Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.499
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cereb Cortex ; 34(13): 94-103, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696597

RESUMO

Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.


Assuntos
Cerebelo , Humanos , Cerebelo/patologia , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Animais , Transtorno Autístico/patologia , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Células de Purkinje/patologia
2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673939

RESUMO

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Assuntos
Ataxina-7 , Dependovirus , Modelos Animais de Doenças , Peptídeos , Fenótipo , RNA Interferente Pequeno , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/metabolismo , Peptídeos/genética , Dependovirus/genética , Camundongos , Ataxina-7/genética , Ataxina-7/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , RNA Interferente Pequeno/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Camundongos Transgênicos , Cerebelo/metabolismo , Cerebelo/patologia , Humanos , Terapia Genética/métodos , Alelos
3.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616770

RESUMO

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Assuntos
Corpo Estriado , Modelos Animais de Doenças , Distonia , Interneurônios , Parvalbuminas , Proteínas Proto-Oncogênicas c-fos , Receptores de Dopamina D2 , Animais , Interneurônios/metabolismo , Interneurônios/efeitos dos fármacos , Parvalbuminas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distonia/patologia , Distonia/metabolismo , Distonia/fisiopatologia , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Cerebelo/patologia , Cerebelo/metabolismo , Ouabaína/farmacologia , Camundongos Endogâmicos C57BL , Camundongos , Masculino
4.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 452-457, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38678325

RESUMO

Objective: To investigate the role of RNA m6A methylation in mediating cerebellar dysplasia through analyzing the phenotypes of the mouse cerebella and the expression of several key m6A regulators upon hypobaric hypoxia treatment. Methods: Five-day old C57/BL6 mice were exposed to hypobaric hypoxia for 9 days. The status of mouse cerebellar development was analyzed by comparing the body weights, brain weights and histological features. Immunostaining of cell-type-specific markers was performed to analyze the cerebellar morphology. Real-time PCR, Western blot and immunohistochemical staining were performed to detect the expression of key m6A regulators in the mouse cerebella. Results: Compared with the control, the body weights, brain weights and cerebellar volumes of hypobaric hypoxic mice were significantly reduced (P<0.01). The expression of specific markers in different cells, including NeuN (mature neuron), Calbindin-D28K (Purkinje cell) and GFAP (astrocyte), was decreased in hypobaric hypoxic mouse cerebella (P<0.01), accompanied with disorganized cellular structure. The expression of methyltransferase METTL3 was significantly down-regulated in the cerebella of hypobaric hypoxic mice (P<0.05). Conclusions: Hypobaric hypoxia stimulation causes mouse cerebellar dysplasia, with structural abnormalities in mature granular neurons, Purkinje cells and astrocytes. Expression of METTL3 is decreased in hypobaric hypoxic mice cerebellum compared with that of normobaric normoxic mice, suggesting that its mediated RNA m6A methylation may play an important role in hypobaric hypoxia-induced mouse cerebellar dysplasia.


Assuntos
Calbindinas , Cerebelo , Proteínas de Ligação a DNA , Hipóxia , Metiltransferases , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , Células de Purkinje , Animais , Camundongos , Cerebelo/metabolismo , Hipóxia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Calbindinas/metabolismo , Calbindinas/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Astrócitos/metabolismo , Regulação para Baixo , Metilação , Adenosina/metabolismo , Adenosina/análogos & derivados , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/genética
5.
J Neurosurg ; 140(4): 1160-1168, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564813

RESUMO

OBJECTIVE: The lateral aspect of the cerebellomesencephalic fissure frequently harbors vascular pathology and is a common surgical corridor used to access the pons tegmentum, as well as the cerebellum and its superior and middle peduncles. The quadrangular lobule of the cerebellum (QLC) represents an obstacle to reach these structures. The authors sought to analyze and compare exposure of the cerebellar interpeduncular region (CIPR) before and after QLC resection and provide a case series to evaluate its clinical applicability. METHODS: Forty-two sides of human brainstems were prepared with Klingler's method and dissected. The exposure area before and after resection of the QLC was measured and statistically studied. A case series of 59 patients who underwent QLC resection for the treatment of CIPR lesions was presented and clinical outcomes were evaluated at 1-year follow-up. RESULTS: The anteroposterior surgical corridor of the CIPR increased by 10.3 mm after resection of the QLC. The mean exposure areas were 42 mm2 before resection of the QLC and 159.6 mm2 after resection. In this series, ataxia, extrapyramidal syndrome, and akinetic mutism were found after surgery. However, all these cases resolved within 1 year of follow-up. Modified Rankin Scale score improved by 1 grade, on average. CONCLUSIONS: QLC resection significantly increased the exposure area, mainly in the anteroposterior axis. This surgical strategy appears to be safe and may help the neurosurgeon when operating on the lateral aspect of the cerebellomesencephalic fissure.


Assuntos
Cerebelo , Procedimentos Neurocirúrgicos , Humanos , Cerebelo/cirurgia , Procedimentos Neurocirúrgicos/métodos , Tronco Encefálico/cirurgia , Microcirurgia/métodos , Craniotomia/métodos
6.
BMC Med Genomics ; 17(1): 106, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671463

RESUMO

BACKGROUND: Syndromic ciliopathies are a group of congenital disorders characterized by broad clinical and genetic overlap, including obesity, visual problems, skeletal anomalies, mental retardation, and renal diseases. The hallmark of the pathophysiology among these disorders is defective ciliary functions or formation. Many different genes have been implicated in the pathogenesis of these diseases, but some patients still remain unclear about their genotypes. METHODS: The aim of this study was to identify the genetic causes in patients with syndromic ciliopathy. Patients suspected of or meeting clinical diagnostic criteria for any type of syndromic ciliopathy were recruited at a single diagnostic medical center in Southern Taiwan. Whole exome sequencing (WES) was employed to identify their genotypes and elucidate the mutation spectrum in Taiwanese patients with syndromic ciliopathy. Clinical information was collected at the time of patient enrollment. RESULTS: A total of 14 cases were molecularly diagnosed with syndromic ciliopathy. Among these cases, 10 had Bardet-Biedl syndrome (BBS), comprising eight BBS2 patients and two BBS7 patients. Additionally, two cases were diagnosed with Alström syndrome, one with Oral-facial-digital syndrome type 14, and another with Joubert syndrome type 10. A total of 4 novel variants were identified. A recurrent splice site mutation, BBS2: c.534 + 1G > T, was present in all eight BBS2 patients, suggesting a founder effect. One BBS2 patient with homozygous c.534 + 1G > T mutations carried a third ciliopathic allele, TTC21B: c.264_267dupTAGA, a nonsense mutation resulting in a premature stop codon and protein truncation. CONCLUSIONS: Whole exome sequencing (WES) assists in identifying molecular pathogenic variants in ciliopathic patients, as well as the genetic hotspot mutations in specific populations. It should be considered as the first-line genetic testing for heterogeneous disorders characterized by the involvement of multiple genes and diverse clinical manifestations.


Assuntos
Cerebelo/anormalidades , Ciliopatias , Doenças Renais Císticas , Proteínas , Retina/anormalidades , Humanos , Masculino , Feminino , Taiwan , Ciliopatias/genética , Criança , Pré-Escolar , Mutação , Sequenciamento do Exoma , Síndrome de Bardet-Biedl/genética , Adolescente , Lactente , Anormalidades Múltiplas/genética , Retina/patologia , Síndrome , Cílios/patologia , Cílios/genética , Anormalidades do Olho/genética
7.
Sci Adv ; 10(17): eade1650, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669326

RESUMO

While the kinesin-2 motors KIF3A and KIF3B have essential roles in ciliogenesis and Hedgehog (HH) signal transduction, potential role(s) for another kinesin-2 motor, KIF17, in HH signaling have yet to be explored. Here, we investigated the contribution of KIF17 to HH-dependent cerebellar development, where Kif17 is expressed in both HH-producing Purkinje cells and HH-responding cerebellar granule neuron progenitors (CGNPs). Germline Kif17 deletion in mice results in cerebellar hypoplasia due to reduced CGNP proliferation, a consequence of decreased HH pathway activity mediated through decreased Sonic HH (SHH) protein. Notably, Purkinje cell-specific Kif17 deletion partially phenocopies Kif17 germline mutants. Unexpectedly, CGNP-specific Kif17 deletion results in the opposite phenotype-increased CGNP proliferation and HH target gene expression due to altered GLI transcription factor processing. Together, these data identify KIF17 as a key regulator of HH-dependent cerebellar development, with dual and opposing roles in HH-producing Purkinje cells and HH-responding CGNPs.


Assuntos
Cerebelo , Cerebelo/anormalidades , Proteínas Hedgehog , Cinesinas , Malformações do Sistema Nervoso , Células de Purkinje , Animais , Cinesinas/metabolismo , Cinesinas/genética , Cerebelo/metabolismo , Cerebelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Células de Purkinje/metabolismo , Transdução de Sinais , Proliferação de Células , Camundongos Knockout , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Deficiências do Desenvolvimento
8.
Sci Rep ; 14(1): 8168, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589482

RESUMO

Injury, tumors, ischemia, and lesions in the cerebellum show the involvement of this region in human speech. The association of the cerebellum with learned birdsong has only been identified recently. Cerebellar dysfunction in young songbirds causes learning disabilities, but its role in adult songbirds has not been established. The aim of this study was to investigate the role of the deep cerebellar nuclei (DCN) in adult birdsong. We created bilateral excitotoxic lesions in the DCN of adult male zebra finches (Taeniopygia guttata) and recorded their songs for up to 4 months. Using magnetic resonance imaging (MRI) and immunohistochemistry, we validated the lesion efficacy. We found that the song duration significantly increased from 14 weeks post-op; the increase in duration was caused by a greater number of introductory notes as well as a greater number of syllables sung after the introductory notes. On the other hand, the motif duration decreased from 8 weeks after DCN lesions were induced, which was due to faster singing of syllables, not changes in inter-syllable interval length. DCN lesions also caused a decrease in the fundamental frequency of syllables. In summary, we showed that DCN lesions influence the temporal and acoustic features of birdsong. These results suggest that the cerebellum influences singing in adult songbirds.


Assuntos
Tentilhões , Aves Canoras , Animais , Masculino , Cerebelo/diagnóstico por imagem , Comunicação , Aprendizagem , Vocalização Animal
9.
Medicine (Baltimore) ; 103(17): e37923, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669361

RESUMO

RATIONALE: Primary central nervous system lymphoma (PCNSL) is a rare, highly malignant form of non-Hodgkin lymphoma categorized under the diffuse large B-cell type. It accounts for merely 1% of all non-Hodgkin lymphoma cases and comprises approximately 3% of all brain tumors. The involvement of the cerebellum is observed in only 9% of these cases. Recently, we came across an unusual instance: a young man presenting with multiple lesions located specifically within the cerebellum. PATIENT CONCERNS: A 26-year-old male was admitted to the hospital due to severe headaches. He has a medical history of sporadic headaches, accompanied by dizziness, nausea, and vomiting persisting for a month. Over the last 10 days, his headaches have intensified, coupled with decreased vision and protrusion of the eyeballs. Magnetic resonance imaging (MRI) revealed abnormal signals in both cerebellar hemispheres. DIAGNOSES, INTERVENTIONS, AND OUTCOMES: Diagnostic procedures included cerebellar biopsy, posterior fossa decompression, and lateral ventricle drainage. Histopathological examination identified diffuse large B-cell lymphoma (DLBCL) with high proliferative activity. To minimize neurotoxicity, chemotherapy involved intrathecal methotrexate (MTX) injections combined with the CHOP program. The patient has shown good tolerance to the treatment so far. LESSONS: While the definitive optimal treatment approach remains elusive, current chemotherapy centered on high-dose MTX stands as the standard induction therapy. Integrating surgery with radiotherapy and chemotherapy significantly extends patient survival.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Cerebelares , Linfoma Difuso de Grandes Células B , Humanos , Masculino , Adulto , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Cerebelares/terapia , Neoplasias Cerebelares/patologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/administração & dosagem , Vincristina/uso terapêutico , Doxorrubicina/uso terapêutico , Doxorrubicina/administração & dosagem , Metotrexato/uso terapêutico , Metotrexato/administração & dosagem , Prednisona/uso terapêutico , Prednisona/administração & dosagem , Terapia Combinada , Imageamento por Ressonância Magnética , Cerebelo/patologia , Cerebelo/diagnóstico por imagem
10.
Medicine (Baltimore) ; 103(17): e37987, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669389

RESUMO

RATIONALE: Joubert syndrome (JS) is a rare genetic disorder that presents with various neurological symptoms, primarily involving central nervous system dysfunction. Considering the etiology of JS, peripheral nervous system abnormalities cannot be excluded; however, cases of JS accompanied by peripheral nervous system abnormalities have not yet been reported. Distinct radiological findings on brain magnetic resonance imaging were considered essential for the diagnosis of JS. However, recently, cases of JS with normal or nearly normal brain morphology have been reported. To date, there is no consensus on the most appropriate diagnostic method for JS when imaging-based diagnostic approach is challenging. This report describes the case of an adult patient who exhibited bilateral peroneal neuropathies and was finally diagnosed with JS through genetic testing. PATIENT CONCERNS AND DIAGNOSIS: A 27-year-old man visited our outpatient clinic due to a gait disturbance that started at a very young age. The patient exhibited difficulty maintaining balance, especially when walking slowly. Oculomotor apraxia was observed on ophthalmic evaluation. During diagnostic workups, including brain imaging and direct DNA sequencing, no conclusive findings were detected. Only nerve conduction studies revealed profound bilateral peroneal neuropathies. We performed whole genome sequencing to obtain a proper diagnosis and identify the gene mutation responsible for JS. LESSONS: This case represents the first instance of peripheral nerve dysfunction in JS. Further research is needed to explore the association between JS and peripheral nervous system abnormalities. Detailed genetic testing may serve as a valuable tool for diagnosing JS when no prominent abnormalities are detected in brain imaging studies.


Assuntos
Anormalidades Múltiplas , Cerebelo , Cerebelo/anormalidades , Anormalidades do Olho , Doenças Renais Císticas , Neuropatias Fibulares , Retina , Retina/anormalidades , Humanos , Masculino , Adulto , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Doenças Renais Císticas/complicações , Cerebelo/diagnóstico por imagem , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Neuropatias Fibulares/diagnóstico , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Retina/diagnóstico por imagem , Imageamento por Ressonância Magnética
11.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502237

RESUMO

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Assuntos
Anormalidades Múltiplas , Diferenciação Celular , Cerebelo , Cerebelo/anormalidades , Anormalidades do Olho , Células-Tronco Pluripotentes Induzidas , Doenças Renais Císticas , Neurônios , Retina , Retina/anormalidades , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Cerebelo/patologia , Cerebelo/metabolismo , Neurônios/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Retina/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Doenças Renais Císticas/metabolismo , Masculino , Feminino , Mutação/genética , Cílios/metabolismo
12.
Neuroreport ; 35(6): 374-379, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526932

RESUMO

Lethal giant larvae 1 (LGL1) is originally recognized as a tumor suppressor, implicated in maintaining cell polarity in Drosophila and mammalian cells. Cell polarity plays a crucial role in tumorigenesis. We previously established Pax2-LGL1 -/- conditional knockout mice but did not focus on the tumorigenesis in cerebellar primordium. HE staining was used to detect the morphological structure of the cerebellar primordium during early embryonic development in Pax2-LGL1 -/- mice. Immunofluorescence assays were used to detect the expression of polar molecules. TUNEL staining assessed tissue apoptosis. Our findings reveal that deletion of LGL1 leads to the emergence of neuroblastoma-like tissues within the cerebellum primordium during early embryogenesis. This outcome can be attributed to alterations in expression patterns of polar molecules Cdc42 and ß-catenin following early deletion of LGL1, resulting in loss of cell polarity among neuroepithelial cells and subsequent formation of tumor-like tissues. However, further histological examination demonstrated that these tumor-like tissues disappear from embryonic day 15.5 onwards within the cerebellar primordium of Pax2-LGL1 -/- mice due to apoptosis-mediated cellular compensation. Our data emphasize the importance of LGL1 in maintaining neuroepithelial cell polarity and reveal a novel role for LGL1 in regulating tumorigenesis and ablation in the cerebellar primordium.


Assuntos
Apoptose , Cerebelo , Glicoproteínas , Animais , Camundongos , Carcinogênese , Cerebelo/metabolismo , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Camundongos Knockout
13.
Acta Neurochir (Wien) ; 166(1): 147, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520537

RESUMO

OBJECTIVE: Lesions of the posterior fossa (brainstem and cerebellum) are challenging in diagnosis and treatment due to the fact that they are often located eloquently and total resection is rarely possible. Therefore, frame-based stereotactic biopsies are commonly used to asservate tissue for neuropathological diagnosis and further treatment determination. The aim of our study was to assess the safety and diagnostic success rate of frame-based stereotactic biopsies for lesions in the posterior fossa via the suboccipital-transcerebellar approach. METHODS: We performed a retrospective database analysis of all frame-based stereotactic biopsy cases at our institution since 2007. The aim was to identify all surgical cases for infratentorial lesion biopsies via the suboccipital-transcerebellar approach. We collected clinical data regarding outcomes, complications, diagnostic success, radiological appearances, and stereotactic trajectories. RESULTS: A total of n = 79 cases of stereotactic biopsies for posterior fossa lesions via the suboccipital-transcerebellar approach (41 female and 38 male) utilizing the Zamorano-Duchovny stereotactic system were identified. The mean age at the time of surgery was 42.5 years (± 23.3; range, 1-87 years). All patients were operated with intraoperative stereotactic imaging (n = 62 MRI, n = 17 CT). The absolute diagnostic success rate was 87.3%. The most common diagnoses were glioma, lymphoma, and inflammatory disease. The overall complication rate was 8.7% (seven cases). All patients with complications showed new neurological deficits; of those, three were permanent. Hemorrhage was detected in five of the cases having complications. The 30-day mortality rate was 7.6%, and 1-year survival rate was 70%. CONCLUSIONS: Our data suggests that frame-based stereotactic biopsies with the Zamorano-Duchovny stereotactic system via the suboccipital-transcerebellar approach are safe and reliable for infratentorial lesions bearing a high diagnostic yield and an acceptable complication rate. Further research should focus on the planning of safe trajectories and a careful case selection with the goal of minimizing complications and maximizing diagnostic success.


Assuntos
Neoplasias Encefálicas , Técnicas Estereotáxicas , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Tronco Encefálico/cirurgia , Cerebelo/cirurgia , Biópsia/métodos , Neoplasias Encefálicas/cirurgia
14.
Handb Clin Neurol ; 200: 173-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494276

RESUMO

Paraneoplastic cerebellar and brainstem disorders are a heterogeneous group that requires prompt recognition and treatment to help prevent irreversible neurologic injury. Paraneoplastic cerebellar degeneration is best characterized by Yo antibodies in patients with breast or ovarian cancer. Tr (DNER) antibodies in patients with Hodgkin lymphoma can also present with a pure cerebellar syndrome and is one of the few paraneoplastic syndromes found with hematological malignancy. Opsoclonus-myoclonus-ataxia syndrome presents in both pediatric and adult patients with characteristic clinical findings. Other paraneoplastic brainstem syndromes are associated with Ma2 and Hu antibodies, which can cause widespread neurologic dysfunction. The differential for these disorders is broad and also includes pharmacological side effects, infection or postinfectious processes, and neurodegenerative diseases. Although these immune-mediated disorders have been known for many years, mechanisms of pathogenesis are still unclear, and optimal treatment has not been established.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Degeneração Paraneoplásica Cerebelar , Adulto , Criança , Humanos , Autoanticorpos , Cerebelo , Feminino
15.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542274

RESUMO

In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species.


Assuntos
Oncorhynchus keta , Animais , Glutamato-Amônia Ligase , Cistationina , Aromatase , Cistationina beta-Sintase , Cerebelo , Mamíferos
16.
Neurosci Lett ; 826: 137733, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492880

RESUMO

Etomidate (ET) is a widely used intravenous imidazole general anesthetic, which depresses the cerebellar neuronal activity by modulating various receptors activity and synaptic transmission. In this study, we investigated the effects of ET on the cerebellar climbing fiber-Purkinje cells (CF-PC) plasticity in vitro in mice using whole-cell recording technique and pharmacological methods. Our results demonstrated that CF tetanic stimulation produced a mGluR1-dependent long-term depression (LTD) of CF-PC excitatory postsynaptic currents (EPSCs), which was enhanced by bath application of ET (10 µM). Blockade of mGluR1 receptor with JNJ16259685, ET triggered the tetanic stimulation to induce a CF-PC LTD accompanied with an increase in paired-pulse ratio (PPR). The ET-triggered CF-PC LTD was abolished by extracellular administration of an N-methyl-(D)-aspartate (NMDA) receptor antagonist, D-APV, as well as by intracellular blockade of NMDA receptors activity with MK801. Furthermore, blocking cannabinoids 1 (CB1) receptor with AM251 or chelating intracellular Ca2+ with BAPTA, ET failed to trigger the CF-PC LTD. Moreover, the ET-triggered CF-PC LTD was abolished by inhibition of protein kinase A (PKA), but not by inhibition of protein kinase C inhibiter. The present results suggest that ET acts on postsynaptic NMDA receptor resulting in an enhancement of the cerebellar CF-PC LTD through CB1 receptor/PKA cascade in vitro in mice. These results provide new evidence and possible mechanism for ET anesthesia to affect motor learning and motor coordination by regulating cerebellar CF-PC LTD.


Assuntos
Etomidato , Camundongos , Animais , Etomidato/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica , Anestésicos Intravenosos/farmacologia
17.
Neuropathol Appl Neurobiol ; 50(2): e12970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504418

RESUMO

PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.


Assuntos
Neoplasias Cerebelares , Síndrome do Hamartoma Múltiplo , Criança , Humanos , Animais , Camundongos , Mutação em Linhagem Germinativa , Fosfatidilinositol 3-Quinases , PTEN Fosfo-Hidrolase/genética , Cerebelo/patologia , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Fenótipo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Células Germinativas/patologia , Mutação
18.
Dev Neurobiol ; 84(2): 74-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509451

RESUMO

The organization of neurons into distinct layers, known as lamination, is a common feature of the nervous system. This process, which arises from the direct coupling of neurogenesis and neuronal migration, plays a crucial role in the development of the cerebellum, a structure exhibiting a distinct folding cytoarchitecture with cells arranged in discrete layers. Disruptions to neuronal migration can lead to various neurodevelopmental disorders, highlighting the significance of understanding the molecular regulation of lamination. We report a role Mllt11/Af1q/Tcf7c (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q, also known as Mllt11 transcriptional cofactor 7; henceforth referred to Mllt11) in the migration of cerebellar granule cells (GCs). We now show that Mllt11 plays a role in both the tangential and radial migration of GCs. Loss of Mllt11 led to an accumulation of GC precursors in the rhombic lip region and a reduction in the number of GCs successfully populating developing folia. Consequently, this results in smaller folia and an overall reduction in cerebellar size. Furthermore, analysis of the anchoring centers reveals disruptions in the perinatal folia cytoarchitecture, including alterations in the Bergmann glia fiber orientation and reduced infolding of the Purkinje cell plate. Lastly, we demonstrate that Mllt11 interacts with non-muscle myosin IIB (NMIIB) and Mllt11 loss-reduced NMIIB expression. We propose that the dysregulation of NMIIB underlies altered GC migratory behavior. Taken together, the findings reported herein demonstrate a role for Mllt11 in regulating neuronal migration within the developing cerebellum, which is necessary for its proper neuroanatomical organization.


Assuntos
Cerebelo , Estruturas Embrionárias , Metencéfalo/embriologia , Neurônios , Gravidez , Feminino , Humanos , Neurônios/metabolismo , Neuroglia/metabolismo , Movimento Celular/fisiologia
19.
Sci Rep ; 14(1): 3162, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326369

RESUMO

The central nervous system predictively controls posture against external disturbances; however, the detailed mechanisms remain unclear. We tested the hypothesis that the cerebellar vermis plays a substantial role in acquiring predictive postural control by using a standing task with floor disturbances in rats. The intact, lesioned, and sham groups of rats sequentially underwent 70 conditioned floor-tilting trials, and kinematics were recorded. Six days before these recordings, only the lesion group underwent focal suction surgery targeting vermal lobules IV-VIII. In the naïve stage of the sequential trials, the upright postures and fluctuations due to the disturbance were mostly consistent among the groups. Although the pattern of decrease in postural fluctuation due to learning corresponded among the groups, the learning rate estimated from the lumbar displacement was significantly lower in the lesion group than in the intact and sham groups. These results suggest that the cerebellar vermis contributes to predictive postural controls.


Assuntos
Vermis Cerebelar , Cerebelo , Animais , Ratos , Cerebelo/fisiologia , Postura/fisiologia , Equilíbrio Postural
20.
World Neurosurg ; 185: 113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369105

RESUMO

Pineal cysts are typically detected in around 1.3% to 4.3% of patients during routine magnetic resonance imaging (MRI) scans.1,2 The vast majority of pineal cysts are benign, asymptomatic, and typically do not necessitate surgical intervention. Large pineal cysts are known to cause hydrocephalus with its associated symptoms and thus can require in rare cases surgical resection. Even in the absence of hydrocephalus, selected patients with large pineal cysts causing headaches and visual disturbances can find relief after surgical resection.3,4 The supracerebellar infratentorial (SCIT) approach is widely used and represents an extraparenchymatous approach through a natural corridor to the pineal region.5 Performing this approach in a semisitting position allows for an optimal retraction of the cerebellum by gravity. We employ a minimally invasive paramedian SCIT approach for the resection of pineal cysts. In our experience, the paramedian SCIT approach allows for a less steep operating angle and a smaller craniotomy compared with the midline SCIT approach. We present a 24-year-old female complaining of headache. The initial MRI was conducted 2 years before surgery. Following the initial evaluation, the patient experienced progressive headaches without neurologic deficits. A subsequent MRI revealed enlargement of the pineal cyst, leading to the indication for surgical resection. The surgery was performed mainly under the operating microscope with endoscopic visualization in suitable situations as our small approach restricts bimanual dissection with an endoscope. In our experience, this approach provides a versatile and minimally invasive access to the pineal region, making it optimally suitable for pineal cysts requiring surgical resection.


Assuntos
Microcirurgia , Procedimentos Neurocirúrgicos , Glândula Pineal , Humanos , Feminino , Glândula Pineal/cirurgia , Glândula Pineal/diagnóstico por imagem , Microcirurgia/métodos , Procedimentos Neurocirúrgicos/métodos , Adulto Jovem , Imageamento por Ressonância Magnética , Cistos do Sistema Nervoso Central/cirurgia , Cistos do Sistema Nervoso Central/diagnóstico por imagem , Cistos do Sistema Nervoso Central/complicações , Cistos/cirurgia , Cistos/diagnóstico por imagem , Cerebelo/cirurgia , Cerebelo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA