Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 763-769, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621880

RESUMO

This study aims to investigate the effect of Erchen Decoction(ECD) on liver mitochondrial function in mice with a high-fat diet and its possible mechanism. A total of sixty C57BL/6J mice were randomly divided into a normal group, high-fat group, ECD group, mTORC1 activator(MHY) group, ECD+MHY group, and polyene phosphatidyl choline(PPC) group, with 10 rats in each group. The normal group was given a normal diet, and the other groups were fed a high-fat diet for 20 weeks. At the 17th week, the ECD group and ECD+MHY group were given ECD(8.7 g·kg~(-1)) daily, and the PPC group was given PPC(0.18 g·kg~(-1)) daily, while the remaining groups were given normal saline(0.01 mL·g~(-1)) daily for four weeks. In the 19th week, the MHY group and ECD+MHY group were injected intraperitoneally with MHY(5 mg·kg~(-1)) every other day for two weeks. During the experiment, the general conditions of the mice were observed. The contents of triglyceride(TG) and total cholesterol(TC) in serum were measured. Morphological changes in liver tissue were examined through HE and oil red O staining. The content of adenosine triphosphate(ATP) was determined using chemiluminescence, and mitochondrial membrane potential was assessed using a fluorescence probe(JC-1). Western blot was performed to detect the expression of rapamycin target protein complex 1(mTOR1), ribosomal protein S6 kinase B1(S6K), sterol regulatory element binding protein 1(SREBP1), and caveolin 1(CAV1). RESULTS:: revealed that compared with the normal group, the mice in the high-fat group exhibited significant increases in body weight and abdominal circumference(P<0.01). Additionally, there were significant increases in TG and TC levels(P<0.01). HE and oil red O staining showed that the boundaries of hepatic lobules were unclear; hepatocytes were enlarged, round, and irregularly arranged, with obvious lipid droplet deposition and inflammatory cell infiltration. The liver ATP content and mitochondrial membrane potential decreased significantly(P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 increased significantly(P<0.01), while the expression of CAV1 decreased significantly(P<0.01). Compared with the high-fat group, the body weight and TG content of mice in the ECD group and PPC group decreased significantly(P<0.05). Improvements were observed in hepatocyte morphology, lipid deposition, and inflammatory cell infiltration. Furthermore, there were significant increases in ATP content and mitochondrial membrane potential(P<0.05 or P<0.01). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly in the ECD group(P<0.01), while CAV1 expression increased significantly(P<0.01). However, the indices mentioned above did not show improvement in the MHY group. When the ECD+MHY group was compared with the MHY group, there were significant reductions in body weight and TG contents(P<0.05). The morphological changes of hepatocytes, lipid deposition, and inflammatory cell infiltration were recovered. Moreover, there were significant increases in liver ATP content and mitochondrial membrane potential(P<0.05 or P<0.05). The expression of p-mTOR, p-S6K, and n-SREBP1 decreased significantly(P<0.01), while CAV1 expression increased significantly(P<0.01). In conclusion, ECD can improve mitochondrial function by regulating the mTORC1/SREBP1/CAV1 pathway. This mechanism may be involved in the resolution of phlegm syndrome and the regulation of lipid metabolism.


Assuntos
Compostos Azo , Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Triglicerídeos/metabolismo , Peso Corporal , Trifosfato de Adenosina/farmacologia
2.
Neuro Oncol ; 26(1): 100-114, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37651725

RESUMO

BACKGROUND: Temozolomide (TMZ) treatment efficacy in glioblastoma is determined by various mechanisms such as TMZ efflux, autophagy, base excision repair (BER) pathway, and the level of O6-methylguanine-DNA methyltransferase (MGMT). Here, we reported a novel small-molecular inhibitor (SMI) EPIC-1042 (C20H28N6) with the potential to decrease TMZ efflux and promote PARP1 degradation via autolysosomes in the early stage. METHODS: EPIC-1042 was obtained from receptor-based virtual screening. Co-immunoprecipitation and pull-down assays were applied to verify the blocking effect of EPIC-1042. Western blotting, co-immunoprecipitation, and immunofluorescence were used to elucidate the underlying mechanisms of EPIC-1042. In vivo experiments were performed to verify the efficacy of EPIC-1042 in sensitizing glioblastoma cells to TMZ. RESULTS: EPIC-1042 physically interrupted the interaction of PTRF/Cavin1 and caveolin-1, leading to reduced secretion of small extracellular vesicles (sEVs) to decrease TMZ efflux. It also induced PARP1 autophagic degradation via increased p62 expression that more p62 bound to PARP1 and specially promoted PARP1 translocation into autolysosomes for degradation in the early stage. Moreover, EPIC-1042 inhibited autophagy flux at last. The application of EPIC-1042 enhanced TMZ efficacy in glioblastoma in vivo. CONCLUSION: EPIC-1042 reinforced the effect of TMZ by preventing TMZ efflux, inducing PARP1 degradation via autolysosomes to perturb the BER pathway and recruitment of MGMT, and inhibiting autophagy flux in the later stage. Therefore, this study provided a novel therapeutic strategy using the combination of TMZ with EPIC-1042 for glioblastoma treatment.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Caveolina 1/uso terapêutico , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/genética , Autofagia , Resistencia a Medicamentos Antineoplásicos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Poli(ADP-Ribose) Polimerase-1/uso terapêutico
3.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L689-L708, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642665

RESUMO

Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease with no effective treatment that can reduce mortality or slow the disease progression. COPD is the third leading cause of global death and is characterized by airflow limitations due to chronic bronchitis and alveolar damage/emphysema. Chronic cigarette smoke (CS) exposure damages airway and alveolar epithelium and remains a major risk factor for the pathogenesis of COPD. We found that the expression of caveolin-1, a tumor suppressor protein; p53; and plasminogen activator inhibitor-1 (PAI-1), one of the downstream targets of p53, was markedly increased in airway epithelial cells (AECs) as well as in type II alveolar epithelial (AT2) cells from the lungs of patients with COPD or wild-type mice with CS-induced lung injury (CS-LI). Moreover, p53- and PAI-1-deficient mice resisted CS-LI. Furthermore, treatment of AECs, AT2 cells, or lung tissue slices from patients with COPD or mice with CS-LI with a seven amino acid caveolin-1 scaffolding domain peptide (CSP7) reduced mucus hypersecretion in AECs and improved AT2 cell viability. Notably, induction of PAI-1 expression via increased caveolin-1 and p53 contributed to mucous cell metaplasia and mucus hypersecretion in AECs, and reduced AT2 viability, due to increased senescence and apoptosis, which was abrogated by CSP7. In addition, treatment of wild-type mice having CS-LI with CSP7 by intraperitoneal injection or nebulization via airways attenuated mucus hypersecretion, alveolar injury, and significantly improved lung function. This study validates the potential therapeutic role of CSP7 for treating CS-LI and COPD. NEW & NOTEWORTHY Chronic cigarette smoke (CS) exposure remains a major risk factor for the pathogenesis of COPD, a debilitating disease with no effective treatment. Increased caveolin-1 mediated induction of p53 and downstream plasminogen activator inhibitor-1 (PAI-1) expression contributes to CS-induced airway mucus hypersecretion and alveolar wall damage. This is reversed by caveolin-1 scaffolding domain peptide (CSP7) in preclinical models, suggesting the therapeutic potential of CSP7 for treating CS-induced lung injury (CS-LI) and COPD.


Assuntos
Caveolina 1 , Fumar Cigarros , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Humanos , Camundongos , Caveolina 1/farmacologia , Fumar Cigarros/efeitos adversos , Pulmão/metabolismo , Lesão Pulmonar/patologia , Peptídeos/farmacologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/patologia , Proteína Supressora de Tumor p53/metabolismo
4.
J Agric Food Chem ; 70(40): 12968-12981, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166599

RESUMO

Deoxynivalenol (DON) is one of the most pervasive contaminating mycotoxins in grain, and exposure to DON is known to cause acute and chronic intestinal damage. As the gut is the most important target organ of DON, it is essential to identify the pivotal molecules involved in DON-induced enterotoxicity as well as the potential regulatory mechanisms. In the present study, we found that DON treatment dramatically decreased the jejunal villus height and increased the crypt depth in mice. DON exposure induced oxidative stress and NLRP3 inflammasome activation while increasing the levels of pyroptosis-related factors GSDMD, ASC, Caspase-1 P20, and IL-1ß and inflammatory cytokines IL-18, TNF-α, and IL-6. In vitro, 0.5-2 µM DON caused cytotoxicity and oxidative stress, as well as NLRP3-mediated pyroptosis in IPEC-J2 cells. Furthermore, DON treatment substantially improved the expression of Caveolin-1 (Cav-1) in vitro and in vivo. Interestingly, Cav-1 knockdown effectively attenuated DON-induced oxidative stress and NLRP3-mediated pyroptosis in IPEC-J2 cells. Meanwhile, treatment with the antioxidant NAC significantly alleviated DON-induced cytotoxicity and pyroptosis in IPEC-J2 cells. Likewise, after inhibiting NLRP3 inflammasome activation with the inhibitor MCC950, DON-induced cytotoxicity, pyroptosis, and inflammatory response were attenuated. However, NLRP3 inhibition did not affect Cav-1 expression. In conclusion, our study demonstrated that pyroptosis may be an underlying mechanism in DON-induced intestinal injury, and Cav-1 plays a pivotal role in DON-induced pyroptosis via regulating oxidative stress, which suggests a novel strategy to overcome DON-induced enterotoxicity.


Assuntos
Piroptose , Tricotecenos , Animais , Antioxidantes/metabolismo , Caspase 1/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Inflamassomos , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tricotecenos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
5.
Physiol Res ; 71(5): 657-666, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36047729

RESUMO

Stem cells have emerged as promising therapeutic options for several human diseases, including pulmonary fibrosis (PF). In this study, we investigated the therapeutic effects of adipose tissue-derived mesenchymal stem cells (ADMSCs) in the bleomycin-induced PF model rats and the underlying mechanisms. The PF model rats were generated by intratracheal injections of 5 mg/kg bleomycin sulfate. The ADMSC group rats were generated by injecting 2×10(6) ADMSCs via the tail vein at 0, 12, and 24 h after bleomycin injection. The control, PF, and ADMSC group rats were sacrificed on day 21 after bleomycin injections and the changes in lung histology and the levels of pro-inflammatory cytokines, collagen I, and caveolin-1 (Cav-1), and the activity of the NF-kappaB signaling pathway in the lung tissues was assessed by hematoxylin-eosin staining, ELISA, and western blotting assays. The lung tissues of the PF model rats showed significant infiltration of neutrophils, tissue destruction, and collagen deposition, but these effects were abrogated by the ADMSCs. The levels of pro-inflammatory cytokines such as IL-6, IL-1beta, and TGF-beta1 were elevated in the lung tissues and the bronchoalveolar lavage fluid (BALF) of the bleomycin-induced PF model rats, but these effects were reversed by the ADMSCs. The lung tissues of the PF model rats showed significant downregulation of Cav-1 and significantly higher activation of the pro-inflammatory NF-kappaB pathway. However, administration of the ADMSCs restored the expression levels of Cav-1 and suppressed the NF-kappaB signaling pathway in the lungs of the bleomycin-induced PF model rats. In conclusion, this study demonstrated that the ADMSCs protected against bleomycin-induced PF in the rat model by modulating the Cav-1/NF-kappaB axis.


Assuntos
Células-Tronco Mesenquimais , Pneumonia , Fibrose Pulmonar , Animais , Ratos , Bleomicina/toxicidade , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Caveolina 1/uso terapêutico , Colágeno/metabolismo , Citocinas/metabolismo , Pulmão , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Pneumonia/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
6.
J Photochem Photobiol B ; 234: 112505, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35839543

RESUMO

Melanosomes have been considered crucial targets in melanoma treatments. In this study we explored the role of melanosomes in photodynamic therapy (PDT), employing the synthetic Zn(II) phthalocyanine Pc13, a potent photosensitizer that promotes melanoma cell death after irradiation. Phototoxic action is mediated by reactive oxygen species increase. The internalization mechanism of Pc13 and its consequent subcellular localization were evaluated in melanotic B16-F0 cells. Pharmacological inhibitors of dynamin or caveolae, but not of clathrin, decreased Pc13 cellular uptake and phototoxicity. Similar results were obtained when cells over-expressed dominant negative mutants of dynamin-2 and caveolin-1, indicating that Pc13 is internalized by caveolae-mediated endocytosis. Confocal microscopy analysis revealed that Pc13 targets melanosomes and damage of these structures after irradiation was demonstrated by transmission electron microscopy. Treatment of pigmented B16-F0 and WM35 melanoma cells with the melanin synthesis inhibitor phenylthiourea for 48 h led to cell depigmentation and enhanced cell death after irradiation, whereas a 3-h period of inhibition did not modify melanin content but produced a marked reduction of Pc13 phototoxicity, together with a decrease of oxidative melanin synthesis intermediates. In contrast, the effect of Pc13 in amelanotic A375 cells was not altered by phenylthiourea treatment. These results provide evidence that melanosomes have a dual role in the efficacy of PDT. While melanin antagonizes the phototoxic action of Pc13, the release of cytotoxic synthetic intermediates to cytosol after irradiation and melanosome damage is conducive to the phototoxic response. Based on these findings, we demonstrate that melanosome-targeted PDT could be an effective approach for melanoma treatment.


Assuntos
Dermatite Fototóxica , Melanoma , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Caveolina 1/uso terapêutico , Endocitose , Humanos , Indóis/química , Isoindóis , Melaninas/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanossomas/metabolismo , Melanossomas/ultraestrutura , Feniltioureia/metabolismo , Feniltioureia/farmacologia , Feniltioureia/uso terapêutico
7.
Cancer Gene Ther ; 29(11): 1707-1719, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35750753

RESUMO

Chemoresistance is a main obstacle for colorectal cancer treatment. In this study, we evaluated the effects and mechanisms of the WNT/ß-catenin signaling pathway on the chemoresistance of SW480 and SW620 colorectal cancer cells. The activity of ß-catenin was activated/inhibited by the small molecule compound GSK-3 inhibitor 6-bromo-indirubin-3'-oxime and the tankyrase inhibitor XAV939. The downstream target genes of the WNT/ß-catenin signaling pathway were screened using a cDNA microarray and bioinformatics analysis. Apoptosis induced by 5-Fu, cell cycle distribution and expression levels of WNT/ß-catenin/TCF12/caveolin-1 and multidrug resistance proteins were examed by flow cytometry and western blot after ß-catenin activation/inhibition and caveolin-1 overexpression/interference. The effect and mechanism of XAV939 on proliferation and apoptosis induced by 5-Fu in xenograft tumors of nude mice were evaluated by immunohistochemistry and TUNEL staining. 6-Bromo-indirubin-3'-oxime treatment increased ß-catenin expression by regulating GSK-3ß phosphorylation, accompanied by upregulation of TCF12, caveolin-1, P-gp, and MRP2 and downregulation of apoptosis induced by 5-Fu. Conversely, XAV939 treatment decreased ß-catenin expression by upregulating Axin, accompanied by downregulation of TCF12, Caveolin-1, P-gp, and MRP2 and upregulation of apoptosis induced by 5-Fu. The caveolin-1 gene was identified as an important downstream gene of the WNT/ß-catenin signaling pathway. Caveolin-1 overexpression upregulated ß-catenin expression, increased P-gp and MRP2 expression and decreased apoptosis induced by 5-Fu; conversely, caveolin-1 interference caused the opposite effects. In addition, in vivo experiments showed that XAV939 treatment reduced ß-catenin expression, increased apoptosis induced by 5-Fu and repressed xenograft tumor growth. Our findings suggested that inhibition of WNT/ß-catenin/TCF12/caveolin-1 provides a new promising therapeutic strategy for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Tanquirases , Camundongos , Animais , Humanos , Tanquirases/genética , Tanquirases/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteína Axina/metabolismo , Proteína Axina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Camundongos Nus , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Via de Sinalização Wnt , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oximas/farmacologia
8.
Stem Cells ; 40(2): 133-148, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257186

RESUMO

The N-terminal caveolin-binding motif (CBM) in Na/K-ATPase (NKA) α1 subunit is essential for cell signaling and somitogenesis in animals. To further investigate the molecular mechanism, we have generated CBM mutant human-induced pluripotent stem cells (iPSCs) through CRISPR/Cas9 genome editing and examined their ability to differentiate into skeletal muscle (Skm) cells. Compared with the parental wild-type human iPSCs, the CBM mutant cells lost their ability of Skm differentiation, which was evidenced by the absence of spontaneous cell contraction, marker gene expression, and subcellular myofiber banding structures in the final differentiated induced Skm cells. Another NKA functional mutant, A420P, which lacks NKA/Src signaling function, did not produce a similar defect. Indeed, A420P mutant iPSCs retained intact pluripotency and ability of Skm differentiation. Mechanistically, the myogenic transcription factor MYOD was greatly suppressed by the CBM mutation. Overexpression of a mouse Myod cDNA through lentiviral delivery restored the CBM mutant cells' ability to differentiate into Skm. Upstream of MYOD, Wnt signaling was demonstrated from the TOPFlash assay to have a similar inhibition. This effect on Wnt activity was further confirmed functionally by defective induction of the presomitic mesoderm marker genes BRACHYURY (T) and MESOGENIN1 (MSGN1) by Wnt3a ligand or the GSK3 inhibitor/Wnt pathway activator CHIR. Further investigation through immunofluorescence imaging and cell fractionation revealed a shifted membrane localization of ß-catenin in CBM mutant iPSCs, revealing a novel molecular component of NKA-Wnt regulation. This study sheds light on a genetic regulation of myogenesis through the CBM of NKA and control of Wnt/ß-catenin signaling.


Assuntos
Quinase 3 da Glicogênio Sintase , beta Catenina , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Diferenciação Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Camundongos , Desenvolvimento Muscular/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
9.
Ultrasound Med Biol ; 47(6): 1559-1572, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33736878

RESUMO

In the endothelium, nitric oxide synthase (eNOS) is the enzyme that generates nitric oxide, a key molecule involved in a variety of biological functions and cancer-related events. Therefore, selective inhibition of eNOS represents an attractive therapeutic approach for NO-related diseases and anticancer therapy. Ultrasound-mediated microbubble destruction (UMMD) conjugated with cell-permeable peptides has been investigated as a drug delivery system for effective delivery of anticancer molecules. We investigated the feasibility of loading antennapedia-caveolin-1 peptide (AP-Cav), a specific eNOS inhibitor, onto microbubbles to be delivered by UMMD in rat aortic endothelium. AP-Cav-loaded microbubbles (AP-Cav-MBs) and US parameters were characterized. Aortas were treated with UMMD for 30 s with 1.3 × 108 MBs/mL AP-Cav (8 µM)-MBs at 100-Hz pulse repetition frequency, 0.5-MPa acoustic pressure, 0.5 mechanical index and 10% duty cycle. NO-dependent vascular responses were assessed using an isolated organ system, 21 h post-treatment. Maximal relaxation response was inhibited 61.8% ± 1.6% in aortas treated with UMMD-AP-Cav-MBs, while in aortas treated with previously disrupted AP-Cav-MBs and then US, the inhibition was 31.6% ± 1.6%. The vascular contractile response was not affected. The impact of UMMD was evaluated in aortas treated with free AP-Cav; 30 µM of free AP-Cav was necessary to reach an inhibition response similar to that obtained with UMMD-AP-Cav-MBs. In conclusion, UMMD enhances the delivery and potentiates the effect of AP-Cav in the endothelial layer of rat aorta segments.


Assuntos
Caveolina 1/administração & dosagem , Microbolhas , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico/fisiologia , Vasodilatação/fisiologia , Animais , Caveolina 1/farmacologia , Sistemas de Liberação de Medicamentos , Masculino , Ratos , Ratos Wistar , Ultrassonografia , Vasodilatação/efeitos dos fármacos
10.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32841217

RESUMO

Increased metabolism distinguishes myofibroblasts or fibrotic lung fibroblasts (fLfs) from the normal lung fibroblasts (nLfs). The mechanism of metabolic activation in fLfs has not been fully elucidated. Furthermore, the antifibrogenic effects of caveolin-1 scaffolding domain peptide CSP/CSP7 involving metabolic reprogramming in fLfs are unclear. We therefore analyzed lactate and succinate levels, as well as the expression of glycolytic enzymes and hypoxia inducible factor-1α (HIF-1α). Lactate and succinate levels, as well as the basal expression of glycolytic enzymes and HIF-1α, were increased in fLfs. These changes were reversed following restoration of p53 or its transcriptional target microRNA-34a (miR-34a) expression in fLfs. Conversely, inhibition of basal p53 or miR-34a increased glucose metabolism, glycolytic enzymes, and HIF-1α in nLfs. Treatment of fLfs or mice having bleomycin- or Ad-TGF-ß1-induced lung fibrosis with CSP/CSP7 reduced the expression of glycolytic enzymes and HIF-1α. Furthermore, inhibition of p53 or miR-34a abrogated CSP/CSP7-mediated restoration of glycolytic flux in fLfs in vitro and in mice with pulmonary fibrosis and lacking p53 or miR-34a expression in fibroblasts in vivo. Our data indicate that dysregulation of glucose metabolism in fLfs is causally linked to loss of basal expression of p53 and miR-34a. Treatment with CSP/CSP7 constrains aberrant glucose metabolism through restoration of p53 and miR-34a.


Assuntos
Caveolina 1/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , MicroRNAs/metabolismo , Fragmentos de Peptídeos/farmacologia , Fibrose Pulmonar/prevenção & controle , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Caveolina 1/fisiologia , Feminino , Glicólise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fragmentos de Peptídeos/fisiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/genética , Proteína Supressora de Tumor p53/genética
12.
Kaohsiung J Med Sci ; 35(3): 175-182, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30887723

RESUMO

Bone tendon junction injury is hard to cure because of its special anatomical structure, and the treatment applied for bone-tendon junction injury cannot result in the perfect vascular regeneration and restoration of the fibrocartilage zone. In this article, we aim to explore the effect of caveolin-1 as a slow-release material on bone-tendon junction healing. Seventy-two New Zealand rabbits were randomly selected and assigned into the experimental, sham-operated and control groups (n = 24). Caveolin-1 microspheres and microcapsule were developed as drug delivery system. At the 4th, 8th, and 12th weeks after surgery, quadriceps muscle patella-patellar tendon (QMPPT) was obtained from each rabbit to observe the tendon-to-bone tunnel healing, and X-ray examination, histological examination and biomechanical testing were applied for evaluating new bone formation. As the X-ray showed, caveolin-1 increased the new bone area at each time point. At the 4th and 8th weeks after surgery, the rabbit treated with caveolin-1 slow release material showed repair of fibrocartilage. According to the biomechanical results, the cross-sectional area, breaking load and ultimate tensile strength were increased along with time. At the same time point, caveolin-1 increased the ultimate tensile strength. Our study demonstrates that caveolin-1 as a slow-release material could accelerate bone-tendon junction healing by promoting the formation of the transition zone.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Caveolina 1/farmacologia , Tendões/metabolismo , Tendões/patologia , Cicatrização , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Quitosana/química , Preparações de Ação Retardada/farmacologia , Feminino , Fibrocartilagem/efeitos dos fármacos , Cinética , Masculino , Microesferas , Músculos/efeitos dos fármacos , Tamanho da Partícula , Patela/efeitos dos fármacos , Coelhos , Tendões/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
13.
Arterioscler Thromb Vasc Biol ; 39(4): 754-764, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30786746

RESUMO

Objective- Arteriovenous fistulae (AVF) are the most common access created for hemodialysis; however, many AVF fail to mature and require repeated intervention, suggesting a need to improve AVF maturation. Eph-B4 (ephrin type-B receptor 4) is the embryonic venous determinant that is functional in adult veins and can regulate AVF maturation. Cav-1 (caveolin-1) is the major scaffolding protein of caveolae-a distinct microdomain that serves as a mechanosensor at the endothelial cell membrane. We hypothesized that Cav-1 function is critical for Eph-B4-mediated AVF maturation. Approach and Results- In a mouse aortocaval fistula model, both Cav-1 mRNA and protein were increased in the AVF compared with control veins. Cav-1 KO (knockout) mice showed increased fistula wall thickening ( P=0.0005) and outward remodeling ( P<0.0001), with increased eNOS (endothelial NO synthase) activity compared with WT (wild type) mice. Ephrin-B2/Fc inhibited AVF outward remodeling in WT mice but not in Cav-1 KO mice and was maintained in Cav-1 RC (Cav-1 endothelial reconstituted) mice (WT, P=0.0001; Cav-1 KO, P=0.7552; Cav-1 RC, P=0.0002). Cavtratin-a Cav-1 scaffolding domain peptide-decreased AVF wall thickness in WT mice and in Eph-B4 het mice compared with vehicle alone (WT, P=0.0235; Eph-B4 het, P=0.0431); cavtratin also increased AVF patency (day 42) in WT mice ( P=0.0275). Conclusions- Endothelial Cav-1 mediates Eph-B4-mediated AVF maturation. The Eph-B4-Cav-1 axis regulates adaptive remodeling during venous adaptation to the fistula environment. Manipulation of Cav-1 function may be a translational strategy to enhance AVF patency.


Assuntos
Derivação Arteriovenosa Cirúrgica , Caveolina 1/fisiologia , Receptor EphB4/fisiologia , Transdução de Sinais/fisiologia , Veia Cava Inferior/fisiologia , Animais , Aorta Abdominal/cirurgia , Cavéolas/metabolismo , Caveolina 1/biossíntese , Caveolina 1/deficiência , Caveolina 1/genética , Caveolina 1/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Hemorreologia , Humanos , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/fisiologia , Fragmentos de Peptídeos/farmacologia , Remodelação Vascular/fisiologia , Veia Cava Inferior/cirurgia
14.
Sci Rep ; 9(1): 125, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644419

RESUMO

Caveolin-1 (CAV-1) is the principal component of caveolae that regulates a variety of signaling molecules and receptors. Our previous study revealed CAV-1 reduction in the epidermis of patients with psoriasis, which leads to enhanced Janus kinase/signal transducer and activator of transcription activation and cytokine production, suggesting that aberrant CAV-1 expression may contribute to psoriatic inflammation. This study aimed to investigate whether abnormal modulation of CAV-1 on immune cells is involved in the pathogenesis of psoriasis. We observed that CAV-1 level in psoriasis patients was apparently reduced in peripheral blood mononuclear cells (PBMCs) and it was prominent in CD14+ monocytes. CAV-1 silencing in monocytes represented elevated levels of interleukin (IL)-1ß and IL-6, and those had enhanced chemotaxis activity. In a murine model of psoriasis-like inflammation induced by imiquimod, we observed a significant CAV-1 reduction in PBMCs. Systemic administration of CAV-1 scaffolding domain peptide significantly improved the skin phenotype with less macrophage infiltration. Taken together, aberrant CAV-1 expression in monocytes may be involved in the pathogenesis of psoriasis.


Assuntos
Caveolina 1/sangue , Caveolina 1/metabolismo , Monócitos/metabolismo , Psoríase/etiologia , Animais , Caveolina 1/genética , Caveolina 1/farmacologia , Quimiotaxia/efeitos dos fármacos , Regulação para Baixo , Humanos , Imiquimode/efeitos adversos , Inflamação/induzido quimicamente , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Psoríase/metabolismo , Psoríase/patologia
15.
Am J Pathol ; 188(10): 2207-2222, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30253845

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease. A cardinal feature of the pathogenesis of IPF is excessive extracellular matrix deposition attributable to proliferation of activated fibrotic lung fibroblasts (fLfs). To assess the underlying mechanism, we analyzed the status of the tumor suppressor protein p53 in fLfs from the lungs of IPF patients or mice with bleomycin-induced established PF. We report that basal expression of p53 is markedly reduced in fLfs. Forced expression of caveolin-1 in fLfs increased basal p53 and reduced profibrogenic proteins, including collagen-1. Transduction of fLfs with adenovirus expressing p53 reduced expression of these proteins. Conversely, inhibition of baseline p53 in control lung fibroblasts from lung tissues increased profibrogenic protein expression. Lung transduction of adenovirus expressing p53 reduced bleomycin-induced PF in wild-type or caveolin-1-deficient mice. Furthermore, treatment of fLfs or fibrotic lung tissues with caveolin-1 scaffolding domain peptide (CSP) or its fragment, CSP7, restored p53 and reduced profibrogenic proteins. Treatment of wild-type mice with i.p. CSP or CSP7 resolved bleomycin-induced PF. These peptides failed to resolve PF in inducible conditional knockout mice lacking p53 in fLfs, indicating the induction of baseline fLf p53 as the basis of the antifibrotic effects.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Fibroblastos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Caveolina 1/deficiência , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/farmacologia , Transdução Genética , Proteína Supressora de Tumor p53/antagonistas & inibidores
16.
Mol Med Rep ; 16(5): 7841-7847, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28944844

RESUMO

Increased intercellular reactive oxygen species (ROS) levels are the major cause of podocyte injury with proteinuria. Caveolin­1 (CAV­1) is an essential protein component of caveolae. CAV­1 participates in signal transduction and endocytic trafficking. Recent research has indicated that CAV­1 regulates oxidative stress­induced pathways. The present study used hydrogen peroxide (H2O2) at nontoxic concentrations to elevate the level of ROS in E11 podocytes. Treatment with 500 and 1,000 µM H2O2 for 1 h significantly reduced CAV­1 expression levels. Simultaneously, the treatment significantly reduced the expression of the antioxidant enzymes glutamine­cysteine ligase catalytic subunit, superoxide dismutase 2 and catalase. To determine the role of CAV­1 in mediating oxidative stress, E11 podocytes were administered antenapedia­CAV­1 (AP­CAV­1) peptide for 48 h. The AP­CAV­1 treatment enhanced CAV­1 expression and inhibited cyclophilin A expression, thus reducing ROS­induced inflammation. Moreover, CAV­1 protected against H2O2­induced oxidative stress responses by enhancing the expression of antioxidant enzymes. Furthermore, CAV­1 attenuated H2O2­induced changes oxidative phosphorylation, and the expression of optic atrophy 1 and translocase of the inner membrane 23, as well as preserving mitochondrial function. CAV­1 treatment significantly suppressed apoptosis, as indicated by a higher B­cell lymphoma 2/BCL2­associated X protein ratio. Therefore, enhancing the expression of CAV­1 may be an important therapeutic consideration in treating podocyte injury.


Assuntos
Caveolina 1/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Animais , Catalase/genética , Catalase/metabolismo , Caveolina 1/genética , Caveolina 1/farmacologia , Linhagem Celular , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Peróxido de Hidrogênio/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Peptídeos/farmacologia , Podócitos/citologia , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(40): 10737-10742, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923916

RESUMO

Ocular neovascularization is a devastating pathology of numerous ocular diseases and is a major cause of blindness. Caveolin-1 (Cav-1) plays important roles in the vascular system. However, little is known regarding its function and mechanisms in ocular neovascularization. Here, using comprehensive model systems and a cell permeable peptide of Cav-1, cavtratin, we show that Cav-1 is a critical player in ocular neovascularization. The genetic deletion of Cav-1 exacerbated and cavtratin administration inhibited choroidal and retinal neovascularization. Importantly, combined administration of cavtratin and anti-VEGF-A inhibited neovascularization more effectively than monotherapy, suggesting the existence of other pathways inhibited by cavtratin in addition to VEGF-A. Indeed, we found that cavtratin suppressed multiple critical components of pathological angiogenesis, including inflammation, permeability, PDGF-B and endothelial nitric oxide synthase expression (eNOS). Mechanistically, we show that cavtratin inhibits CNV and the survival and migration of microglia and macrophages via JNK. Together, our data demonstrate the unique advantages of cavtratin in antiangiogenic therapy to treat neovascular diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais/farmacologia , Caveolina 1/fisiologia , Neovascularização de Coroide/prevenção & controle , MAP Quinase Quinase 4/metabolismo , Fragmentos de Peptídeos/farmacologia , Neovascularização Retiniana/prevenção & controle , Animais , Caveolina 1/farmacologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Quimioterapia Combinada , Humanos , Camundongos Knockout , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
18.
Acta cir. bras ; 32(5): 359-368, May 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-837709

RESUMO

Abstract Purpose: To evaluate the changes of caveolin-1 in lung fibroblasts in newborn Wistar rats when exposed to hyperoxic conditions, as well as lung fibroblasts cell cycle. Methods: One hundred newborn Wistar rats were randomly divided (50 rats/group) into experimental and control groups, exposed to hyperoxic conditions or normal air, respectively. The fraction of inspired oxygen (FiO2) in the experimental group was 90%, whereas this value was 21% in the control group. Lung fibroblasts were collected on days 3, 7, and 14 of the experiment. Caveolin-1 expression dynamics in lung fibroblasts was assayed in each group by immunofluorescence and Western blot analyses. Flow cytometry (FCM) was used to assess the proportions of lung fibroblasts at different stages of the cell cycle. Results: On day 3, no significant difference in caveolin-1 expression was observed between the hyperoxic and control groups; however, on days 7 and 14, caveolin-1 expression was significantly lower in the hyperoxic group than in the control (P<0.05). No apparent differences were observed in caveolin-1 expression in the control group at the different time points. Using FCM analysis, we showed that the proportion of lung fibroblasts in G0/G1 phase in the hyperoxic group decreased compared to that of the control group on day 7, while the proportion of S-phase cells increased (P<0.05). These differences were more significant when the groups were compared on day 14 (P<0.01). Conclusion: After seven days the exposure to hyperoxic conditions, lung fibroblasts proliferated and caveolin-1 expression decreased.


Assuntos
Animais , Feminino , Proliferação de Células , Caveolina 1/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Pneumopatias/metabolismo , Oxigênio/farmacologia , Distribuição Aleatória , Ciclo Celular , Células Cultivadas , Doença Crônica , Ratos Wistar , Hiperóxia , Modelos Animais , Caveolina 1/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pneumopatias/classificação , Pneumopatias/induzido quimicamente , Animais Recém-Nascidos
19.
Am J Pathol ; 187(5): 1016-1034, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28273432

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. The pathogenesis of interstitial lung diseases, including its most common form, IPF, remains poorly understood. Alveolar epithelial cell (AEC) apoptosis, proliferation, and accumulation of myofibroblasts and extracellular matrix deposition results in progressive loss of lung function in IPF. We found induction of tumor suppressor protein, p53, and apoptosis with suppression of urokinase-type plasminogen activator (uPA) and the uPA receptor in AECs from the lungs of IPF patients, and in mice with bleomycin, cigarette smoke, silica, or sepsis-induced lung injury. Treatment with the caveolin-1 scaffolding domain peptide (CSP) reversed these effects. Consistent with induction of p53, AECs from IPF lungs or mice with diverse types of lung injuries showed increased p53 acetylation and miR-34a expression with reduction in Sirt1. This was significantly reduced after treatment of wild-type mice with CSP, and uPA-deficient mice were unresponsive. Bleomycin failed to induce miR-34a in p53- or plasminogen activator inhibitor-1 (PAI-1)-deficient mice. CSP-mediated inhibition of miR-34a restored Sirt1, suppressed p53 acetylation and apoptosis in injured AECs, and prevented pulmonary fibrosis (PF). AEC-specific suppression of miR-34a inhibited bleomycin-induced p53, PAI-1, and apoptosis and prevented PF, whereas overexpression of precursor-miR-34a increased p53, PAI-1, and apoptosis in AECs of mice unexposed to bleomycin. Our study validates p53-miR-34a feedback as a potential therapeutic target in PF.


Assuntos
Fibrose Pulmonar Idiopática/etiologia , Lesão Pulmonar/etiologia , MicroRNAs/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Células Epiteliais Alveolares/fisiologia , Animais , Apoptose/fisiologia , Caveolina 1/farmacologia , Células Cultivadas , Retroalimentação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Respiratória/fisiologia
20.
PLoS One ; 11(4): e0154210, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27124120

RESUMO

Caveolin-1 (CAV-1) participates in regulating vesicular transport, signal transduction, tumor progression, and cholesterol homeostasis. In the present study, we tested the hypothesis that CAV-1 improves dyslipidemia, inhibits cyclophilin A (CypA)- mediated ROS production, prevents mitochondrial compensatory action and attenuates oxidative stress responses in cholesterol-induced hypercholesterolemia. To determine the role of CAV-1 in mediating oxidative and antioxidative as well as cholesterol homeostasis, hypercholesterolemic rabbits were intravenously administered antenapedia-CAV-1 (AP-CAV-1) peptide for 2 wk. AP-CAV-1 enhanced CAV-1 expression by ˃15%, inhibited CypA expression by ˃50% (P < 0.05) and significantly improved dyslipidemia, thus reducing neutral lipid peroxidation. Moreover, CAV-1 attenuated hypercholesterolemia-induced changes in mitochondrial morphology and biogenesis and preserved mitochondrial respiratory function. In addition, CAV-1 protected against hypercholesterol-induced oxidative stress responses by reducing the degree of oxidative damage and enhancing the expression of antioxidant enzymes. CAV-1 treatment significantly suppressed apoptotic cell death, as evidenced by the reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. We concluded that CAV-1 plays a critical role in inhibiting CypA-mediated ROS production, improving dyslipidemia, maintaining mitochondrial function, and suppressing oxidative stress responses that are vital for cell survival in hypercholesterol-affected renal organs.


Assuntos
Caveolina 1/genética , Colesterol/efeitos adversos , Hipercolesterolemia/tratamento farmacológico , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Ciclofilina A/antagonistas & inibidores , Ciclofilina A/genética , Ciclofilina A/metabolismo , Modelos Animais de Doenças , Transporte de Elétrons/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Hipercolesterolemia/induzido quimicamente , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo , Peptídeos/síntese química , Coelhos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA