Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Microbiol ; 206(9): 366, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098983

RESUMO

Kombucha, a fermented tea beverage, has seen a significant rise in global popularity. This increase is attributed to its reported health benefits and extensive cultural heritage. The comprehensive review examines kombucha through microbiology, biochemistry, and health sciences, highlighting its therapeutic potential and commercial viability. Central to kombucha production is the symbiotic culture of bacteria and yeasts (SCOBY), which regulates a complex fermentation process, resulting in a bioactive-rich elixir. The study examines the microbial dynamics of SCOBY, emphasizing the roles of various microorganisms. It focuses the contributions of acetic acid bacteria, lactic acid bacteria, and osmophilic yeasts, including genera such as Saccharomyces, Schizosaccharomyces, Zygosaccharomyces, Brettanomyces/Dekkera, and Pichia. These microorganisms play crucial roles in producing bioactive compounds, including organic acids, polyphenols, and vitamins. These bioactive compounds confer therapeutic properties to kombucha. These properties include antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antihypertensive, cancer prevention, hepatoprotective, and detoxifying effects. The review also explores the growing market for kombucha, driven by consumer demand for functional beverages and opportunities for innovative product development. It emphasizes the necessity of standardized production to ensure safety and validate health claims. Identifying research gaps, the review highlights the importance of clinical trials to verify therapeutic benefits. Ultimately, this study integrates traditional knowledge with scientific research, providing directions for future studies and commercial expansion, emphasizing the role of kombucha in health and wellness.


Assuntos
Fermentação , Chá de Kombucha , Humanos , Chá de Kombucha/microbiologia , Leveduras/metabolismo , Leveduras/genética , Bactérias/metabolismo , Bactérias/genética
2.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062813

RESUMO

Increasing demand for functional beverages is attracting consumers' attention and driving research to expand our knowledge of fermentation using symbiotic culture of bacteria and yeast (SCOBY) and demonstrate the health effects of consuming kombucha. The objective of this study was to develop innovative recipes for unpasteurized mint/nettle kombucha analogs, and to compare the products obtained under varying conditions in terms of chemical composition, bioactive polyphenols and health-promoting activity. Four variants of kombucha beverages (K1-K4), differing in the addition of sucrose and fermentation temperature, were formulated. The fermentation process provided data indicating the increase of antidiabetic, anti-inflammatory and anticholinergic properties, while a decrease in antioxidant capacity was observed. The content of polyphenolics was the highest on the seventh day of fermentation. A higher fermentation temperature and a larger amount of sucrose accelerated the fermentation process, which may be crucial for shortening the production time of kombucha drinks.


Assuntos
Fermentação , Polifenóis , Polifenóis/química , Polifenóis/análise , Antioxidantes/química , Bebidas/análise , Chá de Kombucha/análise , Mentha spicata/química , Humanos , Sacarose/metabolismo , Sacarose/química
3.
Food Chem ; 458: 140242, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943965

RESUMO

Kombucha was fermented by the pure cultured tea fungus, and the changes of functional compounds and their transformation were explored. After fermentation, the contents of total polyphenols, total flavonoids, quercetin, kaempferol and catechins respectively enhanced by 77.14%, 69.23%, 89.11%, 70.32% and 45.77% compared with the control, while flavonol glycosides reduced by 38.98%. The bioavailability of polyphenols and flavonoids respectively increased by 29.52% and 740.6%, and DPPH and ABTS respectively increased by 43.81% and 35.08% compared with the control. Correlation analysis showed that microorganisms and the antioxidant activity were highly positive correlation with total polyphenols, total flavonoids, EGC, EC, EGCG, ECG, quercetin and kaempferol, and negative correlation with kaempferol-3-glucoside. The constructed models confirmed that organic acids were more likely to damage the structure of tea leaves, and enzymes (polygalacturonidase and tannase) and solvents (acids, alcohols and esters) had a synergistic effect on the biotransformation of functional compounds.


Assuntos
Biotransformação , Fermentação , Flavonoides , Flavonoides/metabolismo , Flavonoides/química , Camellia sinensis/metabolismo , Camellia sinensis/química , Camellia sinensis/microbiologia , Polifenóis/metabolismo , Polifenóis/química , Antioxidantes/metabolismo , Antioxidantes/química , Chá/química , Chá/metabolismo , Chá de Kombucha/microbiologia , Chá de Kombucha/análise , Folhas de Planta/química , Folhas de Planta/metabolismo
4.
Plant Foods Hum Nutr ; 79(2): 251-259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602651

RESUMO

Kombucha is a unique fermented beverage made from a symbiotic culture of yeast and bacteria. Kombucha is normally based on black tea added to water, then sugar is added as a substrate for fermentation in this beverage. This unique beverage is composed of amino acids, flavonoids, vitamins, and some active enzymes. Several beneficial health effects such as antioxidant, antimicrobial effects have been reported as a result of probiotics and prebiotics presence. These health effects of kombucha are attributed to its bioactive chemical and biological agents of probiotics bacteria e.g., Gluconobacter, Acetobacter and yeasts like Saccharomyces sps., along with glucuronic acid as the main sources of the health protection. This review focuses on the beneficial effects of Kombucha including antimicrobial, antioxidant, anti-cancer antidiabetic properties, as well as liver protection, treat of gastrointestinal problems, AIDS, gastric ulcers, obesity (and energy production), detoxification, and skin health.


Assuntos
Antioxidantes , Fermentação , Chá de Kombucha , Humanos , Antioxidantes/farmacologia , Prebióticos , Probióticos , Anti-Infecciosos/farmacologia , Hipoglicemiantes/farmacologia , Leveduras , Chá , Bebidas
5.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834177

RESUMO

Studying the production of Iron (Fe) nanoparticles using natural substances is an intriguing area of research in nanotechnology, as these nanoparticles possess biocompatibility and natural stability, which make them useful for a variety of industrial applications. The study utilized Fe nanoparticles that were synthesized using a bioflocculant and applied to eliminate different kinds of pollutants and dyes found in wastewater and solutions. The study involved the generation of Fe nanoparticles through a bioflocculant obtained from Pichia kudriavzevii, which were evaluated for their flocculation and antimicrobial capabilities. The impact of the Fe nanoparticles on human embryonic kidney (HEK 293) cell lines was studied to assess their potential cytotoxicity effects. An array of spectroscopic and microscopic methods was employed to characterize the biosynthesized Fe nanoparticles, including SEM-EDX, FT-IR, TEM, XRD, UV-vis, and TGA. A highly efficient flocculating activity of 85% was achieved with 0.6 mg/mL dosage of Fe nanoparticles. The biosynthesized Fe nanoparticles demonstrated a noteworthy concentration-dependent cytotoxicity effect on HEK 293 cell lines with the highest concentration used resulting in 34% cell survival. The Fe nanoparticles exhibited strong antimicrobial properties against a variety of evaluated Gram-positive and Gram-negative microorganisms. The efficiency of removing dyes by the nanoparticles was found to be higher than 65% for the tested dyes, with the highest being 93% for safranine. The Fe nanoparticles demonstrated remarkable efficiency in removing various pollutants from wastewater. In comparison to traditional flocculants and the bioflocculant, biosynthesized Fe nanoparticles possess significant potential for eliminating both biological oxygen demand (BOD) and chemical oxygen demand (COD) from wastewater samples treated. Hence, the Fe nanoparticles synthesized in this way have the potential to substitute chemical flocculants in the treatment of wastewater.


Assuntos
Anti-Infecciosos , Poluentes Ambientais , Chá de Kombucha , Nanopartículas , Humanos , Águas Residuárias , Saccharomyces cerevisiae , Ferro , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Floculação , Corantes , Concentração de Íons de Hidrogênio
6.
Crit Rev Food Sci Nutr ; 63(19): 3851-3866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34698580

RESUMO

Kombucha is a fermented nonalcoholic tea-based beverage produced through a symbiotic culture of bacteria and yeasts. In vitro studies have demonstrated antimicrobial, antioxidant, antiproliferative, and anti-carcinogenic properties of kombucha. However, no systematic reviews have evaluated the effects of kombucha in vivo. Thus, we aimed to evaluate the evidence that exists so far about kombucha consumption on comorbidities associated with obesity as well as on the gut microbiota. The search was conducted in accordance with PRISMA and the protocol was registered in PROSPERO (registration number: CRD42020158917). The MEDLINE/PubMed, Web of Science, LILACS, SciELO, Scopus, and Science Direct databases were used in the search considering the following terms: "kombucha" OR "kombucha tea" OR "kombucha teas" OR "tea, kombucha" OR "teas, kombucha" NOT "review." Fifteen studies were included in this review. The results suggest that kombucha consumption attenuates oxidative stress and inflammation, improves the liver detoxification process, and reduces intestinal dysbiosis. There is evidence that kombucha consumption is beneficial for the control and treatment of obesity and associated comorbidities, as well as for the modulation of the gut microbiota in vivo.


Assuntos
Microbioma Gastrointestinal , Chá de Kombucha , Chá de Kombucha/análise , Chá de Kombucha/microbiologia , Bebidas , Leveduras , Obesidade , Fermentação , Chá
7.
Nutrients ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432515

RESUMO

The fermented tea beverage Kombucha is obtained through a series of biochemical and enzymatic reactions carried out by symbiotic cultures of bacteria and yeasts (SCOBY). It contains organic acids, vitamins, amino acids, and biologically active compounds, notably polyphenols, derived mainly from tea. Kombucha exhibits a range of health-promoting properties, including antioxidant or detoxifying effects. This fermented beverage is traditionally brewed with black tea, but other types of tea are used increasingly, which may have significant implications in terms of chemical composition and health-promoting effects. In this preliminary study, we investigated the content of micronutrients (manganese (Mn), copper (Cu), iron (Fe), chromium (Cr) and zinc (Zn)) by the ICP-OES method in Kombucha prepared with black, red, green and white tea at different time points of fermentation (1, 7, 14 days). It should be noted that the composition of separate ingredients such as tea, leaven or sugar has not been studied. Kombucha had the highest content of zinc-0.36 mg/L to 2.08 mg/L, which accounts for between 3% and 26% of the RDA (Recommended Dietary Allowance) for adults, and the smallest amounts of chromium (0.03 mg/L to 0.09 mg/L), which however represents as much as between 75% and 232% of the RDA. It has been demonstrated that the type of tea as well as the day of fermentation have a significant effect on the concentrations of selected minerals. Kombucha can therefore supplement micronutrients in the human diet.


Assuntos
Chá de Kombucha , Humanos , Chá de Kombucha/microbiologia , Fermentação , Micronutrientes , Chá/química , Zinco/análise , Cromo
8.
Biomed Pharmacother ; 155: 113660, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095960

RESUMO

Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.


Assuntos
Resistência à Insulina , Chá de Kombucha , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Citrato (si)-Sintase/metabolismo , Farneseno Álcool/metabolismo , Farneseno Álcool/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ácidos e Sais Biliares/metabolismo , Carboidratos/farmacologia , Serina/metabolismo , Serina/farmacologia , Fosfofrutoquinase-1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Colágeno/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
9.
Int J Food Microbiol ; 377: 109783, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35728418

RESUMO

In the present review the latest research studies on Kombucha tea are summarized. Special attention has been paid on microbial population, chemical parameters, biocellulose production, and mainly, on the latest evidences of the biological activities of Kombucha tea. Kombucha tea is a fermented sweetened black or green tea which is obtained from a fermentative process driven by a symbiotic culture of yeast, acetic acid bacteria and lactic acid bacteria. In the last years, its consumption has increasingly grown due to its multiple and potential benefits on human health. This fact has motivated a significant increase in the number of research studies that are focused on the biological activities of this beverage. In this context, this review gathers the main studies that have analyzed the different properties of Kombucha tea (as antioxidant, antimicrobial, antidiabetic, antitumoral, anti-inflammatory, antihypertensive, hepatoprotective, hypocholesterolemic, and probiotic activities). It is highlighted that nowadays few human-based evidences are available to prove the beneficial effect of Kombucha tea on humans' health. In conclusion, further work on Kombucha tea is needed since nowadays few information is available on both clinical studies and the characterization of bioactive compounds and their properties.


Assuntos
Chá de Kombucha , Fermentação , Humanos , Chá de Kombucha/análise , Consórcios Microbianos , Saccharomyces cerevisiae , Chá/microbiologia
10.
Food Chem ; 372: 131346, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818748

RESUMO

The symbiotic community of bacteria and yeast (SCOBY) of Kombucha beverage produces a floating film composed of bacterial cellulose, a distinctive biobased material. In this work, Kombucha fermentation was carried out in six different herbal infusions, where SCOBY was able to synthesise cellulosic films. Infusions of black and green tea, yerba mate, lavender, oregano and fennel added with sucrose (100 g/l) were used as culture media. In all cultures, film production resulted in a maximum after 21 days. Yield conversion, process productivity and antioxidant activity were quantified. Macroscopic and microscopic features of films were determined based on electronic microscopy, calorimetric and mechanical properties and hydration behaviour. Native films from yerba mate had a remarkable antioxidant activity of 93 ± 4% of radical inhibition due to plant polyphenols, which could prevent food oxidation. Results revealed that films retained natural bioactive substances preserving important physicochemical properties, essential for developing active materials.


Assuntos
Chá de Kombucha , Bactérias , Celulose , Fermentação , Chá de Kombucha/análise , Chá
11.
São Paulo; s.n; s.n; 2022. 94 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-1396412

RESUMO

Um dos maiores desafios no desenvolvimento de produtos probióticos é entender como os microrganismos interagem entre si e com o hospedeiro. Quando falamos em alimentos fermentados tradicionais, este obstáculo aumenta porque a matriz alimentar já possui um microbioma intrínseco. No entanto, também é conhecido que muitos microrganismos podem interagir e cooperar para sobreviver quando condições de estresse são encontradas. Assim, o objetivo deste trabalho foi isolar leveduras de quatro diferentes kombuchas em distintos momentos fermentativos e verificar a influência que leveduras isoladas de kombucha têm na manutenção da viabilidade da bactéria probiótica Bifidobacterium animalis subsp. lactis HN019 em condições de aerobiose. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa e Pichia membranifaciens foram leveduras encontradas nas kombuchas, das quais as duas últimas favoreceram a manutenção da alta viabilidade de HN019 em cocultura por 14 dias. Observou-se a viabilidade da bactéria acima de 9 log ao longo de todo o experimento, o que não foi observado em monocultura. Ademais, utilizou-se de análise de autoagregação, hidrofobicidade, atividade enzimática de proteases e fosfolipases das leveuras para analisar seu potencial patogênico. Observou-se que R. mucilaginosa demonstrou características semelhantes à Saccharomyces cerevisiae subsp. boulardii, e sua interação benéfica com HN019 reforça a possibilidade de que esta levedura seja uma chave para a inserção da bactéria em uma kombucha probiótica. Análises metabólicas foram realizadas e encontrou-se uma vasta diversidade de dipeptídeos, principalmente os compostos de prolina, durante a cocultura da bactéria com as leveduras. Tais dipeptídeos apresentam importantes mecanismos de ação no controle biológico e quorum sensing de bactérias e leveduras, e supostamente regulam a manutenção das relações mutualísticas entre ambos microrganismo


One of the biggest challenges in the development of probiotic products is to understand how microorganisms interact with each other and with the host. When we talk about traditional fermented foods, this obstacle increases because the food matrix already has an intrinsic microbiome. However, it is also known that many microorganisms can interact and cooperate to survive when stressful situations are encountered. Thus, the objective of this work was to isolate yeasts from four different kombuchas at different fermentation times and to verify the influence that yeasts isolated from kombucha have on maintaining the viability of the probiotic bacterium Bifidobacterium animalis subsp. lactis HN019 under aerobic conditions. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa and Pichia membranifaciens were yeasts found in kombuchas, of which the last two favored the maintenance of HN019 high viability in co-culture for 14 days. Bacteria viability above 9 log was observed throughout the experiment, which was not observed in monoculture. In addition, analysis of autoaggregation, hydrophobicity, enzyme activity of proteases and phospholipases of yeasts was used to analyze their pathogenic potential. It was observed that R. mucilaginosa demonstrated characteristics similar to Saccharomyces cerevisiae subsp. boulardii, and its beneficial interaction with HN019 reinforces the possibility that this yeast is a key to the insertion of the bacterium in a probiotic kombucha. Metabolic analysis were performed and a wide diversity of dipeptides, mainly proline-based, was found during the co-culture of the bacteria with the yeasts. Such dipeptides have important mechanisms of action in the biological control and quorum sensing of bacteria and yeast, and supposedly regulate the maintenance of mutualistic relationships between both microorganism


Assuntos
Leveduras/classificação , Chá de Kombucha/análise , Alimentos Fermentados/análise , Rhodotorula/classificação , Técnicas de Cocultura/métodos , Probióticos , Dipeptídeos/agonistas , Microbiota , Bifidobacterium animalis/patogenicidade
12.
Braz. J. Pharm. Sci. (Online) ; 58: e20766, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1420428

RESUMO

Abstract Kombucha (tea and biocelluose) has been used worldwide due to its high nutritional, functional, and economic potential. This fermented tea has been used in folk medicine to treat several pathological conditions and its biocellulose in the industrial sector. In this context, this paper presents a scientific literature review on the main phytochemicals of Kombucha and respective biological activities to assess their potential uses. The tea has presented a wide range of bioactive compounds such as amino acids, anions, flavonoids, minerals, polyphenols, vitamins, and microorganisms. Moreover, its biocellulose is rich in fibers. These compounds contribute to various biological responses such as antioxidant, hepatoprotective, antitumoral, antidiabetic, and antihypercholesterolemic effects. In this sense, both the tea and its biocellulose are promising for human use. Besides, Kombucha presents itself as a drink option for vegetarians and/or those seeking healthier diets, as its biocellulose can bring metabolic benefits. Our review demonstrates that both can be used as functional foods and/or sources of bioactive compounds for food and industrial applications.


Assuntos
Chá de Kombucha/análise , Chá de Kombucha/efeitos adversos , Alimento Funcional/classificação , Fermentação , Compostos Fitoquímicos/antagonistas & inibidores
13.
São Paulo; s.n; s.n; 2022. 61 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-1415198

RESUMO

Os casos de transtorno de ansiedade têm apresentado crescimento considerável desde o início do século XX, onde a terapia medicamentosa oferecida, geralmente apresenta efeito sedativo, portanto, a busca por tratamentos adjuvantes para tratar quadros de ansiedade se fazem necessários. Estudos indicam que a modulação da microbiota intestinal pode estar relacionada à regulação neural dos indivíduos através de diversas vias, incluindo a aplicação de cepas probióticas e consumo de alimentos fermentados tradicionais como iogurte e kombucha, colaborando para a melhoria da qualidade de vida destes pacientes. Este projeto teve como objetivo buscar os metabólitos e neurotransmissores presentes no kombucha a fim de verificar seu potencial psicobióticos e comparar as aplicações e metabólitos produzidos por cepas probióticas existentes no mercado e em alimentos fermentados tradicionais que atuem no eixo intestino-cérebro. Foram realizadas pesquisas em bases de dados online, como Pubmed, Web of Science, Scielo, Scopus e Google Scholar no período entre 2002 e 2022 relacionados aos possíveis efeitos dos probióticos em condições de ansiedade, bem como como os mecanismos que envolvem o eixo cérebro-intestino, seja por meio de testes em humanos e em modelos animais. As espécies mais testadas quanto ao seu potencial probiótico e ação nos transtornos de ansiedade encontradas foram Lactobacillus paracasei, L. casei, L. rhamnosus, Bifidobacterium infanti e B. longum. Cada gênero demonstra um grau diferente na redução da ansiedade dos indivíduos. Os alimentos potencialmente probióticos, incluindo alimentos fermentados tradicionais, além de atuar como complemento à terapia em quadros de ansiedade, tem relevância no setor socioeconômico


Anxiety disorder cases have shown considerable growth since the beginning of the 20th century, where the drug therapy offered usually has a sedative effect. Therefore, the search for adjuvant treatments to treat anxiety disorders is necessary. Studies indicate that the modulation of the intestinal microbiota may be related to the neural regulation of individuals in several ways, including the application of probiotic strains and consumption of traditional fermented foods such as yogurt and kombucha, contributing to the improvement of the quality of life of these patients. This project aimed to identify and compare the psychobiotic effect in the gut-brain axis of the metabolites and neurotransmitters produced by kombucha and commercial probiotic strains. The research was carried out in online databases, such as Pubmed, Web of Science, Scielo, Scopus, and Google Scholar in the period between 2002 and 2022 related to the possible effects of probiotics in anxiety conditions as the mechanisms that involve the brain-gut axis either through tests in humans or animal models. The species most tested for their probiotic potential and action on anxiety disorders were Lactobacillus paracasei, L. casei, L. rhamnosus, Bifidobacterium infanti, and B. longum. Each genus demonstrates a different degree of reducing individuals' anxiety. Potentially probiotic foods, including traditional fermented foods, acting as a complement to therapy in cases of anxiety, have relevance in the socioeconomic sector


Assuntos
Transtornos Fóbicos/patologia , Chá de Kombucha/análise , Chá de Kombucha/efeitos adversos , Serotonina/análogos & derivados , Microbiota , Alimentos Fermentados/efeitos adversos , Eixo Encéfalo-Intestino
14.
Food Funct ; 12(20): 10263-10280, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34549751

RESUMO

As a popular traditional fermented beverage, kombucha has been extensively studied for its health benefits. However, the science behind the anti-inflammatory effect of kombucha has not been well studied, and there is an urgent need to uncover the secrets of the anti-inflammatory properties of kombucha. Here, we investigate kombucha's protective effects against lipopolysaccharide (LPS)-induced sepsis and on the intestinal microecology in mice. The contents of reducing sugars, polyphenols, catechins, and organic acids in the kombucha group were identified using various methods. The results showed that the concentrations of acetic acid, gluconic acid, polyphenol, and glucuronic acid in the kombucha group were 55.70 ± 2.57 g L-1, 50.20 ± 1.92 g L-1, 2.36 ± 0.31, and 1.39 ± 0.22 g L-1, respectively. The result also demonstrated that kombucha effectively improves the survival rate from 0% to 40%, and increases the thermoregulation in LPS-treated mice, which showed decreased mobility and had lost their appetite for food. Furthermore, kombucha reduced the levels of tumor necrosis factor-α and interleukins (IL)-1ß and IL-6, restored the levels of T cells and macrophages in LPS-challenged mice, alleviated the histopathological damage, and inhibited NF-κB signaling in mice with LPS-induced sepsis. We demonstrated that kombucha effectively prevents cellular immune function disorder in mice at the initial stage of sepsis and exerts an immunomodulatory effect. In addition, the effect of kombucha on the gut microbiota was investigated during sepsis. Kombucha supplementation altered the diversity of the gut microbiota and promoted the growth of butyrate-producing bacteria, which exert anti-inflammatory effects. Our results illustrate the potential of kombucha as a novel anti-inflammatory agent against the development of systemic inflammatory responses associated with sepsis.


Assuntos
Anti-Inflamatórios/farmacologia , Chá de Kombucha , Sepse/tratamento farmacológico , Ácido Acético/análise , Animais , Modelos Animais de Doenças , Feminino , Fermentação , Bebidas Fermentadas , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Intestinos/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Polifenóis/análise , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Biosensors (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810105

RESUMO

In this work, we developed an enzymatic voltammetric biosensor for the determination of catechin and gallic acid in green tea and kombucha samples. The differential pulse voltammetry (DPV) methodology was optimized regarding the amount of crude enzyme extract, incubation time in the presence of the substrates, optimal pH, reuse of the biosensor, and storage time. Samples of green tea and kombucha were purchased in local markets in the city of Goiânia-GO, Brazil. High performance liquid chromatography (HPLC) and Folin-Ciocalteu spectrophotometric techniques were performed for the comparison of the analytical methods employed. In addition, two calibration curves were made, one for catechin with a linear range from 1 to 60 µM (I = -0.152 * (catechin) - 1.846), with a detection limit of 0.12 µM and a quantification limit of 0.38 µM and one for gallic acid with a linear range from 3 to 60 µM (I = -0.0415 * (gallic acid) - 0.0572), with a detection limit of 0.14 µM and a quantification limit of 0.42 µM. The proposed biosensor was efficient in the determination of phenolic compounds in green tea.


Assuntos
Técnicas Biossensoriais , Fungos/isolamento & purificação , Chá de Kombucha/microbiologia , Chá/microbiologia , Calibragem , Catequina/análise , Cromatografia Líquida de Alta Pressão , Análise de Alimentos , Ácido Gálico/análise , Chá de Kombucha/análise , Fenóis/análise , Extratos Vegetais , Espectrofotometria , Chá/química
16.
Food Chem ; 350: 129274, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610849

RESUMO

A novel functional kombucha using laver was developed by fermentation for 14 d at 25 °C through kombucha consortia of yeast and bacteria. The physicochemical characteristics, antioxidant effects, and nutraceutical properties of laver kombucha from infusion extracts (K-IE) and ultrasound-assisted extracts (K-UAE) were compared with those of black tea (K-BT) and green tea kombucha (K-GT). Tea kombucha showed higher amounts of total phenols and flavonoid content, and ferric reducing antioxidant power (FRAP) while K-UAE exhibited the highest content of organic acid, especially, α- ketoglutaric acid (224.97 mg/100 mL), and acetic acid (564.15 mg/100 mL) with highest titratable acidity, lower pH value and enhanced DPPH scavenging ability. Hence, laver has significant potential to be used as a substrate for developing new fermented beverages through ultrasound-assisted extraction.


Assuntos
Fermentação , Chá de Kombucha/análise , Chá de Kombucha/microbiologia , Porphyra/microbiologia , Ácido Acético/análise , Antioxidantes/análise , Flavonoides/análise , Fenóis/análise
17.
Compr Rev Food Sci Food Saf ; 19(4): 2050-2070, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337078

RESUMO

Kombucha is a beverage made from sugared tea transformed by yeasts and acetic acid bacteria. Being originally homemade, it has become an industrially produced soft drink whose quality standards are poorly defined and whose production process is still not fully controlled. Based on current knowledge in beverages, links between kombucha's chemical composition and sensorial compounds are drawn. Macromolecules create turbidity, whereas uncharacterized tea pigments derivatives participate in the color. Residual sugars bring sweetness and organic acids produced by acetic acid bacteria form its characteristic sour taste. Acetic acid is also part of its aroma profile, although little data are available on the smell of kombucha. Carbon dioxide, potentially polyphenols, and residual ethanol are involved in the mouthfeel. In this review, after defining the key compounds that shape the characteristic sensory properties of kombucha, the impact of different production parameters is discussed. Water composition is determinant in the extraction of tea compounds along with the tea type and infusion duration and temperature. The type and amount of sweeteners play a role in the sweetness and influences the production kinetics. Similarly, the amount of inoculum and its microbial composition have an effect on the production, but the role of the vessels' geometry and temperature are also essential parameters that can be used to adjust the acidification phase's duration. Despite the amount of research carried out, further investigations of kombucha's sensory characteristics are needed. Such research could lead to a better definition of kombucha's quality and to an improved control over its production process.


Assuntos
Chá de Kombucha/análise , Chá de Kombucha/microbiologia , Bactérias , Fermentação , Odorantes , Paladar , Leveduras
18.
J Food Sci ; 85(8): 2286-2295, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32691422

RESUMO

This study aimed to produce sourdough bread using an encapsulated kombucha sourdough starter culture without the addition of baker's yeast. The bioactive metabolites of kombucha sourdough starter and sourdough starter without kombucha were identified using 1 H-NMR analysis with multivariate analysis. The physical properties, including loaf volume, specific loaf volume, firmness, and water activity were determined following standard methods. The shelf life and consumer acceptability of the bread were also being evaluated. The principal component analyses showed the presence of 15 metabolites in kombucha sourdough starter. The major compounds that contributed to the differences from sourdough starter without kombucha were alpha-aminobutyric acid, alanine, acetic acid, riboflavin, pyridoxine, anserine, tryptophan, gluconic acid, and trehalose. The encapsulated kombucha sourdough starter increased the loaf volume (976.7 ± 25.2 mL) and specific loaf volume (4.38 ± 0.12 mL/g) compared to yeast bread. Thus, significant (P < 0.05) reduction was observed in the crumb firmness (116.07 ± 6.28 g) compared to traditional sourdough bread and yeast bread. The encapsulated kombucha sourdough starter extended the shelf life of bread by 5 to 10 days at room temperature. The sourdough bread prepared using the encapsulated kombucha sourdough starter demonstrated significantly (P < 0.05) higher taste and overall acceptability scores compared to the other bread. The findings indicate that the encapsulated kombucha sourdough starter is promising to produce functional sourdough bread with extended shelf life and improved quality. PRACTICAL APPLICATION: Encapsulated kombucha sourdough starter culture that appropriately refreshed can be used primarily as a dough leavening agent in the bread industry without the addition of baker's yeast. This starter culture applied in sourdough bread production extended the shelf life and improved the biological function of sourdough bread.


Assuntos
Pão/análise , Comportamento do Consumidor , Fermentação , Chá de Kombucha/microbiologia , Ácido Acético/metabolismo , Pão/microbiologia , Fenômenos Químicos , Manipulação de Alimentos/métodos , Armazenamento de Alimentos , Humanos , Lactobacillales/metabolismo , Saccharomyces cerevisiae/metabolismo
19.
Food Res Int ; 128: 108782, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955755

RESUMO

UPLC-QTOF-MSE phenolic profile of kombuchas produced from the fermentation of green tea or black tea at 25 °C for 10 days was investigated along with the determination of their antioxidant capacities, antibacterial and antiproliferative activities. Overall, 127 phenolic compounds (70.2% flavonoids, 18.3% phenolic acids, 8.4% other polyphenols, 2.3% lignans and 0.8% stilbenes) were identified, with 103 phenolic compounds reported for the first time in kombuchas. A greater diversity and abundance of phenolic compounds was detected in black tea kombucha, which resulted in a higher antioxidant capacity. However, the green tea kombucha was the only one that presented antibacterial activity against all the bacteria tested and an increased antiproliferative activity against the cancer cell lines, which was attributed to the presence of catechins among the most abundant phenolic compounds and verbascoside as an exclusive compound. Thus, the type of tea used in the kombucha production interferes in its bioactive composition and properties.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Chá de Kombucha/análise , Fenóis/química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Benzotiazóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Ácidos Sulfônicos/química
20.
Microb Pathog ; 140: 103927, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31846743

RESUMO

The use of traditional foods and beverages or their bioactive compounds as anti-virulence agents is a new alternative method to overcome the increased global emergence of antimicrobial resistance in enteric pathogens. In the present study, we investigated the anti-virulence activity of a polyphenolic fraction previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against Vibrio cholerae O1. The isolated fraction was mainly composed of the polyphenols catechin and isorhamnetin. The fraction, the individual polyphenols and the combination of the individual polyphenols significantly inhibited bacterial swarming motility and expression of flagellar regulatory genes motY and flaC, even at sub-inhibitory concentrations. The polyphenolic compounds also decreased bacterial protease secretion and mucin penetration in vitro. In vivo study revealed that the polyphenolic fraction significantly inhibited V. cholerae induced fluid accumulation in the rabbit ileal loop model and intestinal colonization in suckling mice model. Therefore, the anti-virulence activity of the Kombucha polyphenolic fraction involved inhibition of motility and protease secretion of V. cholerae, thus preventing bacterial penetration through the mucin layer as well as fluid accumulation and bacterial colonization in the intestinal epithelial cells. The overall results implied that Kombucha might be considered as a potential alternative source of anti-virulence polyphenols against V. cholerae. To the best of our knowledge, this is the first report on the anti-virulence activity of Kombucha, mostly attributed to its polyphenolic content.


Assuntos
Chá de Kombucha , Polifenóis/farmacologia , Vibrio cholerae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/efeitos dos fármacos , Catequina/farmacologia , Movimento Celular/efeitos dos fármacos , Cólera/tratamento farmacológico , Expressão Gênica/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/microbiologia , Camundongos , Peptídeo Hidrolases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Quercetina/análogos & derivados , Quercetina/farmacologia , Coelhos , Vibrio cholerae/patogenicidade , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA