Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Nat Metab ; 5(7): 1159-1173, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37337119

RESUMO

Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.


Assuntos
Neoplasias , Humanos , Proteínas , Proliferação de Células , Cetoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Transaminases/metabolismo
2.
J Med Chem ; 65(21): 14366-14390, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261130

RESUMO

The branched-chain amino acid transaminases (BCATs) are enzymes that catalyze the first reaction of catabolism of the essential branched-chain amino acids to branched-chain keto acids to form glutamate. They are known to play a key role in different cancer types. Here, we report a new structural class of BCAT1/2 inhibitors, (trifluoromethyl)pyrimidinediones, identified by a high-throughput screening campaign and subsequent optimization guided by a series of X-ray crystal structures. Our potent dual BCAT1/2 inhibitor BAY-069 displays high cellular activity and very good selectivity. Along with a negative control (BAY-771), BAY-069 was donated as a chemical probe to the Structural Genomics Consortium.


Assuntos
Aminoácidos de Cadeia Ramificada , Transaminases , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Cetoácidos/metabolismo
3.
Diabetes Obes Metab ; 24(11): 2263-2272, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35801343

RESUMO

AIM: To investigate cardiac signalling pathways connecting substrate utilization with left ventricular remodelling in a murine pressure overload model. METHODS: Cardiac hypertrophy was induced by transverse aortic constriction surgery in 20-week-old C57BL/6J mice treated with or without the sodium-glucose co-transporter 2 (SGLT2) inhibitor ertugliflozin (225 mg kg-1 chow diet) for 10 weeks. RESULTS: Ertugliflozin improved left ventricular function and reduced myocardial fibrosis. This occurred simultaneously with a fasting-like response characterized by improved glucose tolerance and increased ketone body concentrations. While cardiac insulin signalling was reduced in response to SGLT2 inhibition, AMP-activated protein kinase (AMPK) signalling was increased with induction of the fatty acid transporter cluster of differentiation 36 and phosphorylation of acetyl-CoA carboxylase (ACC). Further, enzymes responsible for ketone body catabolism (ß-hydroxybutyrate dehydrogenase, succinyl-CoA:3-oxoacid-CoA transferase and acetyl-CoA acetyltransferase 1) were induced by SGLT2 inhibition. Ertugliflozin led to more cardiac abundance of fatty acids, tricarboxylic acid cycle metabolites and ATP. Downstream mechanistic target of rapamycin (mTOR) pathway, relevant for protein synthesis, cardiac hypertrophy and adverse cardiac remodelling, was reduced by SGLT2 inhibition, with alleviation of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) providing a potential mechanism for abundant reduced left ventricular apoptosis and fibrosis. CONCLUSION: SGLT2 inhibition reduced left ventricular fibrosis in a murine model of cardiac hypertrophy. Mechanistically, this was associated with reduced cardiac insulin and increased AMPK signalling as a potential mechanism for less cardiac mTOR activation with alleviation of downstream ER stress, UPR and apoptosis.


Assuntos
Insulinas , Inibidores do Transportador 2 de Sódio-Glicose , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Coenzima A-Transferases/metabolismo , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Fibrose , Glucose/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Cetoácidos/metabolismo , Cetonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Sirolimo/metabolismo , Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
4.
Parasite Immunol ; 43(12): e12895, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34674283

RESUMO

Biotin lipoyl attachment and 2-oxoacid dehydrogenase acyltransferase (BLAODA), as an essential excretion of Haemonchus contortus (HcESPs), was identified to have antigenic functions. T helper-9 (Th9) cells secrete interleukin (IL)-9, a signature cytokine associated with tumour immunology, allergy and autoimmunity. Nonetheless, the understanding of modulatory functions of BLAODA on Th9 and other immune cells is limited. In this study, the BLAODA gene was cloned, and the recombinant (r) protein of BLAODA (rHcBLAODA) was expressed and immunoblotting was performed. The results revealed that HcBLAODA gene was successfully cloned and rHcBLAODA protein was expressed. The localization of rHcBLAODA was confirmed on the surface of gut sections from adult H. contortus. The rHcBLAODA protein capability to react precisely with anti-H. contortus antibodies were confirmed by immunoblotting and immunofluorescence assay (IFA). Further functional analysis showed that interaction of rHcBLAODA with host cells significantly enhanced Th9 cells generation, IL-9 expression, nitric oxide production and cell apoptosis while suppressing the cells proliferation and cells migration depending on the concentration. Overall, these findings suggest that rHcBLAODA protein could modulate the host immune response by inducing Th9 cells to secrete IL-9 cytokine in vitro.


Assuntos
Hemoncose , Haemonchus , Aciltransferases/metabolismo , Animais , Biotina/metabolismo , Di-Hidrolipoamida Desidrogenase/metabolismo , Cabras/parasitologia , Haemonchus/genética , Proteínas de Helminto , Cetoácidos/metabolismo
5.
J Nutr ; 150(12): 3180-3189, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097955

RESUMO

BACKGROUND: Plasma concentrations of branched-chain amino acids (BCAAs) are elevated in obese individuals with insulin resistance (IR) and decrease after bariatric surgery. However, the metabolic mechanisms are unclear. OBJECTIVES: Our objectives are to compare leucine kinetics between morbidly obese and healthy-weight individuals cross-sectionally, and to prospectively evaluate changes in the morbidly obese after sleeve gastrectomy. We hypothesized that leucine oxidation is slower in obese individuals and increases after surgery. METHODS: Ten morbidly obese [BMI (in kg/m2) ≥32.5, age 21-50 y] and 10 healthy-weight participants (BMI <25), matched for age (median ∼30 y) but not gender, were infused with [U-13C6] leucine and [2H5] glycerol to quantify leucine and glycerol kinetics. Morbidly obese participants were studied again 6 mo postsurgery. Primary outcomes were kinetic parameters related to BCAA metabolism. Data were analyzed by nonparametric methods and presented as median (IQR). RESULTS: Participants with obesity had IR with an HOMA-IR (4.89; 4.36-8.76) greater than that of healthy-weight participants (1.32; 0.99-1.49; P < 0.001) and had significantly faster leucine flux [218; 196-259 compared with 145; 138-149 µmol · kg fat-free mass (FFM)-1 · h-1], oxidation (24.0; 17.9-29.8 compared with 16.1; 14.3-18.5 µmol · kg FFM-1 · h-1), and nonoxidative disposal (204; 190-247 compared with 138; 129-140 µmol · kg FFM-1 · h-1) (P < 0.017 for all). After surgery, the morbidly obese had a marked improvement in IR (3.54; 3.06-6.08; P = 0.008) and significant reductions in BCAA concentrations (113; 95-157 µmol/L) and leucine oxidation (9.37; 6.85-15.2 µmol · kg FFM-1 · h-1) (P = 0.017 for both). Further, leucine flux in this group correlated significantly with IR (r = 0.78, P < 0.001). CONCLUSIONS: BCAA oxidation is not impaired but elevated in individuals with morbid obesity. Plasma BCAA concentrations are lowered after surgery owing to slower breakdown of body proteins as insulin's ability to suppress proteolysis is restored. These findings suggest that IR is the underlying cause and not the consequence of elevated BCAAs in obesity.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Gastrectomia/métodos , Obesidade Mórbida/metabolismo , Adulto , Isótopos de Carbono , Feminino , Humanos , Marcação por Isótopo , Cetoácidos/metabolismo , Masculino , Oxirredução
6.
J Biol Chem ; 295(46): 15597-15621, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32878988

RESUMO

Branched-chain α-keto acids (BCKAs) are catabolites of branched-chain amino acids (BCAAs). Intracellular BCKAs are cleared by branched-chain ketoacid dehydrogenase (BCKDH), which is sensitive to inhibitory phosphorylation by BCKD kinase (BCKDK). Accumulation of BCKAs is an indicator of defective BCAA catabolism and has been correlated with glucose intolerance and cardiac dysfunction. However, it is unclear whether BCKAs directly alter insulin signaling and function in the skeletal and cardiac muscle cell. Furthermore, the role of excess fatty acids (FAs) in perturbing BCAA catabolism and BCKA availability merits investigation. By using immunoblotting and ultra-performance liquid chromatography MS/MS to analyze the hearts of fasted mice, we observed decreased BCAA-catabolizing enzyme expression and increased circulating BCKAs, but not BCAAs. In mice subjected to diet-induced obesity (DIO), we observed similar increases in circulating BCKAs with concomitant changes in BCAA-catabolizing enzyme expression only in the skeletal muscle. Effects of DIO were recapitulated by simulating lipotoxicity in skeletal muscle cells treated with saturated FA, palmitate. Exposure of muscle cells to high concentrations of BCKAs resulted in inhibition of insulin-induced AKT phosphorylation, decreased glucose uptake, and mitochondrial oxygen consumption. Altering intracellular clearance of BCKAs by genetic modulation of BCKDK and BCKDHA expression showed similar effects on AKT phosphorylation. BCKAs increased protein translation and mTORC1 activation. Pretreating cells with mTORC1 inhibitor rapamycin restored BCKA's effect on insulin-induced AKT phosphorylation. This study provides evidence for FA-mediated regulation of BCAA-catabolizing enzymes and BCKA content and highlights the biological role of BCKAs in regulating muscle insulin signaling and function.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/antagonistas & inibidores , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Animais , Linhagem Celular , Dieta Hiperlipídica , Regulação para Baixo/efeitos dos fármacos , Insulina/farmacologia , Cetoácidos/sangue , Cetoácidos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Miocárdio/metabolismo , Palmitatos/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Nat Metab ; 2(8): 775-792, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32694827

RESUMO

Branched-chain amino acids (BCAAs) supply both carbon and nitrogen in pancreatic cancers, and increased levels of BCAAs have been associated with increased risk of pancreatic ductal adenocarcinomas (PDACs). It remains unclear, however, how stromal cells regulate BCAA metabolism in PDAC cells and how mutualistic determinants control BCAA metabolism in the tumour milieu. Here, we show distinct catabolic, oxidative and protein turnover fluxes between cancer-associated fibroblasts (CAFs) and cancer cells, and a marked reliance on branched-chain α-ketoacid (BCKA) in PDAC cells in stroma-rich tumours. We report that cancer-induced stromal reprogramming fuels this BCKA demand. The TGF-ß-SMAD5 axis directly targets BCAT1 in CAFs and dictates internalization of the extracellular matrix from the tumour microenvironment to supply amino-acid precursors for BCKA secretion by CAFs. The in vitro results were corroborated with circulating tumour cells (CTCs) and PDAC tissue slices derived from people with PDAC. Our findings reveal therapeutically actionable targets in pancreatic stromal and cancer cells.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Cetoácidos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Estromais/metabolismo , Transaminases/genética , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Fibroblastos Associados a Câncer , Biologia Computacional , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Oxirredução , Proteína Smad5/genética , Proteína Smad5/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ensaio Tumoral de Célula-Tronco
8.
J Biotechnol ; 321: 1-12, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32580011

RESUMO

Highly concentrated cell culture media formulations are essential to develop next generation bioprocesses used to produce therapeutic monoclonal antibodies, fusion proteins, bispecific molecules and mAb fragments. Although cysteine/cystine and tyrosine are the first components preventing the development of highly concentrated complex cell culture media, leucine and isoleucine were identified as the next critical amino acids due to their limited solubility. This work sought to investigate highly soluble and readily bioavailable derivatives of both amino acids that may be used in batch, fed-batch or perfusion processes. The α-keto acids of Leu and Ile, keto leucine and keto isoleucine sodium salts, were tested in cell culture media and proved to be beneficial to increase the overall solubility of cell culture media formulations. These keto acids were readily bioavailable for various CHO cells and can be used in both media and feeds. The quality of the final recombinant protein was studied in processes using the precursors and the mechanism of amination was investigated in CHO cells. Altogether, both keto acids represent an alternative to their respective amino acids to develop highly concentrated cell culture media formulations to support next generation bioprocesses.


Assuntos
Isoleucina , Cetoácidos , Leucina , Proteínas Recombinantes/metabolismo , Aminação , Animais , Disponibilidade Biológica , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/química , Meios de Cultura/metabolismo , Isoleucina/química , Isoleucina/metabolismo , Cetoácidos/química , Cetoácidos/metabolismo , Leucina/química , Leucina/metabolismo , Solubilidade
9.
Nat Cell Biol ; 22(2): 167-174, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32029896

RESUMO

Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC)1-4. BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA-BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC3,4. However, the underlying mechanism remains undefined. Here we reveal that BCAT2 is elevated in mouse models and in human PDAC. Furthermore, pancreatic tissue-specific knockout of Bcat2 impedes progression of pancreatic intraepithelial neoplasia (PanIN) in LSL-KrasG12D/+; Pdx1-Cre (KC) mice. Functionally, BCAT2 enhances BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. Notably, BCAA enhances growth of pancreatic ductal organoids from KC mice in a dose-dependent manner, whereas addition of branched-chain α-keto acid (BCKA) and nucleobases rescues growth of KC organoids that is suppressed by BCAT2 inhibitor. Moreover, KRAS stabilizes BCAT2, which is mediated by spleen tyrosine kinase (SYK) and E3 ligase tripartite-motif-containing protein 21 (TRIM21). In addition, BCAT2 inhibitor ameliorates PanIN formation in KC mice. Of note, a lower-BCAA diet also impedes PDAC development in mouse models of PDAC. Thus, BCAT2-mediated BCAA catabolism is critical for development of PDAC harbouring KRAS mutations. Targeting BCAT2 or lowering dietary BCAA may have translational significance.


Assuntos
Adenocarcinoma/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Menor/genética , Neoplasias Pancreáticas/genética , Proteínas da Gravidez/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transaminases/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Aminoácidos de Cadeia Ramificada/farmacologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cetoácidos/metabolismo , Cetoácidos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/metabolismo , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Ductos Pancreáticos/efeitos dos fármacos , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas da Gravidez/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transdução de Sinais , Quinase Syk/genética , Quinase Syk/metabolismo , Transaminases/metabolismo
10.
Protein Eng Des Sel ; 32(6): 261-270, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31872250

RESUMO

Dihydroxy-acid dehydratase (DHAD) catalyzes the dehydration of R-2,3-dihydroxyisovalerate (DHIV) to 2-ketoisovalerate (KIV) using an Fe-S cluster as a cofactor, which is sensitive to oxidation and expensive to synthesize. In contrast, sugar acid dehydratases catalyze the same chemical reactions using a magnesium ion. Here, we attempted to substitute the high-cost DHAD with a cost-efficient engineered sugar acid dehydratase using computational protein design (CPD). First, we tried without success to modify the binding pocket of a sugar acid dehydratase to accommodate the smaller, more hydrophobic DHIV. Then, we used a chemically activated substrate analog to react with sugar acid dehydratases or other enolase superfamily enzymes. Mandelate racemase from Pseudomonas putida (PpManR) and the putative sugar acid dehydratase from Salmonella typhimurium (StPutD) showed beta-elimination activity towards chlorolactate (CLD). CPD combined with medium-throughput selection improved the PpManR kcat/KM for CLD by four-fold. However, these enzyme variants did not show dehydration activity towards DHIV. Lastly, assuming phosphorylation could also be a good activation mechanism, we found that mevalonate-3-kinase (M3K) from Picrophilus torridus (PtM3K) exhibited adenosine triphosphate (ATP) hydrolysis activity when mixed with DHIV, indicating phosphorylation activity towards DHIV. Engineering PpManR or StPutD to accept 3-phospho-DHIV as a substrate was performed, but no variants with the desired activity were obtained.


Assuntos
Hemiterpenos/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Cetoácidos/metabolismo , Engenharia de Proteínas , Valeratos/metabolismo , Sequência de Aminoácidos , Biocatálise , Desenho Assistido por Computador , Hidroliases/química , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Especificidade por Substrato
11.
Biochem J ; 476(10): 1521-1537, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31092703

RESUMO

Alterations to branched-chain keto acid (BCKA) oxidation have been implicated in a wide variety of human diseases, ranging from diabetes to cancer. Although global shifts in BCKA metabolism-evident by gene transcription, metabolite profiling, and in vivo flux analyses have been documented across various pathological conditions, the underlying biochemical mechanism(s) within the mitochondrion remain largely unknown. In vitro experiments using isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease. Such analyses have routinely been utilized across disciplines to shed valuable insight into mitochondrial-linked pathologies. That said, few studies have attempted to model in vitro BCKA oxidation in isolated organelles. The impetus for the present study stemmed from the knowledge that complete oxidation of each of the three BCKAs involves a reaction dependent upon bicarbonate and ATP, both of which are not typically included in respiration experiments. Based on this, it was hypothesized that the inclusion of exogenous bicarbonate and stimulation of respiration using physiological shifts in ATP-free energy, rather than excess ADP, would allow for maximal BCKA-supported respiratory flux in isolated mitochondria. This hypothesis was confirmed in mitochondria from several mouse tissues, including heart, liver and skeletal muscle. What follows is a thorough characterization and validation of a novel biochemical tool for investigating BCKA metabolism in isolated mitochondria.


Assuntos
Trifosfato de Adenosina/metabolismo , Bicarbonatos/metabolismo , Cetoácidos/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Animais , Masculino , Camundongos , Especificidade de Órgãos , Oxirredução
12.
Toxicol In Vitro ; 55: 185-194, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30552994

RESUMO

Many of the toxicants in tobacco smoke undergo biotransformation in the lungs of smokers, both to reactive and to detoxified derivatives. Human air-liquid-interface (ALI) airway tissue models have emerged as an advanced in vitro model for evaluating the toxicity of inhaled substances; however, the metabolic potential of these cultures has not been evaluated extensively. In this study, we compared the metabolic activities of an ALI tissue model to the undifferentiated normal human primary bronchial epithelial (NHBE) cells from which it was derived. Measurement of the basal levels of gene expression for 84 phase I drug metabolism enzymes indicated that most genes were upregulated in ALI cultures compared to NHBE cells. Furthermore, the enzymatic activities of three cytochrome P450s involved in the bioactivation of tobacco-specific nitrosamines were higher in the ALI cultures, and the bioactivation of 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK), as measured by the formation of two of its major metabolites, i.e., keto acid and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), was significantly greater in the ALI cultures. Finally, NNK was a direct-acting genotoxicant in the ALI cultures, while the genotoxicity of NNK was detected in NHBE cells only in the presence of an exogenous liver S9 activation system. Taken together, our findings demonstrate the greater metabolic potential of well-differentiated ALI cultures than primary NHBE cells, supporting the potential use of ALI airway cultures as an alternative in vitro model for evaluating inhaled toxicants that require metabolic transformation.


Assuntos
Brônquios/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Nitrosaminas/farmacologia , Diferenciação Celular , Células Cultivadas , Humanos , Cetoácidos/metabolismo , Nitrosaminas/metabolismo , Testes de Toxicidade/métodos
13.
Biochemistry ; 57(49): 6762-6766, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30427175

RESUMO

The metabolism of branched-chain amino acids (BCAA) has recently been implicated in the growth of several cancer cell types. Gabapentin, a synthetic amino acid, is commonly used in high concentrations in this context to inhibit the cytosolic branched-chain amino acid transferase (BCAT1) enzyme. Here, we report that 10 mM gabapentin reduces the growth of HCT116 cells, which have an active branched-chain amino acid transferase but express very low levels of BCAT1, and presumably rely on the mitochondrial BCAT2 enzyme. Gabapentin did not affect transamination of BCAA to branched-chain keto acids (BCKA) in HCT116 cells, nor the reverse formation of BCAA from BCKA, indicating that the branched-chain amino acid transaminase is not inhibited. Moreover, the growth-inhibitory effect of gabapentin could not be rescued by supplementation with BCKA, and this was not due to the lack of uptake of BCKA, indicating that other effects of gabapentin are important. An untargeted LC-MS analysis of gabapentin-treated cells revealed a marked depletion of branched-chain carnitines. These results demonstrate that gabapentin at high concentrations can inhibit cell proliferation without affecting BCAT1 and may affect mitochondrial BCKA catabolism.


Assuntos
Proliferação de Células/efeitos dos fármacos , Gabapentina/farmacologia , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Citosol/enzimologia , Células HCT116 , Humanos , Cetoácidos/metabolismo , Cinética , Mitocôndrias/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(25): E5706-E5715, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866842

RESUMO

The stability of organic dyes against photobleaching is critical in single-molecule tracking and localization microscopy. Since oxygen accelerates photobleaching of most organic dyes, glucose oxidase is commonly used to slow dye photobleaching by depleting oxygen. As demonstrated here, pyranose-2-oxidase slows bleaching of Alexa647 dye by ∼20-fold. However, oxygen deprivation may pose severe problems for live cells by reducing mitochondrial oxidative phosphorylation and ATP production. We formulate a method to sustain intracellular ATP levels in the presence of oxygen scavengers. Supplementation with metabolic intermediates including glyceraldehyde, glutamine, and α-ketoisocaproate maintained the intracellular ATP level for at least 10 min by balancing between FADH2 and NADH despite reduced oxygen levels. Furthermore, those metabolites supported ATP-dependent synthesis of phosphatidylinositol 4,5-bisphosphate and internalization of PAR2 receptors. Our method is potentially relevant to other circumstances that involve acute drops of oxygen levels, such as ischemic damage in the brain or heart or tissues for transplantation.


Assuntos
Trifosfato de Adenosina/metabolismo , Oxigênio/metabolismo , Carbocianinas/metabolismo , Linhagem Celular , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Glucose Oxidase/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Cetoácidos/metabolismo , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , NAD/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fotodegradação , Receptor PAR-2/metabolismo
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 394-402, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29635184

RESUMO

Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×105, 8.4×105 and 2.5×105M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.


Assuntos
Antineoplásicos/metabolismo , Curcumina/metabolismo , Cetoácidos/metabolismo , Albumina Sérica Humana/metabolismo , Antineoplásicos/química , Sítios de Ligação , Curcumina/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Cetoácidos/química , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência
16.
Appl Biochem Biotechnol ; 186(3): 563-575, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29675666

RESUMO

Enantiopure 2-hydroxy acids (2-HAs) are important intermediates for the synthesis of pharmaceuticals and fine chemicals. Deracemization of racemic 2-HAs into the corresponding single enantiomers represents an economical and highly efficient approach for synthesizing chiral 2-HAs in industry. In this work, a novel ketoacid reductase from Leuconostoc lactis (LlKAR) with higher activity and substrate tolerance towards aromatic α-ketoacids was discovered by genome mining, and then its enzymatic properties were characterized. Accordingly, an engineered Escherichia coli (HADH-LlKAR-GDH) co-expressing 2-hydroxyacid dehydrogenase, LlKAR, and glucose dehydrogenase was constructed for efficient deracemization of racemic 2-HAs. Most of the racemic 2-HAs were deracemized to their (R)-isomers at high yields and enantiomeric purity. In the case of racemic 2-chloromandelic acid, as much as 300 mM of substrate was completely transformed into the optically pure (R)-2-chloromandelic acid (> 99% enantiomeric excess) with a high productivity of 83.8 g L-1 day-1 without addition of exogenous cofactor, which make this novel whole-cell biocatalyst more promising and competitive in practical application.


Assuntos
Oxirredutases do Álcool/metabolismo , Glucose 1-Desidrogenase/metabolismo , Hidroxiácidos/metabolismo , Cetoácidos/metabolismo , Oxirredutases/metabolismo , Biocatálise , Escherichia coli/genética , Leuconostoc/enzimologia , Estereoisomerismo
17.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549099

RESUMO

Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens, Clostridium hylemonae, and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes, Actinobacteria in the Coriobacteriaceae family, and human gut ArchaeaIMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens, C. hiranonis, and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Hidroxiesteroide Desidrogenases/metabolismo , Cetoácidos/metabolismo , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/química , Trato Gastrointestinal/metabolismo , Humanos , Hidroxilação , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/genética , Cetoácidos/química , Filogenia , Alinhamento de Sequência
18.
Plant J ; 94(2): 304-314, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29405514

RESUMO

Aromatic amino acids are protein building blocks and precursors to a number of plant natural products, such as the structural polymer lignin and a variety of medicinally relevant compounds. Plants make tyrosine and phenylalanine by a different pathway from many microbes; this pathway requires prephenate aminotransferase (PAT) as the key enzyme. Prephenate aminotransferase produces arogenate, the unique and immediate precursor for both tyrosine and phenylalanine in plants, and also has aspartate aminotransferase (AAT) activity. The molecular mechanisms governing the substrate specificity and activation or inhibition of PAT are currently unknown. Here we present the X-ray crystal structures of the wild-type and various mutants of PAT from Arabidopsis thaliana (AtPAT). Steady-state kinetic and ligand-binding analyses identified key residues, such as Glu108, that are involved in both keto acid and amino acid substrate specificities and probably contributed to the evolution of PAT activity among class Ib AAT enzymes. Structures of AtPAT mutants co-crystallized with either α-ketoglutarate or pyridoxamine 5'-phosphate and glutamate further define the molecular mechanisms underlying recognition of keto acid and amino acid substrates. Furthermore, cysteine was identified as an inhibitor of PAT from A. thaliana and Antirrhinum majus plants as well as the bacterium Chlorobium tepidum, uncovering a potential new effector of PAT.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Transaminases/metabolismo , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Cisteína/farmacologia , Cetoácidos/metabolismo , Redes e Vias Metabólicas , Conformação Proteica , Especificidade por Substrato , Transaminases/antagonistas & inibidores
19.
Methods Mol Biol ; 1685: 233-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29086312

RESUMO

Transaminases are efficient tools for the stereoselective conversion of prochiral ketones into valuable chiral amines. Notably, the diversity of naturally occurring α-transaminases offers access to a wide range of L- and D-α-amino acids. We describe here two continuous colorimetric assays for the quantification of transamination activities between a keto acid and a standard donor substrate (L- or D-Glutamic acid or cysteine sulfinic acid). These assays are helpful for kinetic studies as well as for high-throughput screening of enzyme collections.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Transaminases/metabolismo , Colorimetria , Cisteína/análogos & derivados , Cisteína/metabolismo , Ácido Glutâmico/metabolismo , Cetoácidos/metabolismo
20.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1190-1199, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28286014

RESUMO

BACKGROUND: We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp+) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp+ in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp+ or unconditioned stem cells. METHODS: Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. RESULTS: The proteomic remodeling was largely prevented in MSCp+ group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp+. In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp+. CONCLUSIONS: Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. GENERAL SIGNIFICANCE: Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart.


Assuntos
Fenômenos Biológicos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Regulação para Baixo/efeitos dos fármacos , Fibrose/metabolismo , Humanos , Cetoácidos/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Patológica/metabolismo , Proteômica/métodos , Suínos , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA