Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 762
Filtrar
1.
Sci Rep ; 14(1): 7755, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565929

RESUMO

Cellulose-degrading microorganisms hold immense significance in utilizing cellulose resources efficiently. The screening of natural cellulase bacteria and the optimization of fermentation conditions are the hot spots of research. This study meticulously screened cellulose-degrading bacteria from mixed soil samples adopting a multi-step approach, encompassing preliminary culture medium screening, Congo red medium-based re-screening, and quantification of cellulase activity across various strains. Particularly, three robust cellulase-producing strains were identified: A24 (MT740356.1 Brevibacillus borstelensis), A49 (MT740358.1 Bacillus cereus), and A61 (MT740357.1 Paenibacillus sp.). For subsequent cultivation experiments, the growth curves of the three obtained isolates were monitored diligently. Additionally, optimal CMCase production conditions were determined, keeping CMCase activity as a key metric, through a series of single-factor experiments: agitation speed, cultivation temperature, unit medium concentration, and inoculum volume. Maximum CMCase production was observed at 150 rpm/37 °C, doubling the unit medium addition, and a 5 mL inoculation volume. Further optimization was conducted using the selected isolate A49 employing response surface methodology. The software model recommended a 2.21fold unit medium addition, 36.11 °C temperature, and 4.91 mL inoculant volume for optimal CMCase production. Consequently, three parallel experiments were conducted based on predicted conditions consistently yielding an average CMCase production activity of 15.63 U/mL, closely aligning with the predicted value of 16.41 U/mL. These findings validated the reliability of the model and demonstrated the effectiveness of optimized CMCase production conditions for isolate A49.


Assuntos
Celulase , Paenibacillus , Bacillus cereus/metabolismo , Celulose/metabolismo , Reprodutibilidade dos Testes , Celulase/metabolismo , Paenibacillus/metabolismo , Fermentação
2.
Food Chem ; 449: 139192, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583404

RESUMO

The synergistic effects of ultrafine grinding and enzymolysis (cellulase and Laccase hydrolysis) alone or combined with carboxymethylation or acetylation on the hypoglycemic and antioxidant activities of oil palm kernel fibre (OPKEF) were studied for the first time. After these synergistic modifications, the microstructure of OPKEF became more porous, and its soluble fibre and total polyphenols contents, and surface area were all improved (P < 0.05). Superfine-grinding and enzymolysis combined with carboxymethylation treated OPKEF exhibited the highest viscosity (13.9 mPa∙s), inhibition ability to glucose diffusion (38.18%), and water-expansion volume (3.58 mL∙g-1). OPKEF treated with superfine-grinding and enzymolysis combined with acetylation showed the highest surface hydrophobicity (50.93) and glucose adsorption capacity (4.53 µmol∙g-1), but a lower α-amylase-inhibition ability. Moreover, OPKEF modified by superfine-grinding and enzymolysis had the highest inhibiting activity against α-amylase (25.78%). Additionally, superfine-grinding and enzymolysis combined with carboxymethylation or acetylation both improved the content and antioxidant activity of OPEKF's bounding polyphenols (P < 0.05).


Assuntos
Antioxidantes , Hipoglicemiantes , Antioxidantes/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Acetilação , Óleo de Palmeira/química , alfa-Amilases/química , alfa-Amilases/metabolismo , Lacase/química , Lacase/metabolismo , Metilação , Celulase/química , Celulase/metabolismo , Hidrólise , Viscosidade , Sementes/química , Manipulação de Alimentos , Polifenóis/química , Polifenóis/farmacologia
3.
Arch Microbiol ; 206(4): 163, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483624

RESUMO

To enhance the quality of tobacco leaves and optimize the smoking experience, diverse strains of functional bacteria and their associated metabolites have been used in tobacco aging. Exogenous cellulase additives are frequently employed to facilitate the degradation of cellulose and other macromolecular matrices and enhance the quality of the tobacco product. However, little is known about how microbial metabolites present in exogenous enzyme additives affect tobacco quality. In this study, crude cellulase solutions, produced by a tobacco-originating bacterium Bacillus subtilis FX-1 were employed on flue-cured tobacco. The incorporation of cellulase solutions resulted in the reduction of cellulose crystallinity in tobacco and the enhancement of the overall sensory quality of tobacco. Notably, tobacco treated with cellulase obtained from laboratory flask fermentation demonstrated superior scent and flavor attributes in comparison to tobacco treated with enzymes derived from industrial bioreactor fermentation. The targeted and untargeted metabolomic analysis revealed the presence of diverse flavor-related precursors and components in the cellulase additives, encompassing sugars, alcohols, amino acids, organic acids, and others. The majority of these metabolites exhibited significantly higher levels in the flask group compared to the bioreactor group, probably contributing to a pronounced enhancement in the sensory quality of tobacco. Our findings suggest that the utilization of metabolic products derived from B. subtilis FX-1 as additives in flue-cured tobacco holds promise as a viable approach for enhancing sensory attributes, establishing a solid theoretical foundation for the potential development of innovative tobacco aging additives.


Assuntos
Bacillus subtilis , Celulase , Bacillus subtilis/metabolismo , Celulase/metabolismo , Celulose/metabolismo
4.
ACS Sens ; 9(3): 1447-1457, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412069

RESUMO

Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH3) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a Ti3C2Tx MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned Ti3C2Tx-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH3 sensing ability. As a result, the 2D kirigami-shaped NH3 sensor exhibited a good response of 7% to 50 ppm of NH3 with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH3. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/H2O2/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.


Assuntos
Amônia , Celulase , Nitritos , Elementos de Transição , Gelatina , Peróxido de Hidrogênio
5.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257389

RESUMO

Jujube residue is an abundant and low-cost dietary fiber resource, but its relatively lower hydration and functional properties limit its utilization as an ingredient of functional food. Thus, cellulase and hemicellulase hydrolysis, enzymatic hydrolysis assisted by phosphate grafting (EPG), and enzymatic hydrolysis assisted by acrylate grafting (EAG) were used to improve the functional properties of jujube residue dietary fiber (JRDF) in this study. The results evidenced that these modifications all increased the porosity of the microstructure of JRDF and increased the soluble fiber content, surface area, and hydration properties, but reduced its brightness (p < 0.05). Moreover, JRDF modified by enzymolysis combined with acrylate grafting offered the highest extractable polyphenol content, oil, sodium cholate, and nitrite ion sorption abilities. Meanwhile, JRDF modified via enzymolysis assisted by phosphate grafting showed the highest soluble fiber content (23.53 g∙100 g-1), water-retention ability (12.84 g∙g-1), viscosity (9.37 cP), water-swelling volume (10.80 mL∙g-1), and sorption ability of copper (II) and lead (II) ions. Alternatively, JRDF modified with cellulase hydrolysis alone exhibited the highest glucose adsorption capacity (21.9 g∙100 g-1) at pH 7.0. These results indicate that EPG is an effective way to improve the hypolipidemic effects of JRDF, while EAG is a good choice to enhance its hydration and hypoglycemic properties.


Assuntos
Celulase , Ziziphus , Fosfatos , Fibras na Dieta , Acrilatos , Água
6.
Bioresour Technol ; 390: 129837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839648

RESUMO

Biofuel production from cellulosic biomass is a promising approach; however, the cost-intensive utilization of cellulolytic enzymes is a major roadblock to economic production. This study reports the preparation of a nanocatalyst using date seed and evaluates the impact of nanocatalysts on cellulolytic enzyme production using solid-state fermentation of date pulp waste through bacterial co-cultivation. Under optimized conditions, 30 IU/gds filter paper activity is produced in the presence of 2 mg of nanocatalyst. Cellulase showed thermal stability at 50 °C and pH 7 up to 10 h in the presence of nanocatalyst, and it produced 32.31 g/L glucose through the hydrolysis of acidic-pretreated date seeds in 24 h. Subsequently, 1788 mL/L of cumulative H2 in 24 h through cocultured dark fermentation could be produced. The approach presented in this study can be effective for multiple value additions, including nanocatalyst preparation, cellulase enzyme, and biohydrogen production.


Assuntos
Celulase , Açúcares , Fermentação , Hidrólise , Sementes , Biomassa
7.
Int J Biol Macromol ; 253(Pt 2): 126648, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673140

RESUMO

The carbonization of wool fleece (WF) is conducted to remove the adhered vegetable matter (VM) from contaminated WF using sulfuric acid, followed by drying and backing. This process has a deteriorative effect on WF and requires a tremendous quantity of water for rinsing WF after carbonization to remove any H2SO4 residuals. Herein, we propose an alternative eco-friendly water-saving process for the removal of VM from WF using enzymes. Cellulase-containing xylanase from the fungus Aspergillus terreus, and cellulase-free xylanase from the fungus Aspergillus flavus AW1 were used to remove the VM from WF. The effect of some process parameters on the amount of the removed VM was assessed. Alkali solubility as well as sulfur and cystine content were used to follow the alteration in the chemistry of the bio-treated WF. The fiber morphology was examined using scanning electron microscopy. The dyeability of the treated WF towards acid, reactive, and basic dyes was monitored. The results revealed that the removal of the VM from WF by applying the examined enzymes was effective and could be an appropriate, non-destructive, eco-friendly water-saving substitute to the conventional carbonization procedures. By virtue of enzyme specificity, the proposed process removed the VM without deteriorating the fiber.


Assuntos
Celulase , Animais , Verduras , , Água , Carboidratos
8.
Bioresour Technol ; 386: 129485, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454960

RESUMO

Green solvents, especially deep eutectic solvents (DESs), are widely applied to pretreat biomass for enhancing its enzymatic hydrolysis. In this work, lactic acid was selected as the hydrogen-bond-donor to prepare Betaine-base DES (Betaine:LA), The DES was utilized to pretreat sugarcane bagasse (SCB) at 160 ℃ for 80 min (severity factor LogR0 = 3.67). The influences of Betaine:LA treatment on the chemical composition, crystal and microstructure structure of cellulose, and cellulase digestion were investigated. The results showed that the lignin (47.1%) and xylan (44.6%) were removed, the cellulase digestibility of Betaine:LA-treated SCB was 4.2 times that of the raw material. This improved efficiency was attributed to the enhanced accessibility of cellulose, the weakened surface area of lignin, the declined hydrophobicity, and the decreased crystallinity of cellulose. Several compelling linear correlations were fitted between enzymatic hydrolysis and these alterations of physicochemical features, comprehensively understanding enzymatic saccharification of Betaine:LA-pretreated SCB.


Assuntos
Celulase , Saccharum , Celulose/química , Lignina/química , Betaína , Ácido Láctico , Saccharum/química , Hidrólise , Celulase/química
9.
Bioresour Technol ; 384: 129276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290709

RESUMO

Sulfonated lignin can significantly enhance the enzymatic hydrolysis of lignocellulose substrates. Lignin is a type of polyphenol, therefore, sulfonated polyphenol, such as tannic acid, is likely to have similar effects. In order to obtain a low-cost and high-efficiency additive to improve enzymatic hydrolysis, sulfomethylated tannic acids (STAs) with different sulfonation degrees were prepared and their impact on enzymatic saccharification of sodium hydroxide-pretreated wheat straw were investigated. Tannic acid strongly inhibited, while STAs strongly promoted the substrate enzymatic digestibility. While adding 0.04 g/g-substrate STA containing 2.4 mmol/g sulfonate group, the glucose yield increased from 60.6% to 97.9% at a low cellulase dosage (5 FPU/g-glucan). The concentration of protein in enzymatic hydrolysate significantly increased with the added STAs, indicating that cellulase preferentially adsorbed with STAs, thereby reducing the amount of cellulase nonproductively anchored on substrate lignin. This result provides a reliable approach for establishing an efficient lignocellulosic enzyme hydrolysis system.


Assuntos
Celulase , Lignina , Lignina/metabolismo , Triticum/metabolismo , Hidróxido de Sódio , Açúcares , Hidrólise , Celulase/metabolismo , Polifenóis
10.
J Food Sci ; 88(8): 3228-3238, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326346

RESUMO

The present study investigates the effects of α-amylase (6 and 10 ppm), xylanase (70 and 120 ppm), and cellulase (35 and 60 ppm) on the physicochemical characteristics and nutritional quality of Chinese steamed bun (CSB) incorporated with 15% wheat bran (WB). Compared to the single enzyme, the combined enzymes improved the specific volume of CSB up to the highest value (2.50 mL/g) and decreased the hardness to the minimum value (299.61 g) when the concentration was 6, 120, 35 ppm. Additionally, the combined enzymes (6, 120, and 35 ppm) significantly (p < 0.05) decreased the total dietary fiber from 14.65% to 13.10% and hence increased the area under the reducing sugar release curve during in vitro digestion from 302.12 to 357.26 mg/g. Consequently, enzymes combination can significantly improve the quality of WB CSB, whereas reduce the nutritional value of WB CSB.


Assuntos
Celulase , alfa-Amilases , Fibras na Dieta/análise , Carboidratos , Valor Nutritivo , Vapor
11.
Carbohydr Polym ; 313: 120885, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182973

RESUMO

Tobacco based cellulose nanofiber (TCNF) is a novel nanocellulose that has recently been used to replace undesirable wood pulp fibers in the preparation of reconstructed tobacco sheets (RTS). However, given the strict requirements for controlling toxic chemical content in tobacco products, there is a global interest in developing a green, efficient, and toxic-chemical free approach to isolate TCNF from tobacco stem as a bioresource. In this study, we propose a creative and environmentally friendly method to efficiently and safely isolate TCNF from tobacco stem pulp, which involves integrated biological pretreatment followed by a facile mechanical defibrillation process. Feruloyl esterase is used to pretreat the stem pulp by disrupting the ether and ester bonds between lignin and polysaccharide carbohydrates within the fiber wall, which effectively facilitates cellulase hydrolysis and swelling of the stem pulp fiber, as well as the following mechanical shearing treatment for TCNF isolation. The results demonstrate that TCNF obtained by the comprehensive feruloyl esterase/cellulase/mechanical process exhibit uniform and well-dispersed nanofiber morphology, higher crystallinity, and stronger mechanical properties than those of the control. The addition of 0.5 % TCNF can replace wood pulp by 18 wt% ~ 25 wt% in the production of RTS samples while maintaining their reasonable strength properties.


Assuntos
Celulase , Nanofibras , Celulose/química , Nicotiana , Celulase/química , Nanofibras/química , Hidrólise
12.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37218716

RESUMO

AIMS: To test the efficacy of novel hot/acid hyperthermoacidic enzyme treatments on the removal of thermophilic spore-forming biofilms from stainless steel surfaces. METHODS AND RESULTS: The present study measured the efficacy of hyperthermoacidic enzymes (protease, amylase, and endoglucanase) that are optimally active at low pH (≈3.0) and high temperatures (≈80°C) at removing thermophilic bacilli biofilms from stainless steel (SS) surfaces. Plate counts, spore counts, impedance microbiology, as well as epifluorescence microscopy, and scanning electron microscopy (SEM) were used to evaluate the cleaning and sanitation of biofilms grown in a continuous flow biofilm reactor. Previously unavailable hyperthermoacidic amylase, protease, and the combination of amylase and protease were tested on Anoxybacillus flavithermus and Bacillus licheniformis, and endoglucanase was tested on Geobacillus stearothermophilus. In all cases, the heated acidic enzymatic treatments significantly reduced biofilm cells and their sheltering extracellular polymeric substances (EPS). CONCLUSIONS: Hyperthermoacidic enzymes and the associated heated acid conditions are effective at removing biofilms of thermophilic bacteria from SS surfaces that contaminate dairy plants.


Assuntos
Celulase , Aço Inoxidável , Animais , Leite/microbiologia , Archaea , Biofilmes , Peptídeo Hidrolases
13.
Microb Cell Fact ; 22(1): 103, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208691

RESUMO

BACKGROUND: The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T. reesei; however, glucose represses this transcriptional induction. Therefore, cellulose is commonly used as a carbon source for providing its degraded sugars such as cellobiose, which act as inducers to activate the strong promoters of the major cellulase (cellobiohydrolase 1 and 2 (cbh1 and cbh2) genes. However, replacement of cbh1 and/or cbh2 with a gene encoding the protein of interest (POI) for high productivity and occupancy of recombinant proteins remarkably impairs the ability to release soluble inducers from cellulose, consequently reducing the production of POI. To overcome this challenge, we first used an inducer-free biomass-degrading enzyme expression system, previously developed to produce cellulases and hemicellulases using glucose as the sole carbon source, for recombinant protein production using T. reesei. RESULTS: We chose endogenous secretory enzymes and heterologous camelid small antibodies (nanobody) as model proteins. By using the inducer-free strain as a parent, replacement of cbh1 with genes encoding two intrinsic enzymes (aspartic protease and glucoamylase) and three different nanobodies (1ZVH, caplacizumab, and ozoralizumab) resulted in their high secretory productions using glucose medium without inducers such as cellulose. Based on signal sequences (carrier polypeptides) and protease inhibitors, additional replacement of cbh2 with the nanobody gene increased the percentage of POI to about 20% of total secreted proteins in T. reesei. This allowed the production of caplacizumab, a bivalent nanobody, to be increased to 9.49-fold (508 mg/L) compared to the initial inducer-free strain. CONCLUSIONS: In general, whereas the replacement of major cellulase genes leads to extreme decrease in the degradation capacity of cellulose, our inducer-free system enabled it and achieved high secretory production of POI with increased occupancy in glucose medium. This system would be a novel platform for heterologous recombinant protein production in T. reesei.


Assuntos
Celulase , Anticorpos de Domínio Único , Trichoderma , Celulase/genética , Celulase/metabolismo , Glucose/metabolismo , Anticorpos de Domínio Único/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Celulose/metabolismo , Trichoderma/metabolismo
14.
Sci Rep ; 13(1): 1912, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732590

RESUMO

The filamentous fungus Trichoderma reesei is a prolific producer of plant cell wall degrading enzymes, which are regulated in response to diverse environmental signals for optimal adaptation, but also produces a wide array of secondary metabolites. Available carbon source and light are the strongest cues currently known to impact secreted enzyme levels and an interplay with regulation of secondary metabolism became increasingly obvious in recent years. While cellulase regulation is already known to be modulated by different mitogen activated protein kinase (MAPK) pathways, the relevance of the light signal, which is transmitted by this pathway in other fungi as well, is still unknown in T. reesei as are interconnections to secondary metabolism and chemical communication under mating conditions. Here we show that MAPkinases differentially influence cellulase regulation in light and darkness and that the Hog1 homologue TMK3, but not TMK1 or TMK2 are required for the chemotropic response to glucose in T. reesei. Additionally, MAPkinases regulate production of specific secondary metabolites including trichodimerol and bisorbibutenolid, a bioactive compound with cytostatic effect on cancer cells and deterrent effect on larvae, under conditions facilitating mating, which reflects a defect in chemical communication. Strains lacking either of the MAPkinases become female sterile, indicating the conservation of the role of MAPkinases in sexual fertility also in T. reesei. In summary, our findings substantiate the previously detected interconnection of cellulase regulation with regulation of secondary metabolism as well as the involvement of MAPkinases in light dependent gene regulation of cellulase and secondary metabolite genes in fungi.


Assuntos
Celulase , Trichoderma , Celulase/metabolismo , Metabolismo Secundário , Trichoderma/metabolismo , Desenvolvimento Sexual , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
15.
J Biotechnol ; 364: 5-12, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36708994

RESUMO

Oilseed cakes (OC) present high potential as feedstock for the biobased industry. Biotechnological processes allow OC valorization by the production of diverse value-added products and simultaneously altering OC structure, improving their nutritional value, and boosting OC utilization in animal feed. This work explored the use of fungi consortium of two different species as a bioprocessing approach to improve the nutritional quality of OC, obtain enzymes and antioxidants by solid-state fermentation (SSF) of sunflower cake (SFC) and rapeseed cake (RSC). Rhyzopus oryzae and Aspergillus ibericus consortium led to the highest production of cellulase (135 U/g) and ß-glucosidase (265 U/g) while maximum protease (228 U/g) was obtained with A. niger and R. oryzae consortium. Maximum xylanase production (886 U/g) was observed in SSF of RSC resulting in high hemicellulose reduction. The synergistic action of lignocellulosic enzymes resulted in extracts with increased antioxidant potential with possible application as food additives against oxidative stress.


Assuntos
Antioxidantes , Celulase , Animais , Fungos/metabolismo , Celulase/metabolismo , Fermentação , Ração Animal/análise
16.
Bioresour Technol ; 369: 128391, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435418

RESUMO

Ethylene glycol and ferric chloride pretreatment assisted by low-pressure carbon dioxide (1 MPa CO2) realized the targeted deconstruction of lignocelluloses at 170 °C for 5 min, achieving 98 % cellulose recovery with removal of 92 % lignin and 90 % hemicellulose. After the pretreatment, the formation of stable platform mono-phenol components would be with the destruction of the lignin-carbohydrate complexes structure, and the surface of rice straw became rough, with a less negative charge and higher specific surface area, while the enzyme adsorption rate increased by 8.1 times. Furthermore, the glucose yield of pretreated straw was remarkably increased by 5.6 times that of the untreated straw, reaching 91 % after hydrolyzed for 48 h. With Tween 80 added in concentrated solid (12 %) hydrolysis at low cellulase loading (3 FPU/g dry substrate), half of the hydrolysis time was shortened than that without Tween 80, with 45 % higher glucose yield.


Assuntos
Celulase , Oryza , Lignina/química , Dióxido de Carbono , Oryza/química , Etilenoglicol , Polissorbatos/farmacologia , Glucose , Hidrólise , Celulase/química
17.
Int J Biol Macromol ; 227: 214-221, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549608

RESUMO

Improving the cellulose accessibility and reactivity in an efficient and convenient way has become the focused issue in the field of dissolving pulp manufacturing. We herein demonstrate a simple yet efficient strategy, namely a simultaneous microwave (MW)-assisted phosphotungstic acid (PTA) catalysis (MW-PTAsim). The MW-PTAsim treatment was efficient to improve Fock reactivity from 49.1 % to 85.8 % and decrease viscosity from 561 to 360 mL/g within 10 min, which was superior to the single MW treatment and the sequential MW-PTAseq treatment. Besides, the MW-PTAsim treated fiber had rougher and more fibrillated surfaces with an enhanced fiber accessibility, showing increased specific surface area (SSA) from 1.43 to 6.31 m2/g, mean pore diameter (MPD) from 6.92 to 11.20 nm and water retention value (WRV) from 101 % to 172 %. These positive enhancements are mainly due to a synergy that MW-enhanced rotation of PTA mediums was served as "spinning cutters" to attack the fibers, plus MW-accelerated PTA transfer and catalytic hydrolysis further improved the fiber accessibility. Moreover, PTA also demonstrates a high reusability and chemical stability. This process offers an effective and sustainable alternative for manufacturing a premium dissolving pulp.


Assuntos
Celulase , Micro-Ondas , Ácido Fosfotúngstico , Celulase/farmacologia , Madeira , Peso Molecular
18.
J Biotechnol ; 361: 74-79, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36470313

RESUMO

Development of low-cost and economic cellulase production is among the key challenges due to its broad industrial applications. One of the main topics of research pertaining to sustainable biomass waste based biorefinaries is the development of economic cellulase production strategies. The main cause of the increase in cellulase production costs is the use of commercial substrates; as a result, the cost of any cellulase-based bioprocess can be decreased by employing a productive, low-cost substrate. The goal of the current study is to develop low-cost cellulase using the carbohydrate-rich, renewable, and widely accessible cyanobacteria algae Oscillatoria obscura as the production substrate. Maximum cellulase was produced utilising the fungus Rhizopus oryzae at substrate concentration of 7.0 g among various tested concentrations of algal biomass. Maximum production rates of 22 IU/gds FP, 105 IU/gds BGL, and 116 IU/gds EG in 72 h were possible under optimal conditions and substrate concentration. Further investigations on the crude enzyme's stability in the presence of iron oxide nanoparticles (IONPs) revealed that it was thermally stable at 60 °C for up to 8 h. Additionally, the crude enzyme demonstrated pH stability by maintaining its complete activity at pH 6.0 for 8 h in the presence of the optimal dose of 15 mg IONPs. The outcomes of this research may be used to investigate the possibility of producing such enzymes in large quantities at low cost for industrial use.


Assuntos
Celulase , Oscillatoria , Biomassa , Celulase/metabolismo , Estabilidade Enzimática , Fermentação , Nanopartículas Magnéticas de Óxido de Ferro , Oscillatoria/metabolismo , Plantas/metabolismo
19.
Plant Biotechnol J ; 21(2): 302-316, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208023

RESUMO

Microfibres (diameter <5 mm) and textile dyes released from textile industries are ubiquitous, cause environmental pollution, and harm aquatic flora, fauna, animals and human life. Therefore, enzymatic abatement of microfibre pollution and textile dye detoxification is essential. Microbial enzymes for such application present major challenges of scale and affordability to clean up large scale pollution. Therefore, enzymes required for the biodegradation of microfibres and indigo dye were expressed in transplastomic tobacco plants through chloroplast genetic engineering. Integration of laccase and lignin peroxidase genes into the tobacco chloroplast genomes and homoplasmy was confirmed by Southern blots. Decolorization (up to 86%) of samples containing indigo dye (100 mg/L) was obtained using cp-laccase (0.5% plant enzyme powder). Significant (8-fold) reduction in commercial microbial cellulase cocktail was achieved in pretreated cotton fibre hydrolysis by supplementing cost effective cellulases (endoglucanases, ß-glucosidases) and accessory enzymes (swollenin, xylanase, lipase) and ligninases (laccase lignin peroxidase) expressed in chloroplasts. Microfibre hydrolysis using cocktail of Cp-cellulases and Cp-accessory enzymes along with minimal dose (0.25% and 0.5%) of commercial cellulase blend (Ctec2) showed 88%-89% of sugar release from pretreated cotton and microfibres. Cp-ligninases, Cp-cellulases and Cp-accessory enzymes were stable in freeze dried leaves up to 15 and 36 months respectively at room temperature, when protected from light. Use of plant powder for decolorization or hydrolysis eliminated the need for preservatives, purification or concentration or cold chain. Evidently, abatement of microfibre pollution and textile dye detoxification using Cp-enzymes is a novel and cost-effective approach to prevent their environmental pollution.


Assuntos
Biodegradação Ambiental , Celulase , Índigo Carmim , Lacase/metabolismo , Pós , Têxteis , Nicotiana/genética
20.
mSystems ; 7(6): e0104222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468854

RESUMO

Botrytis cinerea is an agriculturally notorious plant-pathogenic fungus with a broad host range. During plant colonization, B. cinerea secretes a wide range of plant-cell-wall-degrading enzymes (PCWDEs) that help in macerating the plant tissue, but their role in pathogenicity has been unclear. Here, we report on the identification of a transcription factor, BcXyr1, that regulates the production of (hemi-)cellulases and is necessary for fungal virulence. Deletion of the bcxyr1 gene led to impaired spore germination and reduced fungal virulence and reactive oxygen species (ROS) production in planta. Secreted proteins collected from the bcxyr1 deletion strain displayed a weaker cell-death-inducing effect than the wild-type secretome when infiltrated to Nicotiana benthamiana leaves. Transcriptome sequencing (RNA-seq) analysis revealed 41 genes with reduced expression in the Δbcxyr1 mutant compared with those in the wild-type strain, of which half encode secreted proteins that are particularly enriched in carbohydrate-active enzyme (CAZyme)-encoding genes. Among them, we identified a novel putative expansin-like protein that was necessary for fungal virulence, supporting the involvement of BcXyr1 in the regulation of extracellular virulence factors. IMPORTANCE PCWDEs are considered important components of the virulence arsenal of necrotrophic plant pathogens. However, despite intensive research, the role of PCWDEs in the pathogenicity of necrotrophic phytopathogenic fungi remains ambiguous. Here, we demonstrate that the transcription factor BcXyr1 regulates the expression of a specific set of secreted PCWDE-encoding genes and that it is essential for fungal virulence. Furthermore, we identified a BcXyr1-regulated expansin-like gene that is required for fungal virulence. Our findings provide strong evidence for the importance of PCWDEs in the pathogenicity of B. cinerea and highlight specific PCWDEs that might be more important than others.


Assuntos
Celulase , Fatores de Transcrição , Virulência/genética , Fatores de Transcrição/genética , Celulase/genética , Proteínas Fúngicas/genética , Botrytis/genética , Plantas/metabolismo , Regulação Fúngica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA