to cell length elongation, and thus, an increase in plant height. Together, our data suggest that knockout of GPAT1 impairs glycerolipid metabolism in Arabidopsis, leading to reduced seed yield, but promotes the biosynthesis of GA, which ultimately enhances plant height. This study provides new evidence on the interplay between lipid and hormone metabolism in the regulation of plant height.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Mutação , Óleos de Plantas/metabolismo , Caules de Planta/genética , Sementes/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Forma Celular/genética , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/metabolismo
15.
Plant Cell Rep ; 40(1): 127-142, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068174

RESUMO

KEY MESSAGE: The HbCAld5H1 gene cloned from Hevea brasiliensis regulates the cambial activity, xylem differentiation, syringyl-guaiacyl ratio, secondary wall structure, lignification pattern and xylan distribution in xylem fibres of transgenic tobacco plants. Molecular characterization of lignin biosynthesis gene coniferaldehyde-5-hydroxylase (CAld5H) from Hevea brasiliensis and its functional validation was performed. Both sense and antisense constructs of HbCAld5H1 gene were introduced into tobacco through Agrobacterium-mediated genetic transformation for over expression and down-regulation of this key enzyme to understand its role affecting structural and cell wall chemistry. The anatomical studies of transgenic tobacco plants revealed the increase of cambial activity leading to xylogenesis in sense lines and considerable reduction in antisense lines. The ultra-structural studies showed that the thickness of secondary wall (S2 layer) of fibre had been decreased with non-homogenous lignin distribution in antisense lines, while sense lines showed an increase in S2 layer thickness. Maule color reaction revealed that syringyl lignin distribution in the xylem elements was increased in sense and decreased in antisense lines. The immunoelectron microscopy revealed a reduction in LM 10 and LM 11 labelling in the secondary wall of antisense tobacco lines. Biochemical studies showed a radical increase in syringyl lignin in sense lines without any significant change in total lignin content, while S/G ratio decreased considerably in antisense lines. Our results suggest that CAld5H gene plays an important role in xylogenesis stages such as cambial cell division, secondary wall thickness, xylan and syringyl lignin distribution in tobacco. Therefore, CAld5H gene could be considered as a promising target for lignin modification essential for timber quality improvement in rubber.


Assuntos
Parede Celular/química , Oxigenases de Função Mista/genética , Nicotiana/genética , Proteínas de Plantas/genética , Xilema/citologia , Acroleína/análogos & derivados , Acroleína/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/genética , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Fenótipo , Células Vegetais/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/citologia , Nicotiana/metabolismo , Xilanos/genética , Xilanos/metabolismo , Xilema/metabolismo
16.
Cells ; 9(12)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348837

RESUMO

As a common pollutant, cadmium (Cd) is one of the most toxic heavy metals accumulating in agricultural soils through anthropogenic activities. The uptake of Cd by plants is the main entry route into the human food chain, whilst in plants it elicits oxidative stress by unbalancing the cellular redox status. Medicago sativa was subjected to chronic Cd stress for five months. Targeted and untargeted metabolic analyses were performed. Long-term Cd exposure altered the amino acid composition with levels of asparagine, histidine and proline decreasing in stems but increasing in leaves. This suggests tissue-specific metabolic stress responses, which are often not considered in environmental studies focused on leaves. In stem tissue, profiles of secondary metabolites were clearly separated between control and Cd-exposed plants. Fifty-one secondary metabolites were identified that changed significantly upon Cd exposure, of which the majority are (iso)flavonoid conjugates. Cadmium exposure stimulated the phenylpropanoid pathway that led to the accumulation of secondary metabolites in stems rather than cell wall lignification. Those metabolites are antioxidants mitigating oxidative stress and preventing cellular damage. By an adequate adjustment of its metabolic composition, M. sativa reaches a new steady state, which enables the plant to acclimate under chronic Cd stress.


Assuntos
Cádmio/toxicidade , Medicago sativa/efeitos dos fármacos , Aminoácidos/análise , Cádmio/química , Cádmio/metabolismo , Parede Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonas/química , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Glutationa/análise , Medicago sativa/genética , Medicago sativa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/metabolismo , Poliaminas/análise , Poliaminas/isolamento & purificação , Análise de Componente Principal , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
17.
Plant Sci ; 301: 110657, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218627

RESUMO

Secondary cell wall (SCW) has a strong impact on plant growth and adaptation to the environments. Previous studies have shown that NAC (NAM, ATAF1/2, and CUC2) transcription factors act as key regulators of SCW biosynthesis. However, the regulatory network triggered by NAC proteins is largely unknown, especially in cotton, a model plant for SCW development studies. Here, we show that several cotton NAC transcription factors are clustered in the same group with Arabidopsis secondary wall NACs (SWNs), including secondary wall-associated NAC domain protein1 (SND1) and NAC secondary wall thickening promoting factor1/2 (NST1/2), so we name these cotton orthologs as SND1s and NST1s. We found that simultaneous silencing of SND1s and NST1s led to severe xylem and phloem developmental defect in cotton stems, however silencing either SND1s or NST1s alone had no visible phenotype. Silencing both SND1s and NST1s but not one subgroup caused decreased expression of a set of SCW-associated genes, while over-expression of cotton SWNs in tobacco leaves resulted in SCW deposition. SWNs could bind the promoter of MYB46 and MYB83, which are highly expressed in SCW-rich tissues of cotton. In total, our data provide evidence that cotton SWNs positively and coordinately regulate SCW formation.


Assuntos
Gossypium/genética , Fatores de Transcrição/metabolismo , Parede Celular/metabolismo , Gossypium/crescimento & desenvolvimento , Gossypium/fisiologia , Floema/genética , Floema/crescimento & desenvolvimento , Floema/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
18.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326652

RESUMO

Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.


Assuntos
Alumínio/toxicidade , Arabidopsis/metabolismo , Dedos de Zinco CYS2-HIS2/genética , Glycine max/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Cloreto de Alumínio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/farmacologia , Microscopia Confocal , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Regulação para Cima
19.
BMC Genomics ; 21(1): 127, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32028884

RESUMO

BACKGROUND: Node is the central organ of transferring nutrients and ions in plants. Cadmium (Cd) induced crop pollution threatens the food safety. Breeding of low Cd accumulation cultivar is a chance to resolve this universal problem. This study was performed to identify tissue specific genes involved in Cd accumulation in different rice stem nodes. Panicle node and the first node under panicle (node I) were sampled in two rice cultivars: Xiangwanxian No. 12 (low Cd accumulation cultivar) and Yuzhenxiang (high Cd accumulation cultivar). RNA-seq analysis was performed to identify differentially expressed genes (DEGs) and microRNAs. RESULTS: Xiangwanxian No. 12 had lower Cd concentration in panicle node, node I and grain compared with Yuzhenxiang, and node I had the highest Cd concentration in the two cultivars. RNA seq analysis identified 4535 DEGs and 70 miRNAs between the two cultivars. Most genesrelated to the "transporter activity", such as OsIRT1, OsNramp5, OsVIT2, OsNRT1.5A, and OsABCC1, play roles in blocking the upward transport of Cd. Among the genes related to "response to stimulus", we identified OsHSP70 and OsHSFA2d/B2c in Xiangwanxian No. 12, but not in Yuzhenxiang, were all down-regulated by Cd stimulus. The up-regulation of miRNAs (osa-miR528 and osa-miR408) in Xiangwanxian No. 12 played a potent role in lowering Cd accumulation via down regulating the expression of candidate genes, such as bZIP, ERF, MYB, SnRK1 and HSPs. CONCLUSIONS: Both panicle node and node I of Xiangwanxian No. 12 played a key role in blocking the upward transportation of Cd, while node I played a critical role in Yuzhenxiang. Distinct expression patterns of various transporter genes such as OsNRT1.5A, OsNramp5, OsIRT1, OsVIT2 and OsABCC1 resulted in differential Cd accumulation in different nodes. Likewise, distinct expression patterns of these transporter genes are likely responsible for the low Cd accumulation in Xiangwanxian No. 12 cultivar. MiRNAs drove multiple transcription factors, such as OsbZIPs, OsERFs, OsMYBs, to play a role in Cd stress response.


Assuntos
Cádmio/farmacocinética , Grão Comestível/metabolismo , Oryza/metabolismo , Poluentes do Solo/farmacocinética , Transporte Biológico , Cádmio/toxicidade , Grão Comestível/efeitos dos fármacos , Grão Comestível/genética , MicroRNAs/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/metabolismo , RNA-Seq , Poluentes do Solo/toxicidade , Transcriptoma/efeitos dos fármacos
20.
Planta ; 251(3): 58, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020353

RESUMO

MAIN CONCLUSION: pRbcS-T1 and pMALD1, two new trichome-specific promoters of Nicotiana tabacum, were identified and their strength and specificity were compared to those of previously described promoters in this species. Nicotiana tabacum has emerged as a suitable host for metabolic engineering of terpenoids and derivatives in tall glandular trichomes, which actively synthesize and secrete specialized metabolites. However, implementation of an entire biosynthetic pathway in glandular trichomes requires the identification of trichome-specific promoters to appropriately drive the expression of the transgenes needed to set up the desired pathway. In this context, RT-qPCR analysis was carried out on wild-type N. tabacum plants to compare the expression pattern and gene expression level of NtRbcS-T1 and NtMALD1, two newly identified genes expressed in glandular trichomes, with those of NtCYP71D16, NtCBTS2α, NtCPS2, and NtLTP1, which were reported in the literature to be specifically expressed in glandular trichomes. We show that NtRbcS-T1 and NtMALD1 are specifically expressed in glandular trichomes like NtCYP71D16, NtCBTS2α, and NtCPS2, while NtLTP1 is also expressed in other leaf tissues as well as in the stem. Transcriptional fusions of each of the six promoters to the GUS-VENUS reporter gene were introduced in N. tabacum by Agrobacterium-mediated transformation. Almost all transgenic lines displayed GUS activity in tall glandular trichomes, indicating that the appropriate cis regulatory elements were included in the selected promoter regions. However, unlike for the other promoters, no trichome-specific line was obtained for pNtLTP1:GUS-VENUS, in agreement with the RT-qPCR data. These data thus provide two new transcription promoters that could be used in metabolic engineering of glandular trichomes.


Assuntos
Nicotiana/genética , Regiões Promotoras Genéticas , Tricomas/genética , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Folhas de Planta/genética , Caules de Planta/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA