Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Biomed Pharmacother ; 174: 116500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555815

RESUMO

Chrysin is a natural flavonoid with powerful neuroprotective capacity. Cerebral ischemia/reperfusion injury (CIRI) is associated with oxidative stress and ferroptosis. Hypoxia-inducible factor 1α (HIF-1α) and ceruloplasmin (CP) are the critical targets for oxidation reactions and iron transport. But the regulatory mechanism between them is still unclear. Transient middle cerebral artery occlusion (tMCAO) model in rats and oxygen and glucose deprivation/re-oxygenation (OGD/R) model in PC12 cells were applied. Pathological tissue staining and biochemical kit were used to evaluate the effect of chrysin. The relationship between HIF-1α and CP was verified by transcriptomics, qRT-PCR and Western blot. In CIRI, HIF-1α/CP loop was discovered to be the regulatory pathway of ferroptosis. CIRI led to activation and nuclear translocation of HIF-1α, which promoted CP transcription and translation, and downstream ferroptosis. Inhibition of HIF-1α had opposite effect on CP and ferroptosis regulation. Overexpression of CP increased the expression of HIF-1α, nevertheless, inhibited the nuclear translocation of HIF-1α and alleviated CIRI. Silencing CP promoted HIF-1α elevation in nucleus and aggravated CIRI. Mechanistically, chrysin restrained HIF-1α nuclear translocation, thereby inhibiting CP transcription and translation, which in turn reduced downstream HIF-1α expression and mitigated ferroptosis in CIRI. Our results highlight chrysin restrains ferroptosis in CIRI through HIF-1α/CP loop.


Assuntos
Ceruloplasmina , Ferroptose , Flavonoides , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Flavonoides/farmacologia , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Ferroptose/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ratos , Células PC12 , Masculino , Ceruloplasmina/metabolismo , Ceruloplasmina/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Redox Biol ; 71: 103093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382185

RESUMO

Solid tumors are characterized by hypoxic areas, which are prone for macrophage infiltration. Once infiltrated, macrophages polarize to tumor associated macrophages (TAM) to support tumor progression. Therefore, the crosstalk between TAMs and tumor cells is of current interest for the development of novel therapeutic strategies. These may comprise induction of an iron- and lipid peroxidation-dependent form of cell death, known as ferroptosis. To study the macrophage - tumor cell crosstalk we polarized primary human macrophages towards a TAM-like phenotype, co-cultured them with HT1080 fibrosarcoma cells, and analyzed the tumor cell response to ferroptosis induction. In TAMs the expression of ceruloplasmin mRNA increased, which was driven by hypoxia inducible factor 2 and signal transducer and activator of transcription 1. Subsequently, ceruloplasmin mRNA was transferred from TAMs to HT1080 cells via extracellular vesicles. In tumor cells, mRNA was translated into protein to protect HT1080 cells from RSL3-induced ferroptosis. Mechanistically this was based on reduced iron abundance and lipid peroxidation. Interestingly, in naïve macrophages also hypoxia induced ceruloplasmin under hypoxia and a co-culture of HT1080 cells with hypoxic macrophages recapitulated the protective effect observed in TAM co-cultures. In conclusion, TAMs provoke tumor cells to release iron and thereby protect them from lipid peroxidation/ferroptosis.


Assuntos
Ferroptose , Fibrossarcoma , Humanos , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Macrófagos Associados a Tumor/metabolismo , RNA Mensageiro/genética , Hipóxia/metabolismo , Fibrossarcoma/genética , Ferro/metabolismo , Microambiente Tumoral
3.
Pediatr Neurol ; 145: 135-147, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354629

RESUMO

BACKGROUND: Wilson disease (WD) is a hereditary disorder of copper metabolism, caused by mutations in the ATP7B gene. There are more than 1000 pathogenic variants identified in ATP7B. R778L is the most common ATP7B mutation in China. METHODS: To estimate whether R778L is associated with the onset age of WD and other clinical variables. Genotyping results of ATP7B gene were collected in our 22 patients with WD. We then conducted a systematic review and meta-analysis in databases, using the keywords Wilson disease and R778L mutation. RESULTS: After the screening, a total of 23 studies were included, including 3007 patients with WD. Patients with R778L mutation presented at an earlier age (standardized mean difference [SMD] = -0.18 [95% confidence interval, -0.28 to 0.08], P = 0.0004) and had lower ceruloplasmin concentration (SMD = -0.21 [95% confidence interval, -0.40 to -0.02], P = 0.03) than the patients without the R778L mutation. However, sex (odds ratio [OR] = 1.07 [95% confidence interval, 0.89 to 1.29], P = 0.32) and first presentation were not associated with R778L mutation in WD (hepatic: OR = 1.37 [95% confidence interval, 0.87 to 2.16, P = 0.17; neurological: OR = 0.79 [95% confidence interval, 0.48 to 1.30, P = 0.35; mix: OR = 1.04 [95% confidence interval, 0.42 to 2.53, P = 0.87; asymptomatic/others: OR = 1.98 [95% confidence interval, 0.49 to 7.96, P = 0.34). CONCLUSIONS: Our results indicated that the R778L mutation is associated with an earlier presentation and lower ceruloplasmin concentration in China.


Assuntos
Degeneração Hepatolenticular , Humanos , Ceruloplasmina/genética , China , ATPases Transportadoras de Cobre/genética , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/patologia , Mutação
4.
Proc Natl Acad Sci U S A ; 120(2): e2212644120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595688

RESUMO

Iron homeostasis is critical for cellular and organismal function and is tightly regulated to prevent toxicity or anemia due to iron excess or deficiency, respectively. However, subcellular regulatory mechanisms of iron remain largely unexplored. Here, we report that SEL1L-HRD1 protein complex of endoplasmic reticulum (ER)-associated degradation (ERAD) in hepatocytes controls systemic iron homeostasis in a ceruloplasmin (CP)-dependent, and ER stress-independent, manner. Mice with hepatocyte-specific Sel1L deficiency exhibit altered basal iron homeostasis and are sensitized to iron deficiency while resistant to iron overload. Proteomics screening for a factor linking ERAD deficiency to altered iron homeostasis identifies CP, a key ferroxidase involved in systemic iron distribution by catalyzing iron oxidation and efflux from tissues. Indeed, CP is highly unstable and a bona fide substrate of SEL1L-HRD1 ERAD. In the absence of ERAD, CP protein accumulates in the ER and is shunted to refolding, leading to elevated secretion. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD is responsible for the degradation of a subset of disease-causing CP mutants, thereby attenuating their pathogenicity. Together, this study uncovers the role of SEL1L-HRD1 ERAD in systemic iron homeostasis and provides insights into protein misfolding-associated proteotoxicity.


Assuntos
Ceruloplasmina , Degradação Associada com o Retículo Endoplasmático , Camundongos , Animais , Ceruloplasmina/genética , Ubiquitina-Proteína Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Homeostase , Ferro/metabolismo
5.
Gene ; 851: 146923, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36241083

RESUMO

Iron (Fe) is considered as an essential micronutrient due to its diverse functions in living systems. However, regulation of free iron levels is essential because free Fe ions, in excess, induce biological toxicity through different routes, including production of reactive oxygen species. Ferritin proteins play a vital role in controlling free Fe ion homeostasis by sequestering excess iron in the body. Ferritins comprise an H subunit with a ferroxidase center and an L subunit with a Fe nucleation site. However, lower vertebrates such as fish harbor an additional subunit termed ferritin M, which shows the characteristic features of both H and L. In this study, two ferritin subunits (H and M) with ferroxidase centers were identified and characterized from red-lip mullet (Liza haematocheila). The open reading frames of red-lip mullet ferritin H (LhFerH) and ferritin M-like (LhFerM) subunits comprise 534 and 531 bps, which encode for putative polypeptides of 177 and 176 amino acids, respectively. LhFerH and LhFerM were found to retain well-conserved residues, including seven ferroxidase di-iron centers, characteristic domains, and signatures of their known homologs. We cloned the open reading frames of the two ferritin subunits to overexpress the corresponding proteins in Escherichia coli and subsequently demonstrated their iron sequestration activity along with antibacterial activity against E. coli using respective purified recombinant proteins in vitro. A basal expression analysis of two LhFer genes in selected tissues using qPCR assays showed pronounced expression in blood cells with respect to both genes. A relatively high expression level of LhFerH was also detected in muscle tissues. The expression level of LhFer in the head kidney was significantly up-regulated following lipopolysaccharides (LPS) and Lactococcus garvieae injection. The resulting gene expression pattern upon immune stimulation suggests that ferritin may contribute to the defense against harmful pathogen infection. Collectively, our results indicate that both LhFerH and LhFerM potentially participate in the homeostasis of free Fe ions and in the host immune defense of red-lip mullet.


Assuntos
Ferritinas , Smegmamorpha , Animais , Ferritinas/genética , Proteínas de Peixes/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Alinhamento de Sequência , Lábio , Sequência de Aminoácidos , Smegmamorpha/genética , Ferro/metabolismo , Antibacterianos/farmacologia
6.
Clin Genet ; 103(5): 585-589, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36562171

RESUMO

Known hereditary human diseases featuring impaired copper trafficking across cellular membranes involve ATP7A (Menkes disease, occipital horn disease, X-linked spinal muscular atrophy type 3) and ATP7B (Wilson disease). Herein, we report a newborn infant of consanguineous parents with a homozygous pathogenic variant in a highly conserved sequence of SLC31A1, coding for the copper influx transporter 1, CTR1. This missense variant, c.236T > C, was detected by whole exome sequencing. The infant was born with pulmonary hypoplasia and suffered from severe respiratory distress immediately after birth, necessitating aggressive mechanical ventilation. At 2 weeks of age, multifocal brain hemorrhages were diagnosed by cerebral ultrasound and magnetic resonance imaging, together with increased tortuosity of cerebral arteries. Ensuing seizures were only partly controlled by antiepileptic drugs, and the infant became progressively comatose. Laboratory investigations revealed very low serum concentrations of copper and ceruloplasmin. No hair shaft abnormalities were detected by dermatoscopy or light microscopic analyses of embedded hair shafts obtained at 4 weeks of life. The infant died after redirection of care and elective cessation of invasive mechanical ventilation at 1 month of age. This case adds SLC31A1 to the genes implicated in severe hereditary disorders of copper transport in humans.


Assuntos
Transportador de Cobre 1 , Degeneração Hepatolenticular , Síndrome dos Cabelos Torcidos , Humanos , Lactente , Recém-Nascido , Ceruloplasmina/genética , Cobre , Transportador de Cobre 1/genética , ATPases Transportadoras de Cobre/genética , Degeneração Hepatolenticular/genética , Síndrome dos Cabelos Torcidos/genética , Mutação de Sentido Incorreto
7.
Pediatr Hematol Oncol ; 40(7): 673-681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36308763

RESUMO

Aceruloplasminemia inherited autosomal recessively in the ceruloplasmin gene is a progressive disease with iron accumulation in various organs such as the brain, liver, pancreas, and retina. Ceruloplasmin gene encodes ceruloplasmin protein, which has ferroxidase activity and is involved in copper and iron metabolism. Progressive neurotoxicity, retinopathy, and diabetes may develop in about 40-60 decades. In addition, microcytic anemia accompanied by high ferritin and low ceruloplasmin level that develop at earlier ages can be first manifestation. Iron chelation may be utilized in the treatment to reduce the toxicity. Early diagnosis and treatment may delay the onset of symptoms. A 14-year-old male patient was followed up with microcytic anemia since an eight-years old. Anemia was accompanied by microcytosis, high ferritin, and low copper and ceruloplasmin levels. A novel homozygous c.690delG variant was detected in ceruloplasmin by whole exome sequencing. Clinical, laboratory and imaging findings of the patient demonstrated aceruloplasminemia. We present a boy with persistent microcytic anemia of the first manifestation at the age of eight, as the youngest case of aceruloplasminemia in the literature. Thereby, aceruloplasminemia should be kept in mind in the etiology of microcytic anemia whose cause couldn't found in childhood.


Assuntos
Ceruloplasmina , Cobre , Masculino , Humanos , Adolescente , Criança , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Ferritinas
8.
BMC Cancer ; 22(1): 843, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918659

RESUMO

BACKGROUND: Glioblastoma (GB) is the most common and most aggressive malignant brain tumor. In understanding its resistance to conventional treatments, iron metabolism and related pathways may represent a novel avenue. As for many cancer cells, GB cell growth is dependent on iron, which is tightly involved in red-ox reactions related to radiotherapy effectiveness. From new observations indicating an impact of RX radiations on the expression of ceruloplasmin (CP), an important regulator of iron metabolism, the aim of the present work was to study the functional effects of constitutive expression of CP within GB lines in response to beam radiation depending on the oxygen status (21% O2 versus 3% O2). METHODS AND RESULTS: After analysis of radiation responses (Hoechst staining, LDH release, Caspase 3 activation) in U251-MG and U87-MG human GB cell lines, described as radiosensitive and radioresistant respectively, the expression of 9 iron partners (TFR1, DMT1, FTH1, FTL, MFRN1, MFRN2, FXN, FPN1, CP) were tested by RTqPCR and western blots at 3 and 8 days following 4 Gy irradiation. Among those, only CP was significantly downregulated, both at transcript and protein levels in the two lines, with however, a weaker effect in the U87-MG, observable at 3% O2. To investigate specific role of CP in GB radioresistance, U251-MG and U87-MG cells were modified genetically to obtain CP depleted and overexpressing cells, respectively. Manipulation of CP expression in GB lines demonstrated impact both on cell survival and on activation of DNA repair/damage machinery (γH2AX); specifically high levels of CP led to increased production of reactive oxygen species, as shown by elevated levels of superoxide anion, SOD1 synthesis and cellular Fe2 + . CONCLUSIONS: Taken together, these in vitro results indicate for the first time that CP plays a positive role in the efficiency of radiotherapy on GB cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Ceruloplasmina/farmacologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Ferro/farmacologia , Oxigênio/metabolismo , Tolerância a Radiação/genética
9.
Am J Physiol Regul Integr Comp Physiol ; 323(2): R181-R192, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35639858

RESUMO

Antarctic notothenioids have unique adaptations that allow them to thrive in subzero Antarctic waters. Within the suborder Notothenioidei, species of the family Channichthyidae (icefish) lack hemoglobin and in some instances myoglobin too. In studies of mitochondrial function of notothenioids, few have focused specifically on ATP synthase. In this study, we find that the icefish Champsocephalus gunnari has a significantly higher level of ATP synthase subunit α expression than the red-blooded Notothenia rossii, but a much smaller interactome than the other species. We characterize the interactome of ATP synthase subunit α in two red-blooded species Trematomus bernacchii, N. rossii, and in the icefish Chionodraco rastrospinosus and C. gunnari and find that, in comparison with the other species, reactome enrichment for C. gunnari lacks chaperonin-mediated protein folding, and fewer oxidative-stress-associated proteins are present in the identified interactome of C. gunnari. Reactome enrichment analysis also identifies a transcript-specific translational silencing pathway for the iron oxidase protein ceruloplasmin, which has previously been reported in studies of icefish as distinct from other red-blooded fish and vertebrates in its activity and RNA transcript expression. Ceruloplasmin protein expression is detected by Western blot in the liver of T. bernacchii, but not in N. rossii, C. rastrospinosus, and C. gunnari. We suggest that the translation of ceruloplasmin transcripts is silenced by the identified pathway in icefish notothenioids, which is indicative of altered iron metabolism and Fe(II) detoxification.


Assuntos
Ceruloplasmina , Perciformes , Trifosfato de Adenosina/metabolismo , Animais , Regiões Antárticas , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Peixes/metabolismo , Ferro/metabolismo , Perciformes/genética , Perciformes/metabolismo , Proteômica
10.
Zhonghua Er Ke Za Zhi ; 60(4): 317-322, 2022 Apr 02.
Artigo em Chinês | MEDLINE | ID: mdl-35385937

RESUMO

Objectives: To summarize the clinical phenotypes and the variation spectrum of ATP7B gene in Chinese children with Wilson's disease (WD) and to investigate their significance for early diagnosis. Methods: Retrospective analysis was performed on the clinical data of 316 children diagnosed as WD in Guangzhou Women and Children's Medical Center during the period from January 2010 to June 2021. The general situations, clinical manifestations, lab test results, imaging examinations, and ATP7B gene variant characteristics were collected. The patients were divided into asymptomatic WD group and symptomatic WD group based on the presence or absence of clinical symptoms at the time that WD diagnosis was made. The χ2 test, t test or Mann-Whitney U test were used to compare the differences between groups. Results: Among the 316 children with WD, 199 were males and 117 were females, with the age of 5.4 (4.0, 7.6) years at diagnosis; 261 cases (82.6%) were asymptomatic with the age of 4.9 (3.9, 6.4) years; whereas 55 cases (17.4%) were symptomatic with the age of 9.6 (7.3, 12.0) years. The main symptoms invloved liver, kidney, nervous system, or skin damage. Of all the patients, 95.9% (303/316) had abnormal liver function at diagnosis; 98.1% (310/316) had the serum ceruloplasmin lever lower than 200 mg/L; 97.7% (302/309) had 24-hour urine copper content exceeding 40 µg; only 7.4% (23/310) had positive corneal K-F rings, 8.2% (23/281) had abnormal MRI signals in the lenticular nucleus, and all of them had symptoms of damage in liver, kidney or nervous system. Compared with the group of symptomatic WD, asymptomatic group had higher levels of serum alanine aminotransferase and lower levels ceruloplasmin and 24-hour urine copper [(208±137) vs. (72±78) U/L, (55±47) vs. (69±48) mg/L, 103 (72, 153) vs. 492 (230, 1 432) µg; t=9.98, -1.98, Z=-4.89, all P<0.001]. Among the 314 patients completing genetic sequencing, a total of 107 mutations in ATP7B gene were detected, of which 10 are novel variants, and 3 cases (1.0%) had large heterozygous deletion (exons 10 to exon 11) in ATP7B gene. The percentage of missense mutation in asymptomatic WD children was significantly higher than that in symptomatic WD (81.5% (422/518) vs. 69.1% (76/110), χ²=8.47, P<0.05). WD patients carrying homozygous variant of c.2 333G>T had significantly low levels of ceruloplasmin than those not carrying this variant ((23±5) vs. (61±48) mg/L, t=-2.34, P<0.001). Conclusions: The elevation of serum ALT is an important clue for early diagnosis of WD in children, while serum ceruloplasmin and 24-hour urine copper content are specific markers for early diagnosis of WD. In order to confirm the diagnosis of WD, it is necessary to combine the Sanger sequencing with multiplex ligation-dependent probe amplification or other testing technologies.


Assuntos
Degeneração Hepatolenticular , Ceruloplasmina/análise , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Criança , Pré-Escolar , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Feminino , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/genética , Humanos , Masculino , Mutação , Fenótipo , Estudos Retrospectivos
11.
Hum Mol Genet ; 31(21): 3652-3671, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35388883

RESUMO

Wilson's disease (WD) is a copper metabolic disorder caused by a defective ATP7B function. Conventional therapies cause severe side effects and significant variation in efficacy, according to cohort studies. Thus, exploring new therapeutic approaches to prevent progression to liver failure is urgent. To study the physiology and pathology of WD, immortalized cell lines and rodent WD models have been used conventionally; however, a large gap remains among different species as well as in genetic backgrounds among individuals. We generated induced pluripotent stem cells (iPSCs) from four WD patients carrying compound heterozygous mutations in the ATP7B gene. ATP7B loss- and gain-of-functions were further manifested with ATP7B-deficient iPSCs and heterozygously corrected R778L WD patient-derived iPSCs using CRISPR-Cas9-based gene editing. Although the expression of ATP7B protein varied among WD-specific hepatocytes differentiated from these iPSCs, the expression and secretion of ceruloplasmin (Cp), a downstream copper carrier in plasma, were consistently decreased in WD patient-derived and ATP7B-deficient hepatocytes. A transcriptome analysis detected abnormalities in the retinoid signaling pathway and lipid metabolism in WD-specific hepatocytes. Drug screening using WD patient-derived hepatocytes identified retinoids as promising candidates for rescuing Cp secretion. All-trans retinoic acid also alleviates reactive oxygen species production induced by lipid accumulation in WD-specific hepatocytes treated with oleic acid. These patient-derived iPSC-based hepatic models function as effective platforms for the development of potential therapeutics for hepatic steatosis in WD and other fatty liver diseases.


Assuntos
Degeneração Hepatolenticular , Humanos , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Retinoides/metabolismo , Retinoides/uso terapêutico , ATPases Transportadoras de Cobre/genética , Hepatócitos/metabolismo , Estresse Oxidativo , Mutação
12.
Curr Biol ; 32(10): 2189-2205.e6, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35472311

RESUMO

Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 µM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Fosfatos/metabolismo , Raízes de Plantas
13.
Nucleosides Nucleotides Nucleic Acids ; 41(5-6): 474-488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35306965

RESUMO

BACKGROUND: Ceruloplasmin (CP), recognized as a member of multicopper oxidase family, is related to the progression of diverse cancers in human beings. This study is designed to clarify the expression characteristics, biological function and related mechanism of CP in nasopharyngeal carcinoma (NPC). METHODS: CP expression in NPC tissues and cells was probed by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8), Transwell and BrdU assays were employed to measure cell viability, migration and invasion. The targeting relationship between microRNA-543 (miR-543) and CP was verified by dual-luciferase reporter gene assay. RESULTS: As against normal nasopharyngeal epithelial tissues, CP expression was significantly lower in NPC tissues, which was associated with higher clinical stage and the short overall survival time. Compared with the control group, CP overexpression markedly restrained the growth, migration and invasion of NPC cells; knocking down CP had the opposite effect. MiR-543 directly targeted CP and negatively modulated its expression. CONCLUSION: CP restrains the growth, migration and invasion of NPC cells and is negatively regulated by miR-543.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia
14.
Exp Eye Res ; 218: 109028, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271829

RESUMO

Iron accumulation has been implicated in degenerative retinal diseases. It can catalyze the production of damaging reactive oxygen species. Previous work has demonstrated iron accumulation in multiple retinal diseases, including age-related macular degeneration and diabetic retinopathy. In mice, systemic knockout of the ferroxidases ceruloplasmin (Cp) and hephaestin (Heph), which oxidize iron, results in retinal iron accumulation and iron-induced degeneration. To determine the role of Heph in the retina, we generated a neural retina-specific Heph knockout on a background of systemic Cp knockout. This resulted in elevated neural retina iron. Conversely, retinal ganglion cells had elevated transferrin receptor and decreased ferritin, suggesting diminished iron levels. The retinal degeneration observed in systemic Cp-/-, Heph-/- mice did not occur. These findings indicate that Heph has a local role in regulating neural retina iron homeostasis, but also suggest that preserved Heph function in either the RPE or systemically mitigates the degeneration phenotype observed in the systemic Cp-/-, Heph-/- mice.


Assuntos
Degeneração Macular , Proteínas de Membrana , Animais , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Homeostase , Ferro/metabolismo , Degeneração Macular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Retina/metabolismo
15.
J Hepatol ; 76(5): 1138-1150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101526

RESUMO

BACKGROUND & AIMS: Copper (Cu) is an essential trace element whose serum levels have been reported to act as an effective indicator of the efficacy of radiotherapy. However, little is known about the role of Cu in radiotherapy. In this study we aimed to determine this role and investigate the precise mechanism by which Cu or Cu-related proteins regulate the radiosensitivity of hepatocellular carcinoma (HCC). METHODS: The expression and function of Cu and copper metabolism MURR1 domain 10 (COMMD10) were assessed via a Cu detection assay, immunostaining, real-time PCR, western blot, a radiation clonogenic assay and a 5-ethynyl-2'-deoxyuridine assay. Ferroptosis was determined by detecting glutathione, lipid peroxidation, malondialdehyde and ferrous ion (Fe) levels. The in vivo effects of Cu and COMMD10 were examined with Cu/Cu chelator treatment or lentivirus modification of COMMD10 expression in radiated mouse models. RESULTS: We identified a novel role of Cu in promoting the radioresistance of HCC cells. Ionizing radiation (IR) induced a reduction of COMMD10, which increased intracellular Cu and led to radioresistance of HCC. COMMD10 enhanced ferroptosis and radiosensitivity in vitro and in vivo. Mechanistically, low expression of COMMD10 induced by IR inhibited the ubiquitin degradation of HIF1α (by inducing Cu accumulation) and simultaneously impaired its combination with HIF1α, promoting HIF1α nuclear translocation and the transcription of ceruloplasmin (CP) and SLC7A11, which jointly inhibited ferroptosis in HCC cells. In addition, elevated CP promoted HIF1α expression by reducing Fe, forming a positive feedback loop. CONCLUSIONS: COMMD10 inhibits the HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe homeostasis in HCC. This work provides new targets and treatment strategies for overcoming radioresistance in HCC. LAY SUMMARY: Radiotherapy benefits patients with unresectable or advanced hepatocellular carcinoma (HCC), but its effectiveness is hampered by radioresistance. Herein, we uncovered a novel role for copper in promoting the radioresistance of HCCs. This work has revealed new targets and potential treatment strategies that could be used to sensitize HCC to radiotherapy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/radioterapia , Linhagem Celular Tumoral , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cobre/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ferro/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Camundongos , Tolerância a Radiação/genética
16.
Cell Biochem Biophys ; 80(2): 385-393, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35147903

RESUMO

Iron accumulation is an important cause of various brain diseases. As a ferroxidase, ceruloplasmin (Cp) plays a key role in iron homeostasis and its abnormal activity leads to iron accumulation. However, the detailed biological function of Cp in brain iron homeostasis needs to be investigated. In this study, Cp knockout mice were prepared and the changes in iron content and protein expression related to iron metabolism were detected. The results showed that iron accumulation occurred in multiple tissues and organs of Cp knockout mice, but there was no obvious change in brain tissues. However, Cp deficiency affected the expression of many iron metabolism-related proteins in midbrain, such as DMT1+IRE, heavy chain ferritin (H-ferritin) and light chain ferritin (L-ferritin). Cp deficiency also impaired the behavioral ability of mice, including weakened exercise ability and reduced motor coordination. In vitro cell experiment indicated that the sensitivity of Cp knockout neuron and astrocyte to hypoxia was higher than that of wild type, which means Cp deficiency leads to the damage of cell self-protection. All these results confirm that Cp exerts a protective effect on the brain by regulating iron metabolism.


Assuntos
Ceruloplasmina , Ferro , Animais , Encéfalo/metabolismo , Ceruloplasmina/deficiência , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Ferritinas , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas
17.
Exp Eye Res ; 218: 108988, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202704

RESUMO

Iron-induced oxidative stress can cause or exacerbate retinal degenerative diseases. Retinal iron overload has been reported in several mouse disease models with systemic or neural retina-specific knockout (KO) of homologous ferroxidases ceruloplasmin (Cp) and hephaestin (Heph). Cp and Heph can potentiate ferroportin (Fpn) mediated cellular iron export. Here, we used retina-specific Fpn KO mice to test the hypothesis that retinal iron overload in Cp/Heph DKO mice is caused by impaired iron export from neurons and glia. Surprisingly, there was no indication of retinal iron overload in retina-specific Fpn KO mice: the mRNA levels of transferrin receptor in the retina were not altered at 7-10-months age. Consistent with this, levels and localization of ferritin light chain were unchanged. To "stress the system", we injected iron intraperitoneally into Fpn KO mice with or without Cp KO. Only mice with both retina-specific Fpn KO and Cp KO had modestly elevated retinal iron levels. These results suggest that impaired iron export through Fpn is not sufficient to explain the retinal iron overload in Cp/Heph DKO mice. An increase in the levels of retinal ferrous iron caused by the absence of these ferroxidases, followed by uptake into cells by ferrous iron importers, is most likely necessary.


Assuntos
Proteínas de Transporte de Cátions , Sobrecarga de Ferro , Animais , Proteínas de Transporte de Cátions/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Ferro/metabolismo , Camundongos , Camundongos Knockout , Retina/metabolismo
18.
Nat Commun ; 13(1): 561, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091578

RESUMO

Plants use nitrate and ammonium as major nitrogen (N) sources, each affecting root development through different mechanisms. However, the exact signaling pathways involved in root development are poorly understood. Here, we show that, in Arabidopsis thaliana, either disruption of the cell wall-localized ferroxidase LPR2 or a decrease in iron supplementation efficiently alleviates the growth inhibition of primary roots in response to NH4+ as the N source. Further study revealed that, compared with nitrate, ammonium led to excess iron accumulation in the apoplast of phloem in an LPR2-dependent manner. Such an aberrant iron accumulation subsequently causes massive callose deposition in the phloem from a resulting burst of reactive oxygen species, which impairs the function of the phloem. Therefore, ammonium attenuates primary root development by insufficiently allocating sucrose to the growth zone. Our results link phloem iron to root morphology in response to environmental cues.


Assuntos
Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Mutação , Nitratos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
19.
Can J Neurol Sci ; 49(3): 338-351, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34082843

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.


Assuntos
Distúrbios do Metabolismo do Ferro , Gânglios da Base , Encéfalo/patologia , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Humanos , Irã (Geográfico) , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/genética , Mutação
20.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830156

RESUMO

Over the past decade, cell therapy has found many applications in the treatment of different diseases. Some of the cells already used in clinical practice include stem cells and CAR-T cells. Compared with traditional drugs, living cells are much more complicated systems that must be strictly controlled to avoid undesirable migration, differentiation, or proliferation. One of the approaches used to prevent such side effects involves monitoring cell distribution in the human body by any noninvasive technique, such as magnetic resonance imaging (MRI). Long-term tracking of stem cells with artificial magnetic labels, such as magnetic nanoparticles, is quite problematic because such labels can affect the metabolic process and cell viability. Additionally, the concentration of exogenous labels will decrease during cell division, leading to a corresponding decrease in signal intensity. In the current work, we present a new type of genetically encoded label based on encapsulin from Myxococcus xanthus bacteria, stably expressed in human mesenchymal stem cells (MSCs) and coexpressed with ferroxidase as a cargo protein for nanoparticles' synthesis inside encapsulin shells. mZip14 protein was expressed for the enhancement of iron transport into the cell. Together, these three proteins led to the synthesis of iron-containing nanoparticles in mesenchymal stem cells-without affecting cell viability-and increased contrast properties of MSCs in MRI.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Humanos , Nanopartículas de Magnetita/ultraestrutura , Células-Tronco Mesenquimais/citologia , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA