Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Bioorg Chem ; 149: 107498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805911

RESUMO

Chemotherapy toxicity and tumor multidrug resistance remain the main reasons for clinical treatment failure in cervical cancer. In this study, 79 novel chalcone derivatives were designed and synthesized using the principle of active substructure splicing with the parent nucleus of licorice chalcone as the lead compound and VEGFR-2 and P-gp as the target of action and their potentials for anticervical cancer activity were preliminarily evaluated. The results showed that the IC50 values of candidate compound B20 against HeLa and HeLa/DDP cells were 3.66 ± 0.10 and 4.35 ± 0.21 µΜ, respectively, with a resistance index (RI) of 1.18, which was significantly higher than that of the positive drug cisplatin (IC50:13.60 ± 1.63, 100.03 ± 7.94 µΜ, RI:7.36). In addition, B20 showed significant inhibitory activity against VEGFR-2 kinase and P-gp-mediated rhodamine 123 efflux, as well as the ability to inhibit the phosphorylation of VEGFR-2 and downstream PI3K/AKT signaling pathway proteins, inducing apoptosis, blocking cells in the S-phase, and inhibiting invasive migration and tubule generation by HUVEC cells. Acceptable safety was demonstrated in acute toxicity tests when B20 was at 200 mg/kg. In the nude mouse HeLa/DDP cell xenograft tumor model, the inhibition rate of transplanted tumors was 39.2 % and 79.2 % when B20 was at 10 and 20 mg/kg, respectively. These results suggest that B20 is a potent VEGFR-2 and P-gp inhibitor with active potential for treating cisplatin-resistant cervical cancer.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias do Colo do Útero , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Animais , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Células HeLa , Apoptose/efeitos dos fármacos , Camundongos
2.
Bioorg Med Chem Lett ; 107: 129795, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750906

RESUMO

Chalcones are chemical scaffolds found in natural products, particularly in plants, and are considered for structural diversity in medicinal chemistry for drug development. Herein, we designed and synthesised novel acetamide derivatives of chalcone, characterizing them using 1H NMR, 13C NMR, HRMS, and IR spectroscopic methods. These derivatives were then screened against human cancer cells for cytotoxicity using the SRB assay. Among the tested derivatives, 7g, with a pyrrolidine group, exhibited better cell growth inhibition activity against triple-negative breast cancer (TNBC) cells. Further assays, including SRB, colony formation, and fluorescent dye-based microscopic analysis, confirmed that 7g significantly inhibited MDA-MB-231 cell proliferation. Furthermore, 7g promoted apoptosis by upregulating cellular reactive oxygen species (ROS) levels and disrupting mitochondrial membrane potential (MMP). Elevated expression of pro-apoptotic proteins (Bax and caspase-3) and a higher Bax/Bcl-2 ratio with downregulation of anti-apoptotic (Bcl-2) protein levels were observed in TNBC cells. The above results suggest that 7g can promote cellular death through apoptotic mechanisms in TNBC cells.


Assuntos
Acetamidas , Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Acetamidas/farmacologia , Acetamidas/síntese química , Acetamidas/química , Apoptose/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Relação Dose-Resposta a Droga , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
3.
Bioorg Chem ; 147: 107310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583249

RESUMO

Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 µM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/ß-tubulin in cancer cells, reduced the expression of polymerized α-/ß-tubulin, and increased the expression of depolymerized α-/ß-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.


Assuntos
Antineoplásicos , Proliferação de Células , Cisplatino , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Imidazóis , Neoplasias do Colo do Útero , Humanos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Estrutura Molecular , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Polimerização/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Simulação de Acoplamento Molecular , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo
4.
Arch Pharm (Weinheim) ; 357(7): e2300627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593298

RESUMO

Novel triazoloquinazolines carrying the 2-[thio]acetamide entity (4 and 5a-d) and triazoloquinazoline/chalcone hybrids incorporating the 2-[thio]acetamide linker (8a-b and 9a-f) were developed as anticancer candidates. NCI screening of the synthesized compounds at 10 µM concentration displayed growth inhibition not only up to 99.74% as observed for 9a but also a lethal effect could be achieved as stated for compounds 9c (RPMI-8226 and HCT-116) and 8b, 9a, and 9e on the HCT-116 cell line. The antiproliferative activity was determined for the chalcone series on three cell lines: RPMI-8226, HCT-116, and MCF-7. Compounds 8b, 9a, 9b, and 9f were the most active ones. To understand the mechanistic study, the inhibitory effect on the epidermal growth factor receptor (EGFR) kinase was evaluated. The results stated that the activity of compound 8b (IC50 = 0.07 µM) was near that of the reference drug erlotinib (IC50 = 0.052 µM) whereas compound 9b (IC50 = 0.045 µM) was found to be more potent than erlotinib. Both compounds 8b and 9b were selected for cell cycle analysis and apoptotic assays. Moreover, molecular docking results of the selected chalcone hybrids showed high binding scores and good binding affinities especially for 8b and 9b, which were consistent with the biological activity (EGFR).


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Quinazolinas , Triazóis , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Estrutura Molecular , Relação Dose-Resposta a Droga , Chalconas/farmacologia , Chalconas/síntese química , Chalconas/química , Células HCT116 , Acetamidas/farmacologia , Acetamidas/química , Acetamidas/síntese química , Células MCF-7 , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química
5.
Chem Biodivers ; 21(5): e202301659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407541

RESUMO

Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 µg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 µg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Testes de Sensibilidade Microbiana , Streptococcus mutans , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular , Modelos Moleculares , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Relação Dose-Resposta a Droga
6.
Arch Pharm (Weinheim) ; 357(5): e2300626, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38297894

RESUMO

Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Chalconas , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Inibidores de Histona Desacetilases , Quinazolinas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Quinazolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/síntese química , Chalconas/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Histona Desacetilases/metabolismo , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química
7.
Anticancer Agents Med Chem ; 24(7): 544-557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204260

RESUMO

BACKGROUND: Extensive research has been conducted on aspirin, a widely recognized NSAID medication, regarding its potential as an anticancer agent. Studies have revealed its ability to trigger cell death in different types of cancer cells. METHODS: A set of aspirin-chalcone mimic conjugates 5a-k and 6a-d utilizing the freshly prepared acid chloride of aspirin moiety has been designed and synthesized. To evaluate the newly developed compounds, the NCI 60- cell line panel was employed to assess their anti-proliferative properties. Subsequently, cell cycle analysis was conducted along with an examination of the compounds' impact on the levels of p53, Bax, Bcl-2, active caspase- 3, and their inhibition mechanism of tubulin polymerization. RESULTS: Derivative 6c displayed the best anticancer activity among the tested series while 6d was the best against breast cancer MDA-MB-468, therefore both of them were selected for the 5-dose stage, however, targeting MDA-MB-468, PI-flow cytometry of compound 6d proved the triggered cell growth arrest at the G1/S phase avoiding the mitotic cycle in MDA-MB-468 cells. Similarly, the upregulation of oncogenic parameters such as caspase-3, p53, and Bax/Bcl-2, along with the inhibition of PARP-1 enzyme level, was observed with compound 6d. This compound also exhibited a significant ability to induce apoptosis and disrupt the intracellular microtubule network through a promising activity as a tubulin polymerization inhibitor with IC50 = 1.065 ± 0.024 ng/ml. Furthermore, to examine the manner in which compound 6d binds to the active pocket of the tubulin polymerization enzyme, a molecular docking study was conducted. CONCLUSION: The study indicated that compound 6d could be a powerful microtubule-destabilizing agent. Therefore, further research on 6d could be worthwhile.


Assuntos
Antineoplásicos , Aspirina , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Aspirina/farmacologia , Aspirina/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Apoptose/efeitos dos fármacos , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Ciclo Celular/efeitos dos fármacos
8.
Anticancer Agents Med Chem ; 24(6): 423-435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204258

RESUMO

OBJECTIVE: Several novel fluorinated chalcone derivatives were synthesized, and their in vitro anticervical cancer activity and mechanism of action were investigated using the parent nucleus of licorice chalcone as the lead compound backbone and MDM2-p53 as the target. METHODS: In this study, 16 novel chalcone derivatives (3a-3r) were designed and synthesized by molecular docking technology based on the licorice chalcone parent nucleus as the lead compound scaffold and the cancer apoptosis regulatory target MDM2-p53. The structures of these compounds were confirmed by 1H-NMR, 13C-NMR, and HR-ESI-MS. The inhibitory effects of the compounds on the proliferation of three human cervical cancer cell lines (SiHa, HeLa, and C-33A) and two normal cell lines (H8 and HaCaT) were determined by MTT assay, and the initialstructure-activity relationship was analyzed. Transwell and flow cytometry were used to evaluate the effects of target compounds on the inhibition of cancer cell migration and invasion, apoptosis induction, and cell cycle arrest. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were used to detect the effects of candidate compounds on mRNA, p53, and Murine double minute 2 (MDM2) protein expression. The binding characteristics of the target compounds to the MDM2 protein target in the p53-MDM2 pathway were evaluated by molecular docking technology. RESULTS: The target compounds had considerable inhibitory activity on the proliferation of three cervical cancer cell lines. Among them, compound 3k (E)-3-(4-(dimethylamino)phenyl)-2-methyl-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one) showed the highest activity against HeLa cells (IC50=1.08 µmol/L), which was better than that of the lead compound Licochalcone B, and 3k showed lower toxicity to both normal cells. Compound 3k strongly inhibited the migration and invasion of HeLa cells and induced apoptosis and cell cycle arrest at the G0/G1 phase. Furthermore, compound 3k upregulated the expression of p53 and BAX and downregulated the expression of MDM2, MDMX, and BCL2. Moreover, molecular docking results showed that compound 3k could effectively bind to the MDM2 protein (binding energy: -9.0 kcal/mol). These results suggest that the compounds may activate the p53 signaling pathway by inhibiting MDM2 protein, which prevents cancer cell proliferation, migration, and invasion and induces apoptosis and cell cycle arrest in cancer cells. CONCLUSION: This study provides a new effective and low-toxicity drug candidate from licochalcone derivatives for treating cervical cancer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Neoplasias do Colo do Útero , Humanos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Estrutura Molecular , Apoptose/efeitos dos fármacos , Feminino , Simulação de Acoplamento Molecular , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Movimento Celular/efeitos dos fármacos , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química
9.
Chem Biol Drug Des ; 99(3): 416-437, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878728

RESUMO

Over the past few years, great progress has been made in the development of high-affinity adenosine A1 and/or A2A receptor antagonists-promising agents for the potential treatment of Parkinson's disease. Unfortunately, many of these compounds raise structure-related concerns. The present study investigated the effect of ring closures on the rA1 /A2A affinity of compounds containing a highly reactive α,ß-unsaturated carbonyl system, hence providing insight into the potential of heterocycles to address these concerns. A total of 12 heterocyclic compounds were synthesised and evaluated in silico and in vitro. The test compounds performed well upon qualitative assessment of drug-likeness and were generally found to be free from potentially problematic fragments. Most also showed low/weak cytotoxicity. Results from radioligand binding experiments confirm that heterocycles (particularly 2-substituted 3-cyanopyridines) can replace the promiscuous α,ß-unsaturated ketone functional group without compromising A1 /A2A affinity. Structure-activity relationships highlighted the importance of hydrogen bonds in binding to the receptors of interest. Compounds 3c (rA1 Ki  = 16 nM; rA2A Ki  = 65 nM) and 8a (rA1 Ki  = 102 nM; rA2A Ki  = 37 nM), which both act as A1 antagonists, showed significant dual A1 /A2A affinity and may, therefore, inspire further investigation into heterocycles as potentially safe and potent adenosine receptor antagonists.


Assuntos
Chalcona/química , Receptor A1 de Adenosina/química , Receptor A2A de Adenosina/química , Animais , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Compostos de Benzilideno/metabolismo , Chalcona/síntese química , Chalcona/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Ligação Proteica , Ratos , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Relação Estrutura-Atividade
10.
Bioorg Chem ; 117: 105348, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736139

RESUMO

A series of new hydroxylated chalcone derivatives with different substitution patterns on a phenyl ring A and B, were prepared by Claisen-Schmidt condensation in an aqueous alkaline base. The antiproliferative activity of the studied compounds was evaluated against the human leukaemia cell line U-937. The structure-activity relationship of these naphthylchalcones was investigated by the introduction of one methoxy or two methyl groups on the A ring, the introduction of a methoxy group on the naphthyl ring or by varying the position of the methoxy group on the A ring. The results revealed that the naphthylchalcone containing a methoxy group in position 6́ of the A ring was the most cytotoxic compound, with an IC50 value of 4.7 ± 0.5 µM against U-937 cells. This synthetic chalcone induced S and G2-M cell cycle arrest, a time-dependent increase in sub-G1 ratio and annexin-V positive cells, caspase activation and poly(ADP-ribose) polymerase cleavage. Apoptosis induction was blocked by a pan-caspase inhibitor and by the selective caspase-3/7 inhibitor and attenuated by the inhibition of c-jun N-terminal kinases / stress-activated protein kinases (JNK/SAPK) and phosphoinositide 3-kinase. The structure-activity relationship of naphthylchalcones against human leukaemia cells reveals that the major determining in cytotoxicity is the presence of a methoxy group in position 6́ of the A ring that suggest the potential of this compound or derivatives in the development of new anti-leukaemia drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Chalcona/análogos & derivados , Chalcona/farmacologia , Leucemia/tratamento farmacológico , Antineoplásicos/síntese química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Chalcona/síntese química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
11.
Molecules ; 26(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067859

RESUMO

A chalcone series (3a-f) with electron push-pull effect was synthesized via a one-pot Claisen-Schmidt reaction with a simple purification step. The compounds exhibited strong emission, peaking around 512-567 nm with mega-stokes shift (∆λ = 93-139 nm) in polar solvents (DMSO, MeOH, and PBS) and showed good photo-stability. Therefore, 3a-f were applied in cellular imaging. After 3 h of incubation, green fluorescence was clearly brighter in cancer cells (HepG2) compared to normal cells (HEK-293), suggesting preferential accumulation in cancer cells. Moreover, all compounds exhibited higher cytotoxicity within 24 h toward cancer cells (IC50 values ranging from 45 to 100 µM) than normal cells (IC50 value >100 µM). Furthermore, the antimicrobial properties of chalcones 3a-f were investigated. Interestingly, 3a-f exhibited antibacterial activities against Escherichia coli and Staphylococcus aureus, with minimum bactericidal concentrations (MBC) of 0.10-0.60 mg/mL (375-1000 µM), suggesting their potential antibacterial activity against both Gram-negative and Gram-positive bacteria. Thus, this series of chalcone-derived fluorescent dyes with facile synthesis shows great potential for the development of antibiotics and cancer cell staining agents.


Assuntos
Chalcona/química , Chalcona/síntese química , Corantes Fluorescentes/síntese química , Antibacterianos/farmacologia , Chalcona/isolamento & purificação , Chalconas/química , Chalconas/isolamento & purificação , Chalconas/farmacologia , Escherichia coli/efeitos dos fármacos , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Bactérias Gram-Positivas/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Molecules ; 25(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255804

RESUMO

Chalcone is a common scaffold found in many biologically active compounds. The chalcone scaffold was also frequently utilized to design novel anticancer agents with potent biological efficacy. Aiming to continue the research of effective chalcone derivatives to treat cancers with potent anticancer activity, fourteen amino chalcone derivatives were designed and synthesized. The antiproliferative activity of amino chalcone derivatives was studied in vitro and 5-Fu as a control group. Some of the compounds showed moderate to good activity against three human cancer cells (MGC-803, HCT-116 and MCF-7 cells) and compound 13e displayed the best antiproliferative activity against MGC-803 cells, HCT-116 cells and MCF-7 cells with IC50 values of 1.52 µM (MGC-803), 1.83 µM (HCT-116) and 2.54 µM (MCF-7), respectively which was more potent than the positive control (5-Fu). Further mechanism studies were explored. The results of cell colony formatting assay suggested compound 10e inhibited the colony formation of MGC-803 cells. DAPI fluorescent staining and flow cytometry assay showed compound 13e induced MGC-803 cells apoptosis. Western blotting experiment indicated compound 13e induced cell apoptosis via the extrinsic/intrinsic apoptosis pathway in MGC-803 cells. Therefore, compound 13e might be a valuable lead compound as antiproliferative agents and amino chalcone derivatives worth further effort to improve amino chalcone derivatives' potency.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Chalcona/síntese química , Chalcona/farmacologia , Técnicas de Química Sintética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/análogos & derivados , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Relação Estrutura-Atividade
13.
Bioorg Chem ; 105: 104447, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33207276

RESUMO

A library of new phenstatin based indole linked chalcone compounds (9a-z and 9aa-ad) were designed and synthesized. Of these, compound 9a with 1-methyl, 2- and 3-methoxy substituents in the aromatic ring was efficacious against the human oral cancer cell line SCC-29B, spheroids, and in a mouse xenograft model of oral cancer AW13516. Compound 9a exhibited anti-cancer activity through disrupting cellular integrity and affecting glucose metabolism-which is a hallmark of cancer. The cellular architecture was affected by inhibition of tubulin polymerization as observed by an immunofluorescence assay on 9a-treated SCC-29B cells. An in vitro tubulin polymerization kinetics assay provided evidence of direct interaction of 9a with tubulin. This physical interaction between tubulin and compound 9a was further confirmed by Surface Plasmon Resonance (SPR) analysis. Molecular docking experiments and validations revealed that compound 9a interacts and binds at the colchicine binding site of tubulin and at active sites of key enzymes in the glucose metabolism pathway. Based on in silico modeling, biophysical interactions, and pre-clinical observations, 9a consisting of phenstatin based indole-chalcone scaffolds, can be considered as an attractive tubulin polymerization inhibitor candidate for developing anti-cancer therapeutics.


Assuntos
Antineoplásicos/síntese química , Benzofenonas/química , Chalcona/síntese química , Indóis/química , Neoplasias Bucais/tratamento farmacológico , Moduladores de Tubulina/síntese química , Animais , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/farmacologia , Colchicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Experimentais , Tomografia por Emissão de Pósitrons , Ligação Proteica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
14.
Eur J Pharmacol ; 888: 173396, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32798508

RESUMO

Bischalcone has gained much attention because of its wide range of application in pharmaceutical chemistry. This work aims to evaluate the antiproliferation effects and explore the anticancer mechanism of bischalcone analogs on human lung cancer A549 cells. In this study, we synthesized a series of bischalcone analogs via Aldol condensation reaction; MTT method was used to evaluate the antiproliferation effects; the 2',7'-dichlorofluorescein fluorescence assay was used to determine the intracellular reactive oxygen species levels; the glutathione reductase-DTNB recycling assay was used to detect the redox imbalance; determination of thiobarbituric acid-reactive substance was used to evaluate the lipid peroxidation; Rhodamine 123 was used to test the mitochondrial membrane potential (MMP); the FITC/PI kit was used to detect the apoptosis; Western blotting was used to detect the expression of Bax and Caspase 3. After treatment with curcumin and bischalcone analogs, compounds 1d and 1g, the more stabilities compounds than curcumin, exhibited much higher potency in A549 cells than curcumin and other bischalcone analogs. Further mechanism of action studies revealed that 1d and 1g exhibited more stronger reactive oxygen species production abilities than curcumin and accompanied by the redox imbalance, lipid peroxidation, the loss of MMP, the activition of Bax and Caspase 3, and ultimately resulted in apoptosis of A549 cell. These data suggest that enhancing the reactive oxygen species generation ability of bischalcone analogs may be a promising strategy for the treatment of human lung cancer.


Assuntos
Antineoplásicos/síntese química , Chalcona/análogos & derivados , Chalcona/síntese química , Neoplasias Pulmonares/metabolismo , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Chalcona/farmacologia , Chalcona/uso terapêutico , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
15.
Bioorg Med Chem Lett ; 30(16): 127304, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631524

RESUMO

A new series of 1,2,3-triazole tethered chalcone acetamide derivatives (7a-c &8a-r) have been synthesized in excellent yields and their structures were determined by analytical and spectral (FT-IR, 1H NMR, 13C NMR & HRMS) studies. The newly synthesized derivatives were evaluated for their cytotoxic activity against four human cancer cell lines, such as HeLa (Human cervical cancer), A549 (Human alveolar adenocarcinoma), MCF-7 (Human breast adenocarcinoma) and SKNSH (Human brain cancer). Among them, compound 7c exhibited good anti-proliferation activity with HeLa (IC50 7.41 + 0.8 µM), SKNSH (IC50 8.68 + 1.1 µM), MCF-7 (IC50 9.76 + 1.3 µM) and MDA-MB-231, while compounds 7a and 7b showed promising anti-proliferation against above four human cancer cell lines with IC50 7.95-11.62 µM, respectively, compared with the standard drug Doxorubicin. We explored the probable key active site and binding mode interactions in HDAC8 (PDB ID:3SFH) and EHMT2 (PDB ID:3K5K) proteins. The docking results are complementary to the experimental observations.


Assuntos
Acetamidas/farmacologia , Antineoplásicos/farmacologia , Chalcona/farmacologia , Triazóis/farmacologia , Acetamidas/síntese química , Acetamidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
16.
Talanta ; 215: 120934, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312470

RESUMO

As a member of the reactive nitrogen species (RNS) family, peroxynitrite (ONOO-) as an oxidant and nitrating mediator plays a significant role in some physiopathologic processes. The excessive production of peroxynitrite anion in a drug-damaged liver is a culprit of hepatotoxicity. The detection of peroxynitrite is of vital importance for the treatment of some diseases including cancer and liver injury. In this study, a novel turn-on fluorescent probe IC-ONOO with new chalcone fluorophore was designed and synthesized for the detection of in vitro and in vivo. The probe responded rapidly towards ONOO- (only within 15 min did the fluorescent intensity maximize), and was endowed with high sensitivity and excellent selectivity. Given the fact that the linear correlation between the fluorescent intensity at 560 nm and the concentrations of the probe ranged from 0 to 9 µM, the limit of detection (LOD) was calculated to be 3.1 × 10-8 M. With all the merits, probe IC-ONOO was qualified as a robust tool to monitor peroxynitrite anion under physiopathologic condition. Moreover, it was successfully applied in the imaging of endogenous peroxynitrite in living MCF-7 cells (Human breast carcinoma cells) and mouse drug-damaged liver tissue with low cytotoxicity. Given all the extraordinary merits, great potential has been seen in its application to other peroxynitrite related diseases.


Assuntos
Chalcona/química , Corantes Fluorescentes/química , Fígado/patologia , Imagem Óptica , Ácido Peroxinitroso/análise , Acetaminofen/administração & dosagem , Animais , Sobrevivência Celular/efeitos dos fármacos , Chalcona/síntese química , Chalcona/farmacologia , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Humanos , Injeções Intraperitoneais , Fígado/efeitos dos fármacos , Células MCF-7 , Masculino , Camundongos , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
17.
Future Med Chem ; 12(6): 493-509, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32100558

RESUMO

Aim: There is a continuous and urgent need for new anticancer agents with novel structures and target selectivity. Methods & results: The anticancer activity of the prepared compounds was assessed against human lung (A549) and stomach (AGS) cancer cell lines and evaluated in the noncancer human lung fibroblast (MRC-5) cell line. 2-Pyrazolines were devoid of toxicity in all cell lines used, chalcones bearing a ß-(benz)imidazole moiety being toxic toward AGS cell line. Mechanistic studies showed that these compounds trigger loss of cell viability and mitochondrial membrane potential, while eliciting morphological traits compatible with regulated cell death, which was ultimately shown to derive from caspase activation, specifically caspase-3. Conclusion: Chalcones 1-3 have been identified as new and promising anticancer agents toward the AGS cell line.


Assuntos
Antineoplásicos/farmacologia , Caspases/metabolismo , Chalcona/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Pirazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chalcona/síntese química , Chalcona/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
18.
Eur J Med Chem ; 187: 111954, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838326

RESUMO

Great strides have been made in triple negative breast cancer (TNBC) treatment, which represents 20% of total predicted annual US breast cancer (BC) cases. Despite the development of several therapeutics, TNBC patients have poor overall survival rate, compared to other BC patients, justifying the urgent need to discover new entities for use to control TNBC. Chalcones are important natural products with diverse bioactivities including anticancer effects. This study aimed to design, synthesize and validate novel chalcone leads as potential therapies for TNBC. Fourteen novel chalcone analogs were designed and synthesized comprising alicyclic amines (pyrrolidine, morpholine and piperidine) or nitrogen mustard (Bis-(2-chloroethyl) amine) substituents. Among them, compound 14((E)-3-(4-(Bis(2-chloroethyl) amino) phenyl)-1-(3-methoxyphenyl) prop-2-en-1-one) was identified as the most effective against TNBC and other BC phenotypes, with anti-proliferative IC50 values ranging between 3.94 and 9.22 µM against the TNBC cell lines MDA-MB-231 and MDA-MB-468, as well as against the estrogen positive MCF-7 cell line. Chalcone 14 effectively suppressed the colony formation capacity of MDA-MB-231, MDA-MB-468, and MCF-7 cell lines at 5 and 10 µM treatment concentrations. Furthermore, compound 14 has significantly inhibited cell invasion and migration of MDA-MB-231 and MCF-7 BC cell lines. Additionally, compound 14 had significantly promoted apoptosis by upregulating BAX and downregulating Bcl-2 proteins. Compound 14 induced significant cell cycle arrest of TNBC cells at the G2/M phase. It also induced a reversal of Epithelial Mesenchymal Transition (EMT) by upregulating the epithelial markers E-cadherin and Pan-cadherin and downregulating FAK. Furthermore, it had dramatically diminished new vessel formation (vasculogenesis) in chick chorioallantoic membrane (CAM) model by 60.20 ± 8.47%. Chalcone 14 inhibited 46.41 ± 0.71% of the TNBC MAD-MB-231 cells growth in a nude mouse orthotopic xenograft model in comparison with vehicle control treated animals. Collectively, this study results propose chalcone 14 as a promising lead molecule for the control of TNBC as well as other breast cancer phenotypes.


Assuntos
Chalcona/farmacologia , Desenho de Fármacos , Nitrogênio/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Nitrogênio/química , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
19.
Molecules ; 24(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718009

RESUMO

By means of copper(I)-and ruthenium(II)-catalyzed click reactions of quinine- and quinidine-derived alkynes with azide-substituted chalcones a systematic series of novel cinchona-chalcone hybrid compounds, containing 1,4-disubstituted- and 1,5-disubstituted 1,2,3-triazole linkers, were synthesized and evaluated for their cytotoxic activity on four human malignant cell lines (PANC-1, COLO-205, A2058 and EBC-1). In most cases, the cyclization reactions were accompanied by the transition-metal-catalyzed epimerization of the C9-stereogenic centre in the cinchona fragment. The results of the in vitro assays disclosed that all the prepared hybrids exhibit marked cytotoxicity in concentrations of low micromolar range, while the C9-epimerized model comprising quinidine- and (E)-1-(4-(3-oxo-3-(3,4,5-trimethoxyphenyl)prop-1-en-1-yl)phenyl) fragments, connected by 1,5-disubstituted 1,2,3-triazole linker, and can be regarded as the most potent lead of which activity is probably associated with a limited conformational space allowing for the adoption of a relatively rigid well-defined conformation identified by DFT modelling. The mechanism of action of this hybrid along with that of a model with markedly decreased activity were approached by comparative cell-cycle analyses in PANC-1 cells. These studies disclosed that the hybrid of enhanced antiproliferative activity exerts significantly more extensive inhibitory effects in subG1, S and G2/M phases than does the less cytotoxic counterpart.


Assuntos
Chalcona/química , Chalcona/farmacologia , Técnicas de Química Sintética , Cinchona/química , Triazóis/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/síntese química , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 184: 111752, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610374

RESUMO

This study describes the synthesis of a series of chalcones, including pyrazole and α,ß-epoxide derivatives, and evaluation of their cell growth inhibitory activity in three human tumor cell lines, as well as their lipophilicity using liposomes as a biomimetic membrane model. Structure-activity and structure-lipophilicity relationships were established for the synthetized chalcones. From this work, nine chalcones (3, 5, 9, 11, 15-19) showing suitable drug-like lipophilicity with potent growth inhibitory activity were identified, being the growth inhibitory effect of compounds 15-17 associated with a pronounced antimitotic effect. Compounds 15-17 affected spindle assembly and, as a consequence, arrested cells at metaphase in NCI-H460 cells, culminating in cell death. Amongst the compounds tested, compound 15 exhibited the highest antimitotic activity as revealed by mitotic index calculation. Moreover, 15 was able to enhance chemosensitivity of tumor cells to low doses of paclitaxel in NCI-H460 cells. The results indicate that 15 exerts its antiproliferative activity by affecting microtubules and causing cell death subsequently to a mitotic arrest, and thus has the potential for antitumor activity.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA