RESUMO
The glucocorticoid receptor is a key regulator of essential physiological processes, which under the control of the Hsp90 chaperone machinery, binds to steroid hormones and steroid-like molecules and in a rather complicated and elusive response, regulates a set of glucocorticoid responsive genes. We here examine a human glucocorticoid receptor variant, harboring a point mutation in the last C-terminal residues, L773P, that was associated to Primary Generalized Glucocorticoid Resistance, a condition originating from decreased affinity to hormone, impairing one or multiple aspects of GR action. Using in vitro and in silico methods, we assign the conformational consequences of this mutation to particular GR elements and report on the altered receptor properties regarding its binding to dexamethasone, a NCOA-2 coactivator-derived peptide, DNA, and importantly, its interaction with the chaperone machinery of Hsp90.
Assuntos
Glucocorticoides/genética , Proteínas de Choque Térmico HSP90/genética , Conformação Molecular/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Animais , DNA/genética , Dexametasona/farmacologia , Glucocorticoides/química , Proteínas de Choque Térmico HSP90/ultraestrutura , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestrutura , Coativador 2 de Receptor Nuclear/química , Coativador 2 de Receptor Nuclear/genética , Peptídeos/genética , Mutação Puntual/genética , Ligação Proteica/genética , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/ultraestruturaRESUMO
Proteins destined to various intra- and extra-cellular locations must traverse membranes most frequently in an unfolded form. When the proteins being translocated need to remain in a folded state, specialized cellular transport machinery is used. One such machine is the membrane-bound AAA protein Bcs1 (Bcs1), which assists the iron-sulfur protein, an essential subunit of the respiratory Complex III, across the mitochondrial inner membrane. Recent structure determinations of mouse and yeast Bcs1 in three different nucleotide states reveal its homo-heptameric association and at least two dramatically different conformations. The apo and ADP-bound structures are similar, both containing a large substrate-binding cavity accessible to the mitochondrial matrix space, which contracts by concerted motion of the ATPase domains upon ATP binding, suggesting that bound substrate could then be pushed across the membrane. ATP hydrolysis drives substrate release and resets Bcs1 conformation back to the apo/ADP form. These structures shed new light on the mechanism of folded protein translocation across a membrane, provide better understanding on the assembly process of the respiratory Complex III, and correlate clinical presentations of disease-associated mutations with their locations in the 3D structure.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/genética , Animais , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/ultraestrutura , Camundongos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/ultraestrutura , Chaperonas Moleculares/ultraestrutura , Domínios Proteicos/genética , Dobramento de Proteína , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestruturaRESUMO
The multi-domain RNA binding protein RBM5 is a molecular signature of metastasis. RBM5 regulates alternative splicing of apoptotic genes including the cell death receptor Fas and the initiator Caspase-2. The RBM5 RanBP2-type zinc finger (Zf1) is known to specifically recognize single-stranded RNAs with high affinity. Here, we study the structure and conformational dynamics of the Zf1 zinc finger of human RBM5 using NMR. We show that the presence of a non-canonical cysteine in Zf1 kinetically destabilizes the protein. Metal-exchange kinetics show that mutation of the cysteine establishes high-affinity coordination of the zinc. Our data indicate that selection of such a structurally destabilizing mutation during the course of evolution could present an opportunity for functional adaptation of the protein.
Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Chaperonas Moleculares/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Proteínas Supressoras de Tumor/ultraestrutura , Dedos de Zinco/genética , Processamento Alternativo/genética , Sequência de Aminoácidos/genética , Apoptose/genética , Caspase 2/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica/genética , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Zinco/químicaRESUMO
Many chaperones promote nascent polypeptide folding followed by substrate release through ATP-dependent conformational changes. Here we show cryoEM structures of Gα subunit folding intermediates in complex with full-length Ric-8A, a unique chaperone-client system in which substrate release is facilitated by guanine nucleotide binding to the client G protein. The structures of Ric-8A-Gαi and Ric-8A-Gαq complexes reveal that the chaperone employs its extended C-terminal region to cradle the Ras-like domain of Gα, positioning the Ras core in contact with the Ric-8A core while engaging its switch2 nucleotide binding region. The C-terminal α5 helix of Gα is held away from the Ras-like domain through Ric-8A core domain interactions, which critically depend on recognition of the Gα C terminus by the chaperone. The structures, complemented with biochemical and cellular chaperoning data, support a folding quality control mechanism that ensures proper formation of the C-terminal α5 helix before allowing GTP-gated release of Gα from Ric-8A.
Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Subunidades alfa de Proteínas de Ligação ao GTP/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/ultraestrutura , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Fosforilação , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Controle de QualidadeRESUMO
Hsp70 is a conserved molecular chaperone that plays an indispensable role in regulating protein folding, translocation, and degradation. The conformational dynamics of Hsp70 and its regulation by cochaperones are vital to its function. Using bulk and single-molecule fluorescence resonance energy transfer (smFRET) techniques, we studied the interdomain conformational distribution of human stress-inducible Hsp70A1 and the kinetics of conformational changes induced by nucleotide and the Hsp40 cochaperone Hdj1. We found that the conformations between and within the nucleotide- and substrate-binding domains show heterogeneity. The conformational distribution in the ATP-bound state can be induced by Hdj1 to form an "ADP-like" undocked conformation, which is an ATPase-stimulated state. Kinetic measurements indicate that Hdj1 binds to monomeric Hsp70 as the first step, then induces undocking of the two domains and closing of the substrate-binding cleft. Dimeric Hdj1 then facilitates dimerization of Hsp70 and formation of a heterotetrameric Hsp70-Hsp40 complex. Our results provide a kinetic view of the conformational cycle of Hsp70 and reveal the importance of the dynamic nature of Hsp70 for its function.
Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/ultraestrutura , Chaperonas Moleculares/ultraestrutura , Conformação Proteica , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Transferência Ressonante de Energia de Fluorescência , Heterogeneidade Genética , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Humanos , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Ligação Proteica/genética , Domínios Proteicos/genética , Dobramento de Proteína , Multimerização Proteica/genéticaRESUMO
The vast majority of biological carbon dioxide fixation relies on the function of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most cases the enzyme exhibits a tendency to become inhibited by its substrate RuBP and other sugar phosphates. The inhibition is counteracted by diverse molecular chaperones known as Rubisco activases (Rcas). In some chemoautotrophic bacteria, the CbbQO-type Rca Q2O2 repairs inhibited active sites of hexameric form II Rubisco. The 2.2-Å crystal structure of the MoxR AAA+ protein CbbQ2 from Acidithiobacillus ferrooxidans reveals the helix 2 insert (H2I) that is critical for Rca function and forms the axial pore of the CbbQ hexamer. Negative-stain electron microscopy shows that the essential CbbO adaptor protein binds to the conserved, concave side of the CbbQ2 hexamer. Site-directed mutagenesis supports a model in which adenosine 5'-triphosphate (ATP)-powered movements of the H2I are transmitted to CbbO via the concave residue L85. The basal ATPase activity of Q2O2 Rca is repressed but strongly stimulated by inhibited Rubisco. The characterization of multiple variants where this repression is released indicates that binding of inhibited Rubisco to the C-terminal CbbO VWA domain initiates a signal toward the CbbQ active site that is propagated via elements that include the CbbQ α4-ß4 loop, pore loop 1, and the presensor 1-ß hairpin (PS1-ßH). Detailed mechanistic insights into the enzyme repair chaperones of the highly diverse CO2 fixation machinery of Proteobacteria will facilitate their successful implementation in synthetic biology ventures.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Acidithiobacillus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Chaperonas Moleculares/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Acidithiobacillus/genética , Acidithiobacillus/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Domínio Catalítico/genética , Cristalografia por Raios X , Ativação Enzimática , Ensaios Enzimáticos , Microscopia Eletrônica , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestrutura , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Secundária de Proteína , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/ultraestruturaRESUMO
Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer's disease the amyloid-ß peptide (Aß) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces Aß fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible non-fibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of Aß, while dimers strongly suppress Aß fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Catarata/patologia , Ataxia Cerebelar/patologia , Angiopatia Amiloide Cerebral Familiar/patologia , Surdez/patologia , Demência/patologia , Glicoproteínas de Membrana/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Amiloide/metabolismo , Neuropatias Amiloides Familiares , Dicroísmo Circular , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestrutura , Microscopia Eletrônica de Transmissão , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Ligação Proteica , Domínios Proteicos/fisiologia , Dobramento de Proteína , Multimerização Proteica/fisiologia , Proteínas RecombinantesRESUMO
The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly.
Assuntos
Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Proto-Oncogênicas/ultraestrutura , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , TransfecçãoRESUMO
The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base-CP interaction. Here, we show that the Nas6 chaperone also obstructs base-lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base-lid, but not base-CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base-CP, but not base-lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base-lid affinity and base-CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis-blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis-competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome.
Assuntos
Chaperonas Moleculares/metabolismo , Nucleotídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Hidrólise , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Nucleotídeos/química , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestruturaRESUMO
Antibodies represent a highly successful class of molecules that bind a wide-range of targets in therapeutic-, diagnostic- and research-based applications. The antibody repertoire is composed of the building blocks required to develop an effective adaptive immune response against foreign insults. A number of species have developed novel genetic and structural mechanisms from which they derive these antibody repertoires, however, traditionally antibodies are isolated from human, and rodent sources. Due to their high-value therapeutic, diagnostic, biotechnological and research applications, much innovation has resulted in techniques and approaches to isolate novel antibodies. These approaches are bolstered by advances in our understanding of species immune repertoires, next generation sequencing capacity, combinatorial antibody discovery and high-throughput screening. Structural determination of antibodies and antibody-antigen complexes has proven to be pivotal to our current understanding of the immune repertoire for a range of species leading to advances in man-made libraries and fine tuning approaches to develop antibodies from immune-repertoires. Furthermore, the isolation of antibodies directed against antigens of importance in health, disease and developmental processes, has yielded a plethora of structural and functional insights. This review highlights the significant contribution of antibody-based crystallography to our understanding of adaptive immunity and its application to providing critical information on a range of human-health related indications.
Assuntos
Imunização Passiva/métodos , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Imunoglobulina G/ultraestrutura , Anticorpos de Cadeia Única/ultraestrutura , Imunidade Adaptativa , Animais , Antígenos/imunologia , Cristalografia por Raios X , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Modelos Moleculares , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/química , Especificidade da EspécieRESUMO
The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other's activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the ß-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions.
Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/ultraestrutura , Modelos Químicos , Modelos Moleculares , Sítios de Ligação , Simulação por Computador , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Ligação Proteica , Conformação Proteica , Estrutura Terciária de ProteínaRESUMO
A common feature of chaperone-proteases is architectural two-fold symmetry across the proteolytic cylinder. Here we investigate the role of symmetry for the function of ClpAP and ClpXP assemblies. We generated asymmetric ClpP particles in which the two rings differ in ClpA and ClpX binding capability and/or in proteolytic activity. Rapid-kinetic fluorescence measurements and steady-state experiments indicate that single 2:1 ClpAP or ClpXP complexes are as efficient in substrate degradation as two 1:1 ClpAP or ClpXP assemblies. This implies that the two chaperone components work independently. However, an asymmetric ClpP particle composed of one active and one inactive ring can stimulate ATPase activity of ClpA regardless of whether ClpA binds to the active ring or to the opposite side of ClpP, across the ring of inactivated protease. Thus, we propose that conformational transitions in ClpP are concerted and allosteric effects are transferred simultaneously to both associated chaperones, leading to synchronized activation.
Assuntos
Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Chaperonas Moleculares/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/ultraestrutura , Sítios de Ligação/genética , Catálise , Endopeptidase Clp/química , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Endopeptidase Clp/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/ultraestrutura , Transferência Ressonante de Energia de Fluorescência , Cinética , Luz , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Chaperonas Moleculares/ultraestrutura , Ligação Proteica/genética , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Especificidade por SubstratoRESUMO
Amyloid fibrils are found in approximately 25 different diseases, including Alzheimer's disease. Lung surfactant protein C (SP-C) forms fibrils in association with pulmonary disease. It was recently found that the C-terminal domain of proSP-C (CTC), which is localized to the endoplasmic reticulum (ER) lumen, protects the transmembrane (TM) part of (pro)SP-C from aggregation into amyloid until it has a folded into an alpha-helix. CTC appears to have a more general anti-amyloid effect by also acting on TM regions of other proteins. Here we investigate interactions of CTC with the amyloid beta-peptide (Abeta) associated with Alzheimer's disease and medin, a peptide that forms fibrils in the most common form of human amyloid. CTC prevents fibril formation in Abeta and medin and forms a complex with Abeta oligomers, as judged by size-exclusion chromatography and electrospray ionization mass spectrometry. These data suggest that CTC functions as a chaperone that acts preferentially against unfolded TM segments and structural motifs found during amyloid fibril formation, a mechanism that may be exploited in forming a basis for future anti-amyloid therapy.
Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Proteínas do Leite/antagonistas & inibidores , Fragmentos de Peptídeos/antagonistas & inibidores , Precursores de Proteínas/fisiologia , Proteína C Associada a Surfactante Pulmonar/fisiologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/ultraestrutura , Antígenos de Superfície/ultraestrutura , Humanos , Proteínas do Leite/ultraestrutura , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Chaperonas Moleculares/ultraestrutura , Dados de Sequência Molecular , Fragmentos de Peptídeos/ultraestrutura , Dobramento de Proteína , Precursores de Proteínas/ultraestrutura , Estrutura Terciária de Proteína/fisiologia , Proteína C Associada a Surfactante Pulmonar/química , Proteína C Associada a Surfactante Pulmonar/ultraestruturaRESUMO
The absence of a functional ATP Binding Cassette (ABC) protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) from apical membranes of epithelial cells is responsible for cystic fibrosis (CF). Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1). Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of NBD1-DeltaF508 are essential information in correcting this pathogenic mutant.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/ultraestrutura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Substituição de Aminoácidos , Simulação por Computador , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Relação Estrutura-AtividadeRESUMO
p55, a member of the membrane-associated guanylate kinase family, includes a PDZ domain that specifically interacts with the C-terminal region of glycophorin C in the ternary complex of p55, protein 4.1 and glycophorin C. Here we present the first NMR-derived complex structure of the p55 PDZ domain and the C-terminal peptide of glycophorin C, obtained by using a threonine to cysteine (T85C) mutant of the p55 PDZ domain and a phenylalanine to cysteine (F127C) mutant of the glycophorin C peptide. Our NMR results revealed that the two designed mutant molecules retain the specific interaction manner that exists between the wild type molecules and can facilitate the structure determination by NMR, due to the stable complex formation via an intermolecular disulfide bond. The complex structure provides insight into the specific interaction of the p55 PDZ domain with the two key residues, Ile128 and Tyr126, of glycophorin C.
Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Glicoforinas/química , Glicoforinas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteína 4 de Ligação ao RetinoblastomaRESUMO
Focal brain ischemia leads to a slow type of neuronal death in the penumbra that starts several hours after ischemia and continues to mature for days. During this maturation period, blood flow, cellular ATP and ionic homeostasis are gradually recovered in the penumbral region. In striking contrast, protein synthesis is irreversibly inhibited. This study used a rat focal brain ischemia model to investigate whether or not irreversible translational inhibition is due to abnormal aggregation of translational complex components, i.e. the ribosomes and their associated nascent polypeptides, protein synthesis initiation factors and co-translational chaperones. Under electron microscopy, most rosette-shaped polyribosomes were relatively evenly distributed in the cytoplasm of sham-operated control neurons, but clumped into large abnormal aggregates in penumbral neurons subjected to 2 h of focal ischemia followed by 4 h of reperfusion. The abnormal ribosomal protein aggregation lasted until the onset of delayed neuronal death at 24-48 h of reperfusion after ischemia. Biochemical study further suggested that translational complex components, including small ribosomal subunit protein 6 (S6), large subunit protein 28 (L28), eukaryotic initiation factors 2alpha, 4E and 3eta, and co-translational chaperone heat-shock cognate protein 70 (HSC70) and co-chaperone Hdj1, were all irreversibly clumped into large abnormal protein aggregates after ischemia. Translational complex components were also highly ubiquitinated. This study clearly demonstrates that focal ischemia leads to irreversible aggregation of protein synthesis machinery that contributes to neuronal death after focal brain ischemia.
Assuntos
Isquemia Encefálica/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas/metabolismo , Análise de Variância , Animais , Western Blotting/métodos , Isquemia Encefálica/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Masculino , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/ultraestrutura , Ratos , Ratos Wistar , Reperfusão/métodos , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , Ribossomos/ultraestrutura , Fatores de TempoRESUMO
At the Cold Spring Harbor Meeting on 'Molecular Chaperones and the Heat Shock Response' in May 1996, Susan Lindquist presented evidence that a chaperone of yeast termed Hsp104, which her group had been investigating for several years, is able to dissolve protein aggregates (Glover, J.R., Lindquist, S., 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82). Among many of the participants this news stimulated reactions reaching from decided skepticism to utter disbelief because protein aggregation was widely considered to be an irreversible process. Several years and publications later, it is undeniable that Susan had been right. Hsp104 is an ATP dependent molecular machine that-in cooperation with Hsp70 and Hsp40-extracts polypeptide chains from protein aggregates and facilitates their refolding, although the molecular details of this process are still poorly understood. Meanwhile, close homologues of Hsp104 have been identified in bacteria (ClpB), in mitochondria (Hsp78), and in the cytosol of plants (Hsp101), but intriguingly not in the cytosol of animal cells (Mosser, D.D., Ho, S., Glover, J.R., 2004. Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43, 8107-8115). Observations that Hsp104 plays an essential role in the maintenance of yeast prions (see review by James Shorter in this issue) have attracted even more attention to the molecular mechanism of this ATP dependent chaperone (Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G., Liebman, S.W., 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880-884).
Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/fisiologia , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Proteínas de Choque Térmico/ultraestrutura , Hidrólise , Cinética , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Dados de Sequência Molecular , Peso Molecular , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Especificidade por SubstratoRESUMO
Trigger factor (TF), the first chaperone in eubacteria to encounter the emerging nascent chain, binds to the large ribosomal subunit in the vicinity of the protein exit tunnel opening and forms a sheltered folding space. Here, we present the 3.5-A crystal structure of the physiological complex of the large ribosomal subunit from the eubacterium Deinococcus radiodurans with the N-terminal domain of TF (TFa) from the same organism. For anchoring, TFa exploits a small ribosomal surface area in the vicinity of proteins L23 and L29, by using its "signature motif" as well as additional structural elements. The molecular details of TFa interactions reveal that L23 is essential for the association of TF with the ribosome and may serve as a channel of communication with the nascent chain progressing in the tunnel. L29 appears to induce a conformational change in TFa, which results in the exposure of TFa hydrophobic patches to the opening of the ribosomal exit tunnel, thus increasing its affinity for hydrophobic segments of the emerging nascent polypeptide. This observation implies that, in addition to creating a protected folding space for the emerging nascent chain, TF association with the ribosome prevents aggregation by providing a competing hydrophobic environment and may be critical for attaining the functional conformation necessary for chaperone activity.
Assuntos
Proteínas de Bactérias/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/ultraestrutura , Peptidilprolil Isomerase/ultraestrutura , Ribossomos/metabolismo , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalização , Primers do DNA , Deinococcus , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Ribossômicas/metabolismoRESUMO
Small heat shock proteins are a ubiquitous and diverse family of stress proteins that have in common an alpha-crystallin domain. Mycobacterium tuberculosis has two small heat shock proteins, Acr1 (alpha-crystallin-related protein 1, or Hsp16.3/16-kDa antigen) and Acr2 (HrpA), both of which are highly expressed under different stress conditions. Small heat shock proteins form large oligomeric assemblies and are commonly polydisperse. Nanoelectrospray mass spectrometry showed that Acr2 formed a range of oligomers composed of dimers and tetramers, whereas Acr1 was a dodecamer. Electron microscopy of Acr2 showed a variety of particle sizes. Using three-dimensional analysis of negative stain electron microscope images, we have shown that Acr1 forms a tetrahedral assembly with 12 polypeptide chains. The atomic structure of a related alpha-crystallin domain dimer was docked into the density to build a molecular structure of the dodecameric Acr1 complex. Along with the differential regulation of these two proteins, the differences in their quaternary structures demonstrated here supports their distinct functional roles.
Assuntos
Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Mycobacterium tuberculosis/química , Oligopeptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Clonagem Molecular , Sequência Conservada , Microscopia Crioeletrônica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/ultraestrutura , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Dados de Sequência Molecular , Tamanho da Partícula , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , alfa-Cristalinas/química , alfa-Cristalinas/ultraestruturaRESUMO
The nucleocapsid protein N of Chandipura virus is prone to aggregation in vitro. We have shown that this aggregation occurs in two phases in a nucleation-dependent manner. Electron microscopy suggests that the aggregated state may have a ring-like structure. Using a GFP fusion, we have shown that the N-protein also aggregates in vivo. The P-protein suppresses the N-protein aggregation efficiently, both in vitro and in vivo. Increased lag phase in the presence of the P-protein suggests that chaperone-like action of the P-protein occurs before the nucleation event. The P-protein, however, does not exert any chaperone-like action against other proteins, suggesting that it binds to the N-protein specifically. Surface plasmon resonance and fluorescence enhancement indeed suggest that the P-protein binds tightly to the native N-protein. The P-protein is thus an N-protein-specific chaperone which inhibits the nucleation phase of N-protein aggregation, thus keeping a pool of encapsidation-competent N-protein for viral maturation.