Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Cell Biochem Biophys ; 82(2): 1019-1026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514528

RESUMO

The study carried out systematic research on the influence of selected oxysterols on cells viability, phospholipidosis and the level of secreted extracellular vesicles. Three oxidized cholesterol derivatives, namely 7α-hydroxycholesterol (7α-OH), 7- ketocholesterol (7-K) and 24(S)-hydroxycholesterol (24(S)-OH) were tested in three different concentrations: 50 µM, 100 µM and 200 µM for 24 h incubation with A549 lung cancer cell line. All the studied oxysterols were found to alter cells viability. The lowest survival rate of the cells was observed after 24 h of 7-K treatment, slightly better for 7α-OH while cells incubated with 24(S)-OH had the best survival rate among the oxysterols used. 7-K increased phospholipids accumulation in cells, however, most noticeable effect was noticed for 24(S)-OH. Changes in the level of extracellular vesicles secreted in cells culture after the treatment with oxysterols were also observed. It was found that all oxysterols used increased the level of secreted vesicles, both exosomes and ectosomes. The strongest effect was noticed for 24(S)-OH. Taken together, these results suggest that 7-K is the most potent inducer of cancer cell death, while 7α-OH is slightly less potent in this respect. The lower cytotoxic effect of 24(S)-OH correlates with greater phospholipids accumulation, extracellular vesicles production and better cells survival.


Assuntos
Sobrevivência Celular , Vesículas Extracelulares , Hidroxicolesteróis , Neoplasias Pulmonares , Oxisteróis , Fosfolipídeos , Humanos , Sobrevivência Celular/efeitos dos fármacos , Fosfolipídeos/farmacologia , Fosfolipídeos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Vesículas Extracelulares/metabolismo , Oxisteróis/metabolismo , Células A549 , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/metabolismo , Cetocolesteróis/farmacologia , Cetocolesteróis/metabolismo
2.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139457

RESUMO

7-Ketocholesterol (7KC) is one of the oxysterols produced by the auto-oxidation of cholesterol during the dysregulation of cholesterol metabolism which has been implicated in the pathological development of osteoporosis (OP). Oxiapoptophagy involving oxidative stress, autophagy, and apoptosis can be induced by 7KC. However, whether 7KC produces negative effects on MC3T3-E1 cells by stimulating oxiapoptophagy is still unclear. In the current study, 7KC was found to significantly decrease the cell viability of MC3T3-E1 cells in a concentration-dependent manner. In addition, 7KC decreased ALP staining and mineralization and down-regulated the protein expression of OPN and RUNX2, inhibiting osteogenic differentiation. 7KC significantly stimulated oxidation and induced autophagy and apoptosis in the cultured MC3T3-E1 cells. Pretreatment with the anti-oxidant acetylcysteine (NAC) could effectively decrease NOX4 and MDA production, enhance SOD activity, ameliorate the expression of autophagy-related factors, decrease apoptotic protein expression, and increase ALP, OPN, and RUNX2 expression, compromising 7KC-induced oxiapoptophagy and osteogenic differentiation inhibition in MC3T3-E1 cells. In summary, 7KC may induce oxiapoptophagy and inhibit osteogenic differentiation in the pathological development of OP.


Assuntos
Osteogênese , Oxisteróis , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core , Cetocolesteróis/farmacologia , Oxisteróis/farmacologia , Superóxido Dismutase
3.
Steroids ; 187: 109093, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029811

RESUMO

7-ketocholesterol and 7ß-hydroxycholesterol are two oxysterols mainly formed by the autoxidation of cholesterol. These two molecules are interconvertible via specific enzymes. These two oxysterols are often observed at increased amounts in biological fluids as well as tissues and organs affected during age-related diseases and in diseases of civilization such as cardiovascular, neurodegenerative, and ocular diseases as well as type 2 diabetes and metabolic syndrome. Noteworthy, 7-ketocholesterol and 7ß-hydroxycholesterol induce oxidative stress and inflammation, which are frequently observed in patients with age-related and civilization diseases. For this reason, the involvement of these two oxysterols in the pathophysiology of these diseases is widely suspected. In addition, the toxicity of these oxysterols can lead to death by oxiapoptophagy characterized by oxidative stress, apoptosis induction and autophagy criteria. To prevent, or even treat, certain age-related or civilization diseases associated with increased levels of 7-ketocholesterol and 7ß-hydroxycholesterol, the identification of molecules or mixtures of molecules attenuating or inhibiting the toxic effects of these oxysterols allows to consider new treatments. In this context, many nutrients present in significant amounts in the Mediterranean diet, especially tocopherols, fatty acids, and polyphenols, have shown cytoprotective activities as well as several Mediterranean oils (argan and olive oils, milk thistle seed oil, and pistacia lentiscus seed oil). Consequently, a nutraceutical approach, rich in nutrients present in the Mediterranean diet, could thus make it possible to counteract certain age-related and civilization diseases associated with increased levels of 7-ketocholesterol and 7ß-hydroxycholesterol.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Envelhecimento , Civilização , Ácidos Graxos , Humanos , Hidroxicolesteróis/farmacologia , Cetocolesteróis/farmacologia , Nutrientes , Óleos , Azeite de Oliva , Polifenóis , Tocoferóis
4.
Oxid Med Cell Longev ; 2020: 1232816, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062133

RESUMO

Macrophage activation and polarization play a central role in atherosclerotic plaque fate. The M1/M2 activation phenotypes represent two profiles of the macrophage polarization state. During atherosclerosis regression or stabilization, macrophages switch from M1 proinflammatory phenotype to M2 anti-inflammatory reparative one. Here, we investigated whether the natural compound lupeol, a pentacyclic triterpene, induces phenotypical and functional changes in human M1 macrophages and counteracts the proinflammatory signalling triggered by 7-keto-cholesterol (7KC), a major product of oxidative stress-mediated cholesterol oxidation. Flow cytometric and immunochemical analysis showed that the treatment with lupeol of M1 monocyte-derived macrophages M (IFN-γ/LPS) specifically stimulated these cells to upregulate the expression of the anti-inflammatory cytokines interleukin- (IL-)10 and TGF-ß, and of the scavenger receptor CD36, whereas downregulated the proinflammatory cytokine IL-12 and the M1 activation marker HLA-DR. Pretreatment of macrophages with lupeol prevented the release of IL-12, IL-1ß, and the upregulation of HLA-DR expression triggered by 7KC and increased the IL-10 production and CD36 expression. This treatment also prevented the impairment of endocytosis triggered by 7KC and prevented 7KC-induced foam cell formation by reducing the lipid droplet accumulation in M1-polarized THP-1 macrophages, whereas showed an additive effect in reactive oxygen species (ROS) production. Western blotting analysis of autophagy markers LC3-I/II and p62-SQSTM1 in M1-polarized THP-1 macrophages demonstrated that lupeol activated autophagy as indicated by increased LC3-II levels, and by marked inhibition of p62. These findings indicate that lupeol has a cytoprotective effect on 7KC-proinflammatory signalling by efficiently switching the macrophage polarization toward an anti-inflammatory phenotype, probably through the activation of the autophagy pathway by increasing ROS production, the reduction of cellular lipid accumulation, and an overall reduction of proinflammatory phenotype. Thus, our data demonstrating an anti-inflammatory and immunomodulatory activity of lupeol in human M1 macrophages suggest its usefulness as an adjunctive drug in the therapy of atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Autofagia/efeitos dos fármacos , Antígenos CD36/metabolismo , Endocitose/efeitos dos fármacos , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Cetocolesteróis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Triterpenos Pentacíclicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
Molecules ; 25(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414101

RESUMO

The brain, which is a cholesterol-rich organ, can be subject to oxidative stress in a variety of pathophysiological conditions, age-related diseases and some rare pathologies. This can lead to the formation of 7-ketocholesterol (7KC), a toxic derivative of cholesterol mainly produced by auto-oxidation. So, preventing the neuronal toxicity of 7KC is an important issue to avoid brain damage. As there are numerous data in favor of the prevention of neurodegeneration by the Mediterranean diet, this study aimed to evaluate the potential of a series of polyphenols (resveratrol, RSV; quercetin, QCT; and apigenin, API) as well as ω3 and ω9 unsaturated fatty acids (α-linolenic acid, ALA; eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA, and oleic acid, OA) widely present in this diet, to prevent 7KC (50 µM)-induced dysfunction of N2a neuronal cells. When polyphenols and fatty acids were used at non-toxic concentrations (polyphenols: ≤6.25 µM; fatty acids: ≤25 µM) as defined by the fluorescein diacetate assay, they greatly reduce 7KC-induced toxicity. The cytoprotective effects observed with polyphenols and fatty acids were comparable to those of α-tocopherol (400 µM) used as a reference. These polyphenols and fatty acids attenuate the overproduction of reactive oxygen species and the 7KC-induced drop in mitochondrial transmembrane potential (ΔΨm) measured by flow cytometry after dihydroethidium and DiOC6(3) staining, respectively. Moreover, the studied polyphenols and fatty acids reduced plasma membrane permeability considered as a criterion for cell death measured by flow cytometry after propidium iodide staining. Our data show that polyphenols (RSV, QCT and API) as well as ω3 and ω9 unsaturated fatty acids (ALA, EPA, DHA and OA) are potent cytoprotective agents against 7KC-induced neurotoxicity in N2a cells. Their cytoprotective effects could partly explain the benefits of the Mediterranean diet on human health, particularly in the prevention of neurodegenerative diseases.


Assuntos
Dieta Mediterrânea , Ácidos Graxos Ômega-3/farmacologia , Cetocolesteróis/efeitos adversos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetocolesteróis/farmacologia , Camundongos , Mitocôndrias/patologia , Neurônios/patologia
6.
Cells ; 9(5)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403229

RESUMO

In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment of various diseases. Sterculic acid (SA) is a cyclopropene fatty acid with numerous biological activities, generally attributed to its Stearoyl-CoA desaturase (SCD) inhibitory properties. Additional effects exerted by SA, independently of SCD inhibition, may be mediating anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD), but the mechanisms involved are poorly understood. In order to provide insights into those mechanisms, genome-wide transcriptomic analyses were carried out in mRPE cells exposed to SA for 24 h. Integrative functional enrichment analysis of genome-wide expression data provided biological insight about the protective mechanisms induced by SA. On the one hand, pivotal genes related to fatty acid biosynthesis, steroid biosynthesis, cell death, actin-cytoskeleton reorganization and extracellular matrix-receptor interaction were significantly downregulated by exposition to SA. On the other hand, genes related to fatty acid degradation and beta-oxidation were significantly upregulated. In conclusion, SA administration to RPE cells regulates crucial pathways related to cell proliferation, inflammation and cell death that may be of interest for the treatment of ocular diseases.


Assuntos
Ciclopropanos/farmacologia , Células Epiteliais/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Genoma , Epitélio Pigmentado da Retina/citologia , Transcriptoma/genética , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Ciclopropanos/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Haplorrinos , Humanos , Cetocolesteróis/farmacologia , Oxidiazóis/farmacologia , Substâncias Protetoras/farmacologia , Piridazinas/farmacologia , Transcriptoma/efeitos dos fármacos
7.
J Cell Mol Med ; 24(1): 260-275, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31660692

RESUMO

The vulnerable plaque is a key distinguishing feature of atherosclerotic lesions that can cause acute atherothrombotic vascular disease. This study was designed to explore the effect of autophagy on mitochondria-mediated macrophage apoptosis and vulnerable plaques. Here, we generated the mouse model of vulnerable carotid plaque in ApoE-/- mice. Application of ApoE-/- mice with rapamycin (an autophagy inducer) inhibited necrotic core formation in vulnerable plaques by decreasing macrophage apoptosis. However, 3-methyladenine (an autophagy inhibitor) promoted plaque vulnerability through deteriorating these indexes. To further explore the mechanism of autophagy on macrophage apoptosis, we used macrophage apoptosis model in vitro and found that 7-ketocholesterol (7-KC, one of the primary oxysterols in oxLDL) caused macrophage apoptosis with concomitant impairment of mitochondria, characterized by the impairment of mitochondrial ultrastructure, cytochrome c release, mitochondrial potential dissipation, mitochondrial fragmentation, excessive ROS generation and both caspase-9 and caspase-3 activation. Interestingly, such mitochondrial apoptotic responses were ameliorated by autophagy activator, but exacerbated by autophagy inhibitor. Finally, we found that MAPK-NF-κB signalling pathway was involved in autophagy modulation of 7-KC-induced macrophage apoptosis. So, we provide strong evidence for the potential therapeutic benefit of macrophage autophagy in regulating mitochondria-mediated apoptosis and inhibiting necrotic core formation in vulnerable plaques.


Assuntos
Apoptose , Autofagia , Macrófagos/patologia , Mitocôndrias/metabolismo , Placa Aterosclerótica/patologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Progressão da Doença , Cetocolesteróis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , NF-kappa B/metabolismo , Necrose , Placa Aterosclerótica/metabolismo , Células RAW 264.7 , Sirolimo/farmacologia
8.
Lipids Health Dis ; 18(1): 215, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823799

RESUMO

BACKGROUND: Macrophage are specialized cells that contributes to the removal of detrimental contents via phagocytosis. Lipid accumulation in macrophages, whether from phagocytosis of dying cells or from circulating oxidized low-density lipoproteins, alters macrophage biology and functionality. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty acid oxidation and, therefore, lipid content. However, the potential of CPT1a to activate macrophage phagocytic function have not been elucidated. METHODS: Using a murine macrophage cell line, RAW264.7, we determine if intracellular accumulation of 7-ketocholesterol (7-KC) modulates macrophage phagocytic function through CPT1a gene expression. In addition, the effects of CPT1a genetic modification on macrophage phenotype and phagocytosis has been studied. RESULTS: Our results revealed that CPT1a gene expression decreased by the accumulation of 7-KC at the higher dose of 7-KC. This was concomitant with an impair ability to phagocytize bioparticles and an inflammatory phenotype. GW3965 treatment, which have shown to facilitate the efflux of cholesterol, eliminated the intracellular lipid droplets of 7-KC-laden macrophages, increased the gene expression of CPT1a, diminished the gene expression of the inflammatory marker iNOS and restored macrophage phagocytosis. Furthermore, CPT1a Knockdown per se was detrimental for macrophage phagocytosis whereas transcriptional activation of CPT1a heightened the uptake of bioparticles. CONCLUSIONS: Altogether, our findings indicate that downregulation of CPT1a by lipid content modulates macrophage phagocytosis and inflammatory phenotype.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Expressão Gênica/fisiologia , Inflamação , Cetocolesteróis/fisiologia , Macrófagos/fisiologia , Fagocitose/fisiologia , Animais , Carnitina O-Palmitoiltransferase/fisiologia , Regulação para Baixo , Técnicas de Silenciamento de Genes , Cetocolesteróis/farmacologia , Ativação de Macrófagos/fisiologia , Camundongos , Células RAW 264.7 , Transfecção
9.
Cell Physiol Biochem ; 53(6): 933-947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805226

RESUMO

BACKGROUND/AIMS: We showed that patho-physiological concentrations of either 7-keto-cholesterol (7-KC), or cholestane-3beta, 5alpha, 6beta-triol (TRIOL) caused the eryptotic death of human red blood cells (RBC), strictly dependent on the early production of reactive oxygen species (ROS). The goal of the current study was to assess the contribution of the erythrocyte ROS-generating enzymes, NADPH oxidase (RBC-NOX), nitric oxide synthase (RBC-NOS) and xanthine oxido-reductase (XOR) to the oxysterol-dependent eryptosis and pertinent activation pathways. METHODS: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, reactive oxygen/nitrogen species (RONS) and nitric oxide formation from 2',7'-dichloro-dihydrofluorescein (DCF-DA) and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) -dependent fluorescence, respectively; Akt1, phospho-NOS3 Ser1177, and PKCζ from Western blot analysis. The activity of individual 7-KC (7 µM) and TRIOL (2, µM) on ROS-generating enzymes and relevant activation pathways was assayed in the presence of Diphenylene iodonium chloride (DPI), N-nitro-L-arginine methyl ester (L-NAME), allopurinol, NSC23766 and LY294002, inhibitors in this order of RBC-NOX, RBC-NOS, XOR and upstream regulatory proteins Rac GTPase and phosphoinositide3 Kinase (PI3K); hemoglobin oxidation from spectrophotometric analysis. RESULTS: RBC-NOX was the target of 7-KC, through a signaling including Rac GTPase and PKCζ, whereas TRIOL caused activation of RBC-NOS according to the pathway PI3K/Akt, with the concurrent activity of a Rac-GTPase. In concomitance with the TRIOL-induced .NO production, formation of methemoglobin with global loss of heme were observed, ascribable to nitrosative stress. XOR, activated after modification of the redox environment by either RBC-NOX or RBC-NOS activity, concurred to the overall oxidative/nitrosative stress by either oxysterols. When 7-KC and TRIOL were combined, they acted independently and their effect on ROS/RONS production and PS exposure appeared the result of the effects of the oxysterols on RBC-NOX and RBC-NOS. CONCLUSION: Eryptosis of human RBCs may be caused by either 7-KC or TRIOL by oxidative/nitrosative stress through distinct signaling cascades activating RBC-NOX and RBC-NOS, respectively, with the complementary activity of XOR; when combined, the oxysterols act independently and both concur to the final eryptotic effect.


Assuntos
Colestanóis/farmacologia , Eriptose/efeitos dos fármacos , Cetocolesteróis/farmacologia , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Hemoglobinas/química , Humanos , Oxirredução , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/metabolismo
10.
Cells ; 8(5)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117185

RESUMO

7-Ketocholesterol (7-KC) is a cholesterol oxidation product with several biological functions. 7-KC has the capacity to cause cell death depending on the concentration and specific cell type. Mesenchymal stem cells (MSCs) are multipotent cells with the ability to differentiate into various types of cells, such as osteoblasts and adipocytes, among others. MSCs contribute to the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases, such as leukemia, to a yet unknown extent. Here, we describe the effect of 7-KC on the death of bone marrow MSCs from patients with acute myeloid leukemia (LMSCs). LMSCs were less susceptible to the death-promoting effect of 7-KC than other cell types. 7-KC exposure triggered the extrinsic pathway of apoptosis with an increase in activated caspase-8 and caspase-3 activity. Mechanisms other than caspase-dependent pathways were involved. 7-KC increased ROS generation by LMSCs, which was related to decreased cell viability. 7-KC also led to disruption of the cytoskeleton of LMSCs, increased the number of cells in S phase, and decreased the number of cells in the G1/S transition. Autophagosome accumulation was also observed. 7-KC downregulated the SHh protein in LMSCs but did not change the expression of SMO. In conclusion, oxiapoptophagy (OXIdative stress + APOPTOsis + autophagy) seems to be activated by 7-KC in LMSCs. More studies are needed to better understand the role of 7-KC in the death of LMSCs and the possible effects on the SHh pathway.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cetocolesteróis/farmacologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Autofagossomos/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Hedgehog/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor Smoothened/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G144-G154, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285464

RESUMO

Fenestrations are pores within liver sinusoidal endothelial cells (LSECs) that enable the transfer of substrates (particularly insulin and lipoproteins) between blood and hepatocytes. With increasing age, there are marked reductions in fenestrations, referred to as pseudocapillarization. Currently, fenestrations are thought to be regulated by vascular endothelial growth factor and nitric oxide (NO) pathways promoting remodeling of the actin cytoskeleton and cell membrane lipid rafts. We investigated the effects of drugs that act on these pathways on fenestrations in old (18-24 mo) and young mice (3-4 mo). Isolated LSECs were incubated with either cytochalasin 7-ketocholesterol, sildenafil, amlodipine, simvastatin, 2, 5-dimethoxy-4-iodoamphetamine (DOI), bosentan, TNF-related apoptosis-inducing ligand (TRAIL) or nicotinamide mononucleotide (NMN). LSECs were visualized under scanning electron microscopy to quantify fenestration porosity, diameter, and frequency, as well as direct stochastic optical reconstruction microscopy to examine actin and NO synthase. In young and old LSECs, fenestration porosity, diameter and frequency were increased by 7-ketocholesterol, while porosity and/or frequency were increased with NMN, sildenafil, amlodipine, TRAIL, and cytochalasin D. In old mice only, bosentan and DOI increased fenestration porosity and/or frequency. Modification of the actin cytoskeleton was observed with all agents that increased fenestrations, while NO synthase was only increased by sildenafil, amlodipine, and TRAIL. In conclusion, agents that target NO, actin, or lipid rafts promote changes in fenestrations in mice LSECs. Regulation of fenestrations occurs via both NO-dependent and independent pathways. This work indicates that age-related defenestration can be reversed pharmacologically, which has potential translational relevance for dyslipidemia and insulin resistance. NEW & NOTEWORTHY We demonstrate the effects of multiple nitric oxide-dependent and -independent pharmaceutical agents on fenestrations of the liver sinusoidal endothelium. Fenestrations are reorganized in response to nicotinamide mononucleotide, sildenafil, amlodipine, and TNF-related apoptosis-inducing ligand. This work indicates that age-related defenestration can be reversed pharmacologically, which has potential translational relevance for dyslipidemia and insulin resistance in old age.


Assuntos
Células Endoteliais/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Cetocolesteróis/farmacologia , Fígado/efeitos dos fármacos , Actinas/metabolismo , Animais , Células Endoteliais/metabolismo , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
PLoS One ; 13(7): e0200499, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30063760

RESUMO

7-Ketocholesterol is a major dietary cholesterol oxidation product found in high concentrations in atherosclerotic plaques, which contribute to the development of atherosclerosis. This study aimed to investigate the effects of 7-ketocholesterol on endothelial inflammation, as well as the underlying mechanisms. Pretreatment of human umbilical vein endothelial cells (HUVEC) with 7-ketocholesterol significantly enhanced the total interactions between human monocytic cells (THP-1 cell line) and TNFα-activated HUVECs under physiological flow conditions, compared to pretreatment with cholesterol (TNFα+50 µM cholesterol: 13.1 ± 0.54 cells/CPF, TNFα+50 µM 7-ketocholesterol: 18.9 ± 0.35 cells/CPF, p < 0.01). 7-Ketocholesterol enhanced the expression of E-selectin, ICAM-1, and VCAM-1 proteins. It also activated p38 mitogen-activated protein kinase (MAPK), and treatment with a p38 MAPK inhibitor inhibited both E-selectin expression via ATF-2 activation and 7-ketocholesterol-induced THP-1 adhesion to HUVECs. These findings suggest that 7-ketocholesterol enhances leukocyte-endothelial interactions by upregulating the expression of adhesion molecules, presumably via the p38 MAPK-dependent pathway.


Assuntos
Adesão Celular , Células Endoteliais/citologia , Cetocolesteróis/farmacologia , Leucócitos/citologia , Sistema de Sinalização das MAP Quinases , Selectina E/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/citologia , Oxisteróis/química , Fatores de Risco , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Traffic ; 19(8): 591-604, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29693767

RESUMO

The plasma membrane is inhomogeneously organized containing both highly ordered and disordered nanodomains. 7-Ketocholesterol (7KC), an oxysterol formed from the nonenzymatic oxidation of cholesterol, is a potent disruptor of membrane order. Importantly, 7KC is a component of oxidized low-density lipoprotein and accumulates in macrophage and foam cells found in arterial plaques. Using a murine macrophage cell line, J774, we report that both IgG-mediated and phosphatidylserine-mediated phagocytic pathways are inhibited by the accumulation of 7KC. Examination of the well-studied Fcγ receptor pathway revealed that the cell surface receptor abundance and ligand binding are unaltered while downstream signaling and activation of spleen tyrosine kinase is not affected. However, while the recruitment of phospholipase Cγ1 was unaffected its apparent enzymatic activity was compromised resulting in sustained phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] levels and polymerized actin at the base of the phagocytic cup. Additionally, we found that 7KC prevented the activation of PLCß downstream of the P2Y6 G-protein coupled receptor and that 7KC impaired PLCγ activity in response to a direct elevation of cytosolic calcium induced by ionomycin. Finally, we demonstrate that 7KC partly attenuates the activity of rapamycin recruitable constitutively active PLCß3. Together, our results demonstrate that the accumulation of 7KC impairs macrophage function by altering PtdIns(4,5)P2 catabolism and, thus, impairing actin depolymerization required for the completion of phagocytosis.


Assuntos
Cetocolesteróis/farmacologia , Fagocitose/efeitos dos fármacos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Linhagem Celular , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Fosfolipase C beta/metabolismo , Fosfolipase C gama/metabolismo , Receptores Purinérgicos P2/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-29154978

RESUMO

7-Ketocholesterol (7-KCHO) is a highly proinflammatory oxysterol and plays an important role in the pathophysiology of diabetic nephropathy (DN). Lipoxygenases (LOXs) and cyclooxygenases (COXs) are also involved in the development of DN. The aim of this study was to clarify the effects of 7-KCHO on mRNA expression of LOXs and COXs as well as pro-inflammatory cytokines in human mesangial cells (HMC). We evaluated cell viability by WST-8 assay and measured mRNA expression by reverse transcription-polymerase chain reaction. Intracellular reactive oxygen species (ROS) production was evaluated by flow cytometry. Although 7-KCHO did not affect cell viability of HMC, 7-KCHO stimulated significant increases in mRNA expression of 12-LOX, COX-2 and pro-inflammatory cytokines. 7-KCHO also induced an increase in ROS production, while N-acetylcysteine partially suppressed the increase. The 12-LOX and COX-2 inhibitors also suppressed mRNA expression of cytokines. These findings may contribute to the elucidation of the molecular mechanism of the pathophysiology of DN.


Assuntos
Nefropatias Diabéticas/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Cetocolesteróis/farmacologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Células Mesangiais/metabolismo , Células Mesangiais/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Free Radic Biol Med ; 113: 539-550, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29102636

RESUMO

The emerging role of the diet in the incidence of intestinal inflammatory diseases has stimulated research on the influence of eating habits with pro-inflammatory properties in inducing epithelial barrier disturbance. Cholesterol oxidation products, namely oxysterols, have been shown to promote and sustain oxidative/inflammatory reactions in human digestive tract. This work investigated in an in vitro model the potential ability of a combination of dietary oxysterols representative of a hyper-cholesterol diet to induce the loss of intestinal epithelial layer integrity. The components of the experimental mixture were the main oxysterols stemming from heat-induced cholesterol auto-oxidation, namely 7-ketocholesterol, 5α,6α-and 5ß,6ß-epoxycholesterol, 7α- and 7ß-hydroxycholesterol. These compounds added to monolayers of differentiated CaCo-2 cells in combination or singularly, caused a time-dependent induction of matrix metalloproteinases (MMP)-2 and -9, also known as gelatinases. The hyperactivation of MMP-2 and -9 was found to be associated with decreased levels of the tight junctions zonula occludens-1 (ZO-1), occludin and Junction Adhesion Molecule-A (JAM-A). Together with such a protein loss, particularly evident for ZO-1, a net perturbation of spatial localization of the three tight junctions was observed. Cell monolayer pre-treatment with the selective inhibitor of MMPs ARP100 or polyphenol (-)-epicathechin, previously shown to inhibit NADPH oxidase in the same model system, demonstrated that the decrease of the three tight junction proteins was mainly a consequence of MMPs induction, which was in turn dependent on the pro-oxidant property of the oxysterols investigated. Although further investigation on oxysterols intestinal layer damage mechanism is to be carried on, the consequent - but incomplete - prevention of oxysterols-dependent TJs alteration due to MMPs inhibition, avoided the loss of scaffold protein ZO-1, with possible significant recovery of intestinal monolayer integrity.


Assuntos
Colesterol/análogos & derivados , Hidroxicolesteróis/farmacologia , Cetocolesteróis/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Junções Íntimas/efeitos dos fármacos , Células CACO-2 , Catequina/farmacologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Colesterol/farmacologia , Colesterol na Dieta/metabolismo , Colesterol na Dieta/farmacologia , Impedância Elétrica , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Peroxidação de Lipídeos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ocludina/genética , Ocludina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
16.
EMBO Mol Med ; 9(10): 1366-1378, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28855301

RESUMO

We have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding. Peptidomimetic protease inhibitors highlighted a possible cleavage site, and mass spectrometry confirmed that shedding occurred predominantly at the H157-S158 peptide bond for both wild-type and H157Y human TREM2 and for the wild-type murine orthologue. Crucially, we also show that the Alzheimer's disease-associated H157Y TREM2 variant was shed more rapidly than wild type from HEK293 cells, possibly by a novel, batimastat- and ADAM10-siRNA-independent, sheddase activity. These insights offer new therapeutic targets for modulating the innate immune response in Alzheimer's and other neurological diseases.


Assuntos
Doença de Alzheimer/genética , Glicoproteínas de Membrana/metabolismo , Proteólise , Receptores Imunológicos/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Animais Recém-Nascidos , Meios de Cultivo Condicionados , Células HEK293 , Humanos , Cetocolesteróis/farmacologia , Macrófagos/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Imunológicos/genética
17.
PLoS One ; 12(3): e0174475, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28350877

RESUMO

The 7-oxysterols are recognised as strong enhancers of inflammatory processes in foamy macrophages. Atheroma-relevant 7-oxysterol mixtures induce a mixed type of cell death in macrophages, and trigger cellular oxidative stress responses, which mimic oxidative exposures observed in atherosclerotic lesions. However, the macrophage proteome has not previously been determined in the 7-oxysterol treated cell model. The aim of the present study was to determine the specific effects of an atheroma-relevant 7-oxysterol mixture on human macrophage proteome. Human THP-1 macrophages were exposed to an atheroma-relevant mixture of 7ß-hydroxycholesterol and 7-ketocholesterol. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyse the alterations in macrophage proteome, which resulted in the identification of 19 proteins with significant differential expression upon oxysterol loading; 8 increased and 11 decreased. The expression patterns of 11 out of 19 identified significant proteins were further confirmed by tandem-mass spectrometry, including further validation of increased histone deacetylase 2 and macrophage scavenger receptor types I and II expressions by western blot analysis. Identified proteins with differential expression in the cell model have been associated with i) signalling imbalance in cell death and cellular longevity; ii) lipid uptake and metabolism in foam cells; and iii) inflammatory proteins. The presented findings highlight a new proteomic platform for further studies into the functional roles of macrophages in atherosclerosis, and present a cell model for future studies to modulate the macrophage proteome by potential anti-atherosclerotic agents.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Oxisteróis/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Humanos , Hidroxicolesteróis/farmacologia , Cetocolesteróis/farmacologia , Macrófagos/metabolismo , Oxisteróis/metabolismo , Placa Aterosclerótica/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Fatores de Tempo
18.
J Proteomics ; 151: 12-23, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27343758

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative disease with a characteristic BCR-ABL tyrosine kinase (TK) fusion protein. Despite the clinical efficacy accomplished by TKIs therapies, disease progression may affect patient response rate to these inhibitors due to a multitude of factors that could lead to development of a mechanism known as multidrug resistance (MDR). 7-Ketocholesterol (7KC) is an oxidized cholesterol derivative that has been extensively reported to cause cell death in a variety of cancer models. In this study, we showed the in vitro efficacy of 7KC against MDR leukemia cell line, Lucena. 7KC treatment induced reduction in cell viability, together with apoptosis-mediated cell death. Moreover, downregulation of MDR protein caused intracellular drug accumulation and 7KC co-incubation with either Daunorubicin or Vincristine reduced cell viability compared to the use of each drug alone. Additionally, quantitative label-free mass spectrometry-based protein quantification showed alteration of different molecular pathways involved in cell cycle arrest, induction of apoptosis and misfolded protein response. Conclusively, this study highlights the effect of 7KC as a sensitizing agent of multidrug resistance CML and elucidates its molecular mechanisms. SIGNIFICANCE: CML patients treated with tyrosine kinase inhibitors (TKIs) have showed a 5-year estimated overall survival of 89%, with cumulative complete cytogenetic response of 87%. However, development of drug resistance is a common feature of the disease progression. This study aimed at showing the effect of 7KC as a cytotoxic and sensitizing agent of multidrug resistance CML cell lines. The cellular and molecular basis of this compound were elucidated using a comprehensive strategy based on quantitative proteomic and cell biology assays. We showed that 7KC induced cell death and overcomes drug resistance in CML through mechanisms that go beyond the classical MDR1 pathways.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cetocolesteróis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Daunorrubicina/uso terapêutico , Sinergismo Farmacológico , Humanos , Cetocolesteróis/uso terapêutico , Proteômica/métodos , Deficiências na Proteostase/metabolismo , Vincristina/uso terapêutico
19.
J Steroid Biochem Mol Biol ; 169: 164-175, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133385

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells characterized by self-renewal and cellular differentiation capabilities. Oxysterols comprise a very heterogeneous group derived from cholesterol through enzymatic and non-enzymatic oxidation. Potent effects in cell death processes, including cytoxicity and apoptosis induction, were described in several cell lines. Very little is known about the effects of oxysterols in MSCs. 7-ketocholesterol (7-KC), one of the most important oxysterols, was shown to be cytotoxic to human adipose tissue-derived MSCs. Here, we describe the short-term (24h) cytotoxic effects of cholestan-3α-5ß-6α-triol, 3,5 cholestan-7-one, (3α-5ß-6α)- cholestane-3,6-diol, 7-oxocholest-5-en-3ß-yl acetate, and 5ß-6ß epoxy-cholesterol, on MSCs derived from human adipose tissue. MSCs were isolated from adipose tissue obtained from three young, healthy women. Oxysterols, with the exception of 3,5 cholestan-7-one and 7-oxocholest-5-en-3ß-yl acetate, led to a complex mode of cell death that include apoptosis, necrosis and autophagy, depending on the type of oxysterol and concentration, being cholestan-3α-5ß-6α-triol the most effective. Inhibition of proliferation was also promoted by these oxysterols, but no changes in cell cycle were observed.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxisteróis/farmacologia , Actinas/metabolismo , Adulto , Apoptose , Autofagia , Caspase 3/metabolismo , Caspase 7/metabolismo , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Colestanos/farmacologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Cetocolesteróis/farmacologia , Potenciais da Membrana , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Necrose , Oxirredução
20.
Oncotarget ; 7(46): 74473-74483, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27740938

RESUMO

Cardiovascular diseases (atherosclerosis, stroke, myocardiac infarction etc.) are the major systemic diseases of elder peoples in the world. This is possibly due to increased levels of oxidized low-density lipoproteins (oxLDLs) such as 7-ketocholesterol (7-KC) and lysophosphatidylcholine (LPC) that damage vascular endothelial cells, induce inflammatory responses, to elevate the risk of cardiovascular diseases, Alzheimer's disease, and age-related macular degeneration. However the toxic effects of 7-KC on endothelial cells are not known. In this study, 7-KC showed cytotoxicity to endothelial cells at concentrations higher than 10 µg/ml. 7-KC stimulated ATM/Chk2, ATR-Chk1 and p53 signaling pathways in endothelial cells. 7-KC also induced G0/G1 cell cycle arrest and apoptosis with an inhibition of Cyclin dependent kinase 1 (Cdk1) and cyclin B1 expression. Secretion and expression of IL-8 in endothelial cells were stimulated by 7-KC. 7-KC further induced intracellular ROS production as shown by increase in DCF fluorescence and Akt phosphorylation. LY294002 attenuated the 7-KC-induced apoptosis and IL-8 mRNA expression of endothelial cells. These results indicate that oxLDLs such as 7-KC may contribute to the pathogenesis of atherosclerosis, thrombosis and cardiovascular diseases by induction of endothelial damage, apoptosis and inflammatory responses. These events are associated with ROS production, activation of ATM/Chk2, ATR/Chk1, p53 and PI3K/Akt signaling pathways.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Interleucina-8/biossíntese , Cetocolesteróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Citocinas/biossíntese , Citometria de Fluxo , Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA