Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.169
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Gene ; 926: 148637, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38844270

RESUMO

The cytosolic T-complex protein-1 ring complex (TRiC), also referred as chaperonin containing TCP-1(CCT), comprising eight different subunits stacked in double toroidal rings, binds to around 10 % of newly synthesized polypeptides and facilitates their folding in ATP dependent manner. In Leishmania, among five subunits of TCP1 complex, identified either by transcriptome or by proteome analysis, only LdTCP1γ has been well characterized. It forms biologically active homo-oligomeric complex and plays role in protein folding and parasite survival. Lack of information regarding rest of the TCP1 subunits and its structural configuration laid down the necessity to study individual subunits and their role in parasite pathogenicity. The present study involves the cloning, expression and biochemical characterization of TCP1ε subunit (LdTCP1ε) of Leishmania donovani, the causative agent of visceral leishmaniasis. LdTCP1ε exhibited significant difference in primary structure as compared to LdTCP1γ and was evolutionary close to LdTCP1 zeta subunit. Recombinant protein (rLdTCP1ε) exhibited two major bands of 132 kDa and 240 kDa on native-PAGE that corresponds to the dimeric and tetrameric assembly of the epsilon subunit, which showed the chaperonin activity (ATPase and luciferase refolding activity). LdTCP1ε also displayed an increased expression upto 2.7- and 1.8-fold in the late log phase and stationary phase promastigotes and exhibited majorly vesicular localization. The study, thus for the first time, provides an insight for the presence of highly diverge but functionally active dimeric/tetrameric TCP1 epsilon subunit in Leishmania parasite.


Assuntos
Chaperonina com TCP-1 , Leishmania donovani , Proteínas de Protozoários , Leishmania donovani/genética , Leishmania donovani/metabolismo , Chaperonina com TCP-1/metabolismo , Chaperonina com TCP-1/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Clonagem Molecular , Sequência de Aminoácidos , Chaperoninas/metabolismo , Chaperoninas/genética , Dobramento de Proteína
2.
Cell Death Dis ; 15(6): 427, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890303

RESUMO

As the second most common malignant tumor in the urinary system, renal cell carcinoma (RCC) is imperative to explore its early diagnostic markers and therapeutic targets. Numerous studies have shown that AURKB promotes tumor development by phosphorylating downstream substrates. However, the functional effects and regulatory mechanisms of AURKB on clear cell renal cell carcinoma (ccRCC) progression remain largely unknown. In the current study, we identified AURKB as a novel key gene in ccRCC progression based on bioinformatics analysis. Meanwhile, we observed that AURKB was highly expressed in ccRCC tissue and cell lines and knockdown AURKB in ccRCC cells inhibit cell proliferation and migration in vitro and in vivo. Identified CDC37 as a kinase molecular chaperone for AURKB, which phenocopy AURKB in ccRCC. AURKB/CDC37 complex mediate the stabilization of MYC protein by directly phosphorylating MYC at S67 and S373 to promote ccRCC development. At the same time, we demonstrated that the AURKB/CDC37 complex activates MYC to transcribe CCND1, enhances Rb phosphorylation, and promotes E2F1 release, which in turn activates AURKB transcription and forms a positive feedforward loop in ccRCC. Collectively, our study identified AURKB as a novel marker of ccRCC, revealed a new mechanism by which the AURKB/CDC37 complex promotes ccRCC by directly phosphorylating MYC to enhance its stability, and first proposed AURKB/E2F1-positive feedforward loop, highlighting AURKB may be a promising therapeutic target for ccRCC.


Assuntos
Aurora Quinase B , Carcinoma de Células Renais , Proteínas de Ciclo Celular , Progressão da Doença , Fator de Transcrição E2F1 , Neoplasias Renais , Proteínas Proto-Oncogênicas c-myc , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Aurora Quinase B/metabolismo , Aurora Quinase B/genética , Proliferação de Células , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Movimento Celular/genética , Chaperoninas
3.
Arch Microbiol ; 206(7): 299, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861015

RESUMO

Chaperonins from psychrophilic bacteria have been shown to exist as single-ring complexes. This deviation from the standard double-ring structure has been thought to be a beneficial adaptation to the cold environment. Here we show that Cpn60 from the psychrophile Pseudoalteromonas haloplanktis (Ph) maintains its double-ring structure also in the cold. A strongly reduced ATPase activity keeps the chaperonin in an energy-saving dormant state, until binding of client protein activates it. Ph Cpn60 in complex with co-chaperonin Ph Cpn10 efficiently assists in protein folding up to 55 °C. Moreover, we show that recombinant expression of Ph Cpn60 can provide its host Escherichia coli with improved viability under low temperature growth conditions. These properties of the Ph chaperonin may make it a valuable tool in the folding and stabilization of psychrophilic proteins.


Assuntos
Proteínas de Bactérias , Temperatura Baixa , Escherichia coli , Dobramento de Proteína , Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/genética , Chaperonina 60/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Chaperoninas/metabolismo , Chaperoninas/genética , Chaperoninas/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética
4.
Biochem Soc Trans ; 52(3): 1061-1069, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38695730

RESUMO

The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Multimerização Proteica , Quinases raf/metabolismo , Quinases raf/química , Animais , Chaperoninas/metabolismo , Chaperoninas/química , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Modelos Moleculares
5.
Eur J Cancer ; 201: 113914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359495

RESUMO

BACKGROUND: CDC37 is a key determinant of client kinase recruitment to the HSP90 chaperoning system. We hypothesized that kinase-specific dependency on CDC37 alters the efficacy of targeted therapies for metastatic colorectal cancer (mCRC). MATERIAL AND METHODS: Two independent mCRC cohorts were analyzed to compare the survival outcomes between CDC37-high and CDC37-low patients (stratified by the median cutoff values): the CALGB/SWOG 80405 trial (226 and 207 patients receiving first-line bevacizumab- and cetuximab-containing chemotherapies, respectively) and Japanese retrospective (50 refractory patients receiving regorafenib) cohorts. A dataset of specimens submitted to a commercial CLIA-certified laboratory was utilized to characterize molecular profiles of CDC37-high (top quartile, N = 5055) and CDC37-low (bottom quartile, N = 5055) CRCs. RESULTS: In the bevacizumab-treated group, CDC37-high patients showed significantly better progression-free survival (PFS) (median 13.3 vs 9.6 months, hazard ratio [HR] 0.59, 95% confidence interval [CI] 0.44-0.79, p < 0.01) than CDC37-low patients. In the cetuximab-treated group, CDC37-high and CDC37-low patients had similar outcomes. In the regorafenib-treated group, CDC37-high patients showed significantly better overall survival (median 11.3 vs 6.0 months, HR 0.24, 95% CI 0.11-0.54, p < 0.01) and PFS (median 3.5 vs 1.9 months, HR 0.51, 95% CI 0.28-0.94, p = 0.03). Comprehensive molecular profiling revealed that CDC37-high CRCs were associated with higher VEGFA, FLT1, and KDR expressions and activated hypoxia signature. CONCLUSIONS: CDC37-high mCRC patients derived more benefit from anti-VEGF therapies, including bevacizumab and regorafenib, but not from cetuximab. Molecular profiles suggested that such tumors were dependent on angiogenesis-relating pathways.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Compostos de Fenilureia , Piridinas , Neoplasias Retais , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cetuximab/uso terapêutico , Chaperoninas/genética , Chaperoninas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Expressão Gênica , Chaperonas Moleculares , Estudos Retrospectivos
6.
Nat Commun ; 15(1): 1007, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307855

RESUMO

Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. PhLP2A binds to open apo-TRiC through polyvalent domain-specific contacts with its chamber's equatorial and apical regions. PhLP2A N-terminal H3-domain binding to subunits CCT3/4 apical domains displace PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to positively charged inner surface residues from CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.


Assuntos
Actinas , Proteínas do Olho , Reguladores de Proteínas de Ligação ao GTP , Fosfoproteínas , Dobramento de Proteína , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina com TCP-1/metabolismo
7.
Future Med Chem ; 16(2): 125-138, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189168

RESUMO

Background: Specifically blocking HSP90-CDC37 interaction is emerging as a prospective strategy for cancer therapy. Aim: Applying a kinase pseudopeptide rationale to the discovery of HSP90-CDC37 protein-protein interaction (PPI) inhibitors. Methods: Pseudosubstrates were identified through sequence alignment and evaluated by biolayer interferometry assay, co-immunoprecipitation assay and antiproliferation assay. Results: TAT-DDO-59120 was identified to disrupt HSP90-CDC37 PPI through directly binding to HSP90, both extracellularly and intracellularly. In addition, the identified peptide showed ideal antiproliferative activity against the colorectal cancer cell HCT116 (IC50 = 12.82 µM). Conclusion: Compared with the traditional method of screening a large compound library to identify PPI inhibitors, this method is rapid and efficient with strong purpose, which provides a novel strategy for designing HSP90-CDC37 PPI inhibitors.


Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Ligação Proteica
8.
Cancer Biol Ther ; 25(1): 2287122, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38084868

RESUMO

Chaperonin containing TCP1 subunit 6A (CCT6A) was recently discovered to be involved in cancer pathogenesis and stemness; however, its role in oral squamous cell carcinoma (OSCC) has not been reported. The current study aimed to investigate the impact of CCT6A on OSCC cell malignant behaviors and stemness and to explore its potentially interreacted pathways. SCC-15 and HSC-3 cells were transfected with the plasmid loading control overexpression, CCT6A overexpression, control knockout, or CCT6A knockout. Wnt4 overexpression or Notch1 overexpression plasmids were transfected into CCT6A-knockout SCC-15 cells. Cell proliferation, apoptosis, invasion, stemness, Notch, and Wnt pathways were detected in both cell lines, whereas RNA sequencing was only performed in SCC-15 cells. CCT6A was upregulated in five OSCC cell lines, including SCC-15, HSC-3, SAT, SCC-9, and KON, compared to that in the control cell line. In SCC-15 and HSC-3 cells, CCT6A overexpression increased cell proliferation, invasion, sphere formation, CD133, and Sox2 expression, but decreased cell apoptosis; on the contrary, CCT6A knockout exhibited an opposite effect on the above indexes. RNA-sequencing data revealed that the Wnt and Notch pathways were involved in the CCT6A'effect on SCC-15 cell functions. CCT6A positively regulates the Wnt and Notch pathways in SCC-15 and HSC-3 cells. Importantly, it was shown that activation of the Wnt or Notch pathways attenuated the effect of CCT6A knockout on SCC-15 cell survival, invasion, and stemness. CCT6A may promote OSCC malignant behavior and stemness by activating the Wnt and Notch pathways.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Chaperoninas , Chaperonina com TCP-1
9.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834298

RESUMO

The CCT/TRiC complex is a type II chaperonin that undergoes ATP-driven conformational changes during its functional cycle. Structural studies have provided valuable insights into the mechanism of this process, but real-time dynamics analyses of mammalian type II chaperonins are still scarce. We used diffracted X-ray tracking (DXT) to investigate the intramolecular dynamics of the CCT complex. We focused on three surface-exposed loop regions of the CCT1 subunit: the loop regions of the equatorial domain (E domain), the E and intermediate domain (I domain) juncture near the ATP-binding region, and the apical domain (A domain). Our results showed that the CCT1 subunit predominantly displayed rotational motion, with larger mean square displacement (MSD) values for twist (χ) angles compared with tilt (θ) angles. Nucleotide binding had a significant impact on the dynamics. In the absence of nucleotides, the region between the E and I domain juncture could act as a pivotal axis, allowing for greater motion of the E domain and A domain. In the presence of nucleotides, the nucleotides could wedge into the ATP-binding region, weakening the role of the region between the E and I domain juncture as the rotational axis and causing the CCT complex to adopt a more compact structure. This led to less expanded MSD curves for the E domain and A domain compared with nucleotide-absent conditions. This change may help to stabilize the functional conformation during substrate binding. This study is the first to use DXT to probe the real-time molecular dynamics of mammalian type II chaperonins at the millisecond level. Our findings provide new insights into the complex dynamics of chaperonins and their role in the functional folding cycle.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Animais , Raios X , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/metabolismo , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Nucleotídeos , Chaperonina com TCP-1/química , Conformação Proteica , Mamíferos/metabolismo
10.
Mol Cell ; 83(21): 3852-3868.e6, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852256

RESUMO

The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with ß-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gß5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gß5 from an unfolded molten globule to a fully folded ß-propeller. These structures reveal the mechanism by which CCT directs Gß5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual ß sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.


Assuntos
Proteínas de Ligação ao GTP , Chaperonas Moleculares , Humanos , Microscopia Crioeletrônica , Chaperonas Moleculares/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Dobramento de Proteína , Transdução de Sinais , Chaperoninas
11.
Methods Mol Biol ; 2693: 263-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540441

RESUMO

The subject matter of this chapter is defined by the title of its two previous editions, "Immunohistochemistry of human Hsp60 in health and disease: From autoimmunity to cancer," the latest of which appeared in 2018. Since then, considerable advances have been made in the fields of autoimmunity and cancer and some of them are closely linked to progress in the understanding of the chaperone system (CS). This is a physiological system composed of molecular chaperones, co-chaperones, chaperone cofactors, and chaperone interactors and receptors. The molecular chaperones are the chief members of the CS, and here we focus on one of them, Hsp60. Since extracellular vesicles (EVs) have also emerged as key factors in the functioning of the CS and in carcinogenesis, we have incorporated a detailed section about them. This chapter explains how to assess Hsp60 in tissues and in EVs for application in diagnosis, prognostication, and patient monitoring and, eventually, for developing methods using them as therapeutic targets and tools. We describe immunohistochemical techniques, immunofluorescence and double immunofluorescence-confocal microscopy, and methods for collecting and isolating EVs from blood plasma and for assessing their contents in Hsp60 and related microRNAs (miRNAs). All these procedures have proven to be reliable and useful in the study and management of various types of cancer and inflammatory and autoimmune conditions.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Imuno-Histoquímica , Neoplasias/diagnóstico , Chaperonas Moleculares , Chaperoninas , Chaperonina 60/química
12.
Chem Biol Interact ; 382: 110643, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481222

RESUMO

To investigate the role of the liver kinase (LK) B1 protein, an activator of AMP-activated protein kinase (AMPK), in AMPK signaling suppression when exposed to vesicant, a kind of chemical warfare agent. Cultured human bronchial epithelial cells were inflicted with sulfur mustard (SM) analog, 2-chloroethyl ethyl sulfide (CEES) of 0.2-1.0 mM concentration, and cell proliferation, apoptosis, autophagy, and cellular ATP level were analyzed up to 24 h after the exposure. Focusing on LKB1, heat shock protein (HSP) 90, and cell division cycle (CDC) 37 proteins, the protein expression, phosphorylation, and interaction were examined with western blot, immunofluorescence staining, and/or immunoprecipitation. AMPK signaling was found to be inhibited 24 h after being exposed to either sub-cytotoxic (0.5 mM) or cytotoxic (1.0 mM) concentration of CEES based on MTS assay. Consistently, the degradation of the LKB1 protein and its less interaction with the HSP90/CDC37 complex was confirmed. It was found that 1.0, not 0.5 mM CEES also decreased the CDC37 protein, proteasome activity, and cellular ATP content that modulates HSP90 protein conformation. Inhibiting proteasome activity could alternatively activate autophagy. Finally, either 0.5 or 1.0 mM CEES activated HSP70 and autophagy, and the application of an HSP70 inhibitor blocked autophagy and autophagic degradation of the LKB1 protein. In conclusion, we reported here that AMPK signaling inactivation by CEES was a result of LKB1 protein loss via less protein complex formation and enhanced degradation.


Assuntos
Gás de Mostarda , Humanos , Gás de Mostarda/toxicidade , Proteínas Quinases Ativadas por AMP , Complexo de Endopeptidases do Proteassoma , Proteínas Serina-Treonina Quinases , Chaperonas Moleculares , Proteínas de Choque Térmico HSP90 , Células Epiteliais/metabolismo , Trifosfato de Adenosina , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo
13.
Org Biomol Chem ; 21(30): 6120-6123, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37464895

RESUMO

We serendipitously found that chaperonin GroEL can hydrolyze ortho-nitrophenyl ß-galactoside (ONPG), a well-known substrate of the enzyme ß-galactosidase. The ONPG hydrolysis by GroEL follows typical enzyme kinetics. Our experiments and molecular docking studies suggest ONPG binding at the ATP binding site of GroEL.


Assuntos
Chaperoninas , Galactosídeos , Simulação de Acoplamento Molecular , Sítios de Ligação , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Dobramento de Proteína , Hidrólise
14.
Mol Microbiol ; 120(2): 210-223, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37350285

RESUMO

Mycobacterium tuberculosis encodes two chaperonin proteins, MtbCpn60.1 and MtbCpn60.2, that share substantial sequence similarity with the Escherichia coli chaperonin, GroEL. However, unlike GroEL, MtbCpn60.1 and MtbCpn60.2 purify as lower-order oligomers. Previous studies have shown that MtbCpn60.2 can functionally replace GroEL in E. coli, while the function of MtbCpn60.1 remained an enigma. Here, we demonstrate the molecular chaperone function of MtbCpn60.1 and MtbCpn60.2, by probing their ability to assist the folding of obligate chaperonin clients, DapA, FtsE and MetK, in an E. coli strain depleted of endogenous GroEL. We show that both MtbCpn60.1 and MtbCpn60.2 support cell survival and cell division by assisting the folding of DapA and FtsE, but only MtbCpn60.2 completely rescues GroEL-depleted E. coli cells. We also show that, unlike MtbCpn60.2, MtbCpn60.1 has limited ability to support cell growth and proliferation and assist the folding of MetK. Our findings suggest that the client pools of GroEL and MtbCpn60.2 overlap substantially, while MtbCpn60.1 folds only a small subset of GroEL clients. We conclude that the differences between MtbCpn60.1 and MtbCpn60.2 may be a consequence of their intrinsic sequence features, which affect their thermostability, efficiency, clientomes and modes of action.


Assuntos
Proteínas de Escherichia coli , Mycobacterium tuberculosis , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteostase , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Escherichia coli/metabolismo
15.
Angew Chem Int Ed Engl ; 62(31): e202304894, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37243902

RESUMO

Herein, we report an ATP-responsive nanoparticle (GroEL NP) whose surface is fully covered with the biomolecular machine "chaperonin protein GroEL". GroEL NP was synthesized by DNA hybridization between a gold NP with DNA strands on its surface and GroEL carrying complementary DNA strands at its apical domains. The unique structure of GroEL NP was visualized by transmission electron microscopy including under cryogenic conditions. The immobilized GroEL units retain their machine-like function and enable GroEL NP to capture denatured green fluorescent protein and release it in response to ATP. Interestingly, the ATPase activity of GroEL NP per GroEL was 4.8 and 4.0 times greater than those of precursor cys GroEL and its DNA-functionalized analogue, respectively. Finally, we confirmed that GroEL NP could be iteratively extended to double-layered ( GroEL ) 2 ${{^{({\rm GroEL}){_{2}}}}}$ NP.


Assuntos
Trifosfato de Adenosina , Chaperoninas , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 60/química , Dobramento de Proteína
16.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36973006

RESUMO

Mitochondrial Hsp60 (mtHsp60) plays a crucial role in maintaining the proper folding of proteins in the mitochondria. mtHsp60 self-assembles into a ring-shaped heptamer, which can further form a double-ring tetradecamer in the presence of ATP and mtHsp10. However, mtHsp60 tends to dissociate in vitro, unlike its prokaryotic homologue, GroEL. The molecular structure of dissociated mtHsp60 and the mechanism behind its dissociation remain unclear. In this study, we demonstrated that Epinephelus coioides mtHsp60 (EcHsp60) can form a dimeric structure with inactive ATPase activity. The crystal structure of this dimer reveals symmetrical subunit interactions and a rearranged equatorial domain. The α4 helix of each subunit extends and interacts with its adjacent subunit, leading to the disruption of the ATP-binding pocket. Furthermore, an RLK motif in the apical domain contributes to stabilizing the dimeric complex. These structural and biochemical findings provide new insights into the conformational transitions and functional regulation of this ancient chaperonin.


Assuntos
Chaperoninas , Escherichia coli , Escherichia coli/metabolismo , Chaperoninas/química , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo
17.
Inflammation ; 46(3): 1022-1035, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36920636

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to synovial inflammation, pannus formation, cartilage damage, bone destruction, and ultimate disability. Fibroblast-like synoviocytes (FLS) are involved in the pathogenetic mechanism of RA. Cdc37 (cell division cycle protein 37) is regarded as a molecular chaperone involved in various physiological processes such as cell cycle progression, cell proliferation, cell signal transduction, tumorigenesis, and progression. However, the precise role of Cdc37 in the pathogenesis of rheumatoid arthritis (RA) remains uncertain. In our study, we found that Cdc37 expression was upregulated in human rheumatoid synovia in contrast with the normal group. Interestingly, Cdc37 activated the ERK pathway to promote RA-FLS proliferation and migration in vitro. Ultimately, in vivo experiments revealed that silencing of Cdc37 alleviated ankle swelling and cartilage destruction and validated the ERK signaling pathways in vitro findings. Collectively, we demonstrate that Cdc37 promotes the proliferation and migration of RA-FLS by activation of ERK signaling pathways and finally aggravates the progression of RA. These data indicated that Cdc37 may be a novel target for the treatment of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Ratos , Humanos , Animais , Sinoviócitos/metabolismo , Artrite Experimental/metabolismo , Sistema de Sinalização das MAP Quinases , Movimento Celular , Artrite Reumatoide/metabolismo , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Células Cultivadas , Membrana Sinovial/metabolismo , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo
18.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768350

RESUMO

Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.


Assuntos
Chaperonina com TCP-1 , Chaperonas Moleculares , Simulação de Dinâmica Molecular , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/química , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Mutação
19.
FASEB J ; 37(2): e22757, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607310

RESUMO

Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C. elegans, deficiency of cct-4 as well as other CCT subunits impairs the trafficking of endocytic markers in intestinal cells, and this defect resembles that of dyn-1 RNAi worms. Consistent with these findings, the silencing of CCT4 in human cells leads to defective endosomal trafficking, and this defect can be rescued by the dynamin activator Ryngo 1-23. These results suggest that the cytosolic chaperonin CCT may regulate vesicle trafficking by promoting the folding of dynamin in addition to its known substrate tubulin. Our findings establish an essential role for the CCT chaperonin in regulating vesicle trafficking, and provide new insights into the regulation of vesicle trafficking and the cellular function of the cytosolic chaperonin.


Assuntos
Caenorhabditis elegans , Chaperonina com TCP-1 , Animais , Humanos , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Chaperoninas/genética , Chaperoninas/metabolismo , Tubulina (Proteína)/metabolismo , Citosol/metabolismo , Dobramento de Proteína , Mamíferos/metabolismo
20.
Subcell Biochem ; 101: 141-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520306

RESUMO

The co-chaperone p50/Cdc37 is an important partner for Hsp90, assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. Analysis of the structure of Hsp90-Cdc37-kinase complexes demonstrates the way in which Cdc37 interacts with and controls the folding of a large proportion of intracellular protein kinases. This co-chaperone thus stands at the hub of a multitude of intracellular signaling networks. Indeed, the influence of Cdc37 reaches beyond the housekeeping pathways of protein folding into the regulation of a wide range of cellular processes. This co-chaperone has attracted attention as a potential intermediate in carcinogenesis. Cdc37 is an attractive potential target in cancer due to (1) high expression in a number of tumor types and (2) control of multiple signaling pathways. These properties indicate (3) a potential for selectivity due to its elevated expression in malignant cells and (4) robustness, as the co-chaperone may control multiple growth signaling pathways and thus be less prone to evolution of resistance than less versatile oncoproteins. Cdc37 may also be involved in other aspects of pathophysiology and has been shown to be secreted in exosomes. Protein aggregation disorders have been linked to age-related declines in molecular chaperones and co-chaperones. Cdc37 also appears to be a potential agent in longevity due to its links to protein folding and autophagy, and it will be informative to study the role of Cdc37 maintenance/decline in aging organisms.


Assuntos
Proteínas de Ciclo Celular , Chaperoninas , Chaperoninas/genética , Chaperoninas/química , Chaperoninas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Quinases/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA