Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Environ Toxicol ; 39(6): 3666-3678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506534

RESUMO

Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.


Assuntos
Carcinoma Hepatocelular , Proteína Forkhead Box O3 , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Masculino , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , NF-kappa B/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Chenopodiaceae/química , Dietilnitrosamina/toxicidade , Extratos Vegetais/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
2.
Gene ; 900: 148139, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38185292

RESUMO

The heat stress is a significant environmental challenge and impede the plant growth, development and productivity. The characterization and utilization of novel genes for improving stress tolerance represents a paramount approach in crop breeding. In the present study, we report on cloning of a novel heat-induced chaperonin 10-like gene (SbCPN10L) from Salicornia brachiata and elucidation of its in-planta role in conferring the heat stress endurance. The transgenic tobacco over-expressing SbCPN10L gene exhibited enhanced growth attributes such as higher rate of seed germination, germination and vigor index at elevated (35 ± 1 °C) temperature (eT). The SbCPN10L tobacco exhibited greenish and healthy seedling growth under stress. Compared with control tobacco at eT, the transgenic tobacco had higher water contents, membrane stability index, stress tolerance index and photosynthetic pigments. Lower electrolyte leakage and less accumulation of malondialdehyde, hydrogen peroxide and reactive oxygen species indicated better heat stress tolerance in transgenic tobacco over-expressing SbCPN10L gene. Transgenic tobacco accumulated higher contents of sugars, starch, amino acids and polyphenols at eT. The negative solute potential observed in transgenic tobacco contributed to maintain water content and support improved growth under stress. The up-regulation of NtAPX, NtPOX and NtSOD in transgenic tobacco under stress indicated higher ROS scavenging ability and better physiological conditioning. The results recommend the SbCPN10L gene as a potential candidate gene with an ability to confer heat stress tolerance for climate resilient crops.


Assuntos
Chaperonina 10 , Chenopodiaceae , Plantas Geneticamente Modificadas/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Água/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
3.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257211

RESUMO

Suaeda glauca, a halophyte in the Amaranthaceae family, exhibits remarkable resilience to high salt and alkali stresses despite the absence of salt glands or vesicles in its leaves. While there is growing pharmacological interest in S. glauca, research on its secondary metabolites remains limited. In this study, chemical constituents of the aerial parts of S. glauca were identified using 1D- and 2D-NMR experiments, and its biological activity concerning hair loss was newly reported. Eight compounds, including alkaloids (1~3), flavonoids (4~6), and phenolics (7 and 8), were isolated. The compounds, except the flavonoids, were isolated for the first time from S. glauca. In the HPLC chromatogram, quercetin-3-O-ß-d-glucoside, kaempferol-3-O-ß-d-glucoside, and kaempferol were identified as major constituents in the extract of S. glauca. Additionally, the therapeutic potential of the extract of S. glauca and the isolated compounds 1~8 on the expressions of VEGF and IGF-1, as well as the regulation of Wnt/ß-catenin signaling, were evaluated in human follicle dermal papilla cells (HFDPCs) and human umbilical vein endothelial cells (HUVECs). Among the eight compounds, compound 4 was the most potent in terms of increasing the expression of VEGF and IGF-1 and the regulation of Wnt/ß-catenin. These findings suggest that S. glauca extract and its compounds are potential new candidates for preventing or treating hair loss.


Assuntos
Chenopodiaceae , Fator de Crescimento Insulin-Like I , Humanos , Animais , Plantas Tolerantes a Sal , beta Catenina , Fator A de Crescimento do Endotélio Vascular , Alopecia , Flavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana , Extratos Vegetais/farmacologia
4.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257297

RESUMO

Ceratocarpus arenarius (Chenopodiaceae) is an under-investigated annual plant that occurs in dry areas stretching from eastern and south-eastern Europe to East Asia. This article presents the botanical characterization and examination of proximate parameters, minerals and cytotoxic activity of C. arenarius that grows wild in Kazakhstan. The results of morphological analysis using a light microscope, based on cross-sections of stems, roots and leaves, provide the necessary data to develop a regulatory document for this herbal substance as a raw material for use in the pharmaceutical, cosmetic and food industries. The investigated proximate characteristics included moisture content (6.8 ± 0.28%), ash (5.9 ± 0.40%), fat (12.5 ± 21.28%) and protein (392.85 ± 25.50). The plant is also rich in minerals (mg/100 g dry weight); Na (20.48 ± 0.29), K (302.73 ± 1.15), Zn (4.45 ± 0.35), Fe (1.18 ± 0.03), Cu (0.11 ± 0.02), Mn (0.76 ± 0.01), Ca (131.23 ± 0.09) and Mg (60.69 ± 0.72). The ethanolic extract of C. arenarius showed no acute toxicity against the brine shrimp nauplii.


Assuntos
Antineoplásicos , Chenopodiaceae , Animais , Minerais , Artemia , Ásia Oriental
5.
Mar Pollut Bull ; 198: 115852, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043203

RESUMO

Liaohe coastal wetland has experienced severe degradation of Suaeda salsa (L.) Pall (S. salsa) in recent years. However, the impact of exogenous betaine (GB) on S. salsa growth remains unclear. Therefore, we conducted a natural simulated cultivation in soils of coastal wetland to investigate the effects of GB on S. salsa growth. The results showed that GB increased the height and weight of S. salsa, and meanwhile stimulated the synthesis of endogenous betaine and amino acids, increased soluble sugars and elevated the activity of Na+, K+-ATPase (enhancing osmotic stability). In addition, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased, and malondialdehyde (MDA) and H2O2 decreased correspondingly, thereby improving the antioxidant capacity. Overall, GB application significantly alleviated salt stress and effectively promoted S. salsa growth. This study first indicated the important role of GB in influencing S. salsa growth, offering potential strategies for remediation in coastal wetlands.


Assuntos
Chenopodiaceae , Áreas Alagadas , Betaína/metabolismo , Betaína/farmacologia , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , China
6.
Plant Physiol Biochem ; 201: 107763, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301187

RESUMO

Cadmium (Cd) and sodium (Na) are two of the most phytotoxic metallic elements causing environmental and agricultural problems. Metallothioneins (MTs) play an important role in the adaptation to abiotic stress. We previously isolated a novel type 2 MT gene from Halostachys caspica (H. caspica), named HcMT, which responded to metal and salt stress. To understand the regulatory mechanisms controlling HcMT expression, we cloned the HcMT promoter and characterized its tissue-specific and spatiotemporal expression patterns. ß-Glucuronidase (GUS) activity analysis showed that the HcMT promoter was responsive to CdCl2, CuSO4, ZnSO4 and NaCl stress. Therefore, we further investigated the function of HcMT under abiotic stress in yeast and Arabidopsis thaliana (Arabidopsis). In CdCl2, CuSO4 or ZnSO4 stress, HcMT significantly enhanced the metal ions tolerance and accumulation in yeast through function as a metal chelator. Moreover, the HcMT protein also protected yeast cells from NaCl, PEG and hydrogen peroxide (H2O2) toxicity with less effectiveness. However, transgenic Arabidopsis carrying HcMT gene only displayed tolerance to CdCl2 and NaCl, accompanying by higher content of Cd2+ or Na+ and lower H2O2, compared to wild-type (WT) plants. Next, we demonstrated that the recombinant HcMT protein has the ability to bind Cd2+ and the potential of scavenging ROS (reactive oxygen species) in vitro. This result further confirmed that the role of HcMT to influence plants to CdCl2 and NaCl stress may bind metal ions and scavenge ROS. Overall, we described the biological functions of HcMT and developed a metal- and salt-inducible promoter system for using in genetic engineering.


Assuntos
Arabidopsis , Chenopodiaceae , Plantas Tolerantes a Sal/genética , Cádmio/toxicidade , Cádmio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Saccharomyces cerevisiae/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Chenopodiaceae/genética , Estresse Fisiológico/genética
7.
J Hazard Mater ; 458: 131922, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379599

RESUMO

The enhancement of cadmium (Cd) extraction by plants from contaminated soils associated with phosphate-solubilizing bacteria (PSB) has been widely reported, but the underlying mechanism remains scarcely, especially in Cd-contaminated saline soils. In this study, a green fluorescent protein-labeled PSB, the strain E. coli-10527, was observed to be abundantly colonized in the rhizosphere soils and roots of halophyte Suaeda salsa after inoculation in saline soil pot tests. Cd extraction by plants was significantly promoted. The enhanced Cd phytoextraction by E. coli-10527 was not solely dependent on bacterial efficient colonization, but more significantly, relied on the remodeling of rhizosphere microbiota, as confirmed by soil sterilization test. Taxonomic distribution and co-occurrence network analyses suggested that E. coli-10527 strengthened the interactive effects of keystone taxa in the rhizosphere soils, and enriched the key functional bacteria that involved in plant growth promotion and soil Cd mobilization. Seven enriched rhizospheric taxa (Phyllobacterium, Bacillus, Streptomyces mirabilis, Pseudomonas mirabilis, Rhodospirillale, Clostridium, and Agrobacterium) were obtained from 213 isolated strains, and were verified to produce phytohormone and promote soil Cd mobilization. E. coli-10527 and those enriched taxa could assemble as a simplified synthetic community to strengthen Cd phytoextraction through their synergistic interactions. Therefore, the specific microbiota in rhizosphere soils enriched by the inoculated PSB were also the key to intensifying Cd phytoextraction.


Assuntos
Chenopodiaceae , Poluentes do Solo , Cádmio/metabolismo , Solo , Plantas Tolerantes a Sal/metabolismo , Escherichia coli/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Microbiologia do Solo , Bactérias/metabolismo , Rizosfera , Fosfatos/análise
8.
Molecules ; 28(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110814

RESUMO

This study reports the biochemical profile and in vitro biological activities of the aerial part of two shrubs: Halocnemum strobilaceum and Suaeda fruticosa, a halophytes species native to saline habitats. The biomass was evaluated by determining its physiological properties and approximate composition. Hydro-methanolic extracts from Halocnemum strobilaceum and Suaeda fruticosa have been investigated for the inhibition of bacterial growth, the protection of proteins (albumin) from denaturation, and cytotoxicity to hepatocellular carcinomas (Huh-7 and HepG2). Their antioxidant activity was evaluated by five tests, including one that examined their ability to inhibit hydrogen peroxide (H2O2)-induced hemolysis. The profile of their phenolic compounds was also determined. These two euhalophytes had a high moisture content, high levels of photosynthetic pigments, elevated levels of ash and protein, low oxidative damage indices, MDA (Malondialdehyde) and proline, and low lipids levels. Their content was also characterized by a moderate acidity with good electrical conductivity. They contained abundant levels of phytochemicals and varied phenolic contents. Reverse phase high performance liquid chromatography (RP-HPLC) analysis revealed the presence of caffeic acid, p-coumaric acid, rutin, and quercetin in both plant extracts. On the pharmaceutical level, the two euhalophytes had anti-inflammatory, antibacterial, antioxidant, and cytotoxic properties, and therefore it was recommended to isolate and identify biologically active compounds from these plants and evaluate them in vivo.


Assuntos
Chenopodiaceae , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Ecossistema , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , África do Norte
9.
Nutrients ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771496

RESUMO

There has been an increasing interest in the consumption of halophytes as a healthy food in the last few years. Salicornia ramosissima is a seasonal Mediterranean halophyte with an interesting profile of bioactive compounds, including more than 60 identified polyphenols with a broad range of biological activities. Accumulating evidence supports the role of dietary polyphenols in the prevention of cardiovascular diseases, such as stroke. Stroke is the second cause of death worldwide and it is estimated that a substantial proportion of stroke incidence and recurrence may be prevented by healthier dietary patterns. Here, we have grouped the phenolic acids and flavonoids identified in S. ramosissima and reviewed their potential protective effect on brain ischemia, which are mostly related to the reduction of oxidative stress and inflammation, the inhibition of cell death pathways and their role in the preservation of the vascular function. Despite the fact that most of these compounds have been reported to be neuroprotective through multiple mechanisms, human studies are still scarce. Given the safe profile of polyphenols identified in S. ramosissima, this halophyte plant could be considered as a source of bioactive compounds for the nutraceutical industry.


Assuntos
Isquemia Encefálica , Chenopodiaceae , Acidente Vascular Cerebral , Humanos , Polifenóis/farmacologia , Flavonoides , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , Acidente Vascular Cerebral/prevenção & controle
10.
Environ Pollut ; 320: 121046, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627045

RESUMO

Chromium (Cr) is a highly toxic element adversely affecting the environment, cultivable lands, and human populations. The present study investigated the effects of Cr (VI) (100-400 µM) on plant morphology and growth, photosynthetic pigments, organic osmolytes, ionomics, and metabolomic dynamics of the halophyte Suaeda maritima to decipher the Cr tolerance mechanisms. Cr exposure reduced the growth and biomass in S. maritima. The photosynthetic pigments content significantly declined at higher Cr concentrations (400 µM). However, at lower Cr concentrations (100-300 µM), the photosynthetic pigments remained unaffected or increased. The results suggest that a high concentration of Cr exposure might have adverse effects on PS II in S. maritima. The enhanced uptake of Na+ in S. maritima imposed to Cr stress indicates that Na+ might have a pivotal role in osmotic adjustment, thereby maintaining water status under Cr stress. The proline content was significantly upregulated in Cr-treated plants suggesting its role in maintaining osmotic balance and scavenging ROS. The metabolomic analysis of control and 400 µM Cr treated plants led to the identification of 62 metabolites. The fold chain analysis indicated the upregulation of several metabolites, including phytohormones (SA and GA3), polyphenols (cinnamic acid, sinapic acid, coumaric acid, vanillic acid, and syringic acid), and amino acids (alanine, leucine, proline, methionine, and cysteine) under Cr stress. The upregulation of these metabolites suggests the enhanced metal chelation and sequestration in vacuoles, reducing oxidative stress by scavenging ROS and promoting photosynthesis by maintaining the chloroplast membrane structure and photosynthetic pigments. Furthermore, in S. maritima, Cr tolerance index (Ti) was more than 60% in all the treatments, and Cr bio-concentration factor (BCF) and translocation factor (Tf) values were all greater than 1.0, which clearly indicates the Cr-hyperaccumulator characteristics of this halophyte.


Assuntos
Chenopodiaceae , Cromo , Humanos , Cromo/toxicidade , Cromo/metabolismo , Plantas Tolerantes a Sal , Espécies Reativas de Oxigênio , Estresse Oxidativo , Antioxidantes/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Chenopodiaceae/metabolismo , Estresse Fisiológico
11.
Int J Phytoremediation ; 25(3): 322-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36444773

RESUMO

A 150-day experiment was performed to investigate the stimulatory effect of a promising phytoremediation strategy consisting of Suaeda heteroptera (S. heteroptera), Nereis succinea (N. succinea), and oil-degrading bacteria for cleaning up total petroleum hydrocarbons (TPHs) in spiked sediment. Inoculation with oil-degrading bacteria and/or N. succinea increased plant yield and TPH accumulation in S. heteroptera plants. The highest TPH dissipation (40.5%) was obtained in the combination treatment, i.e., S. heteroptera + oil-degrading bacteria + N. succinea, in which the sediment TPH concentration decreased from an initial value of 3955 to 2355 mg/kg in 150 days. BAF, BCF, and TF confirmed the role of N. succinea and oil-degrading bacteria in the amelioration and translocation of TPHs. In addition, TPH toxicity of S. heteroptera was alleviated by N. succinea and oil-degrading bacteria addition through the reduction of oxidative stress. Therefore, S. heteroptera could be used for cleaning up oil-contaminated sediment, particularly in the presence of oil-degrading bacteria + N. succinea. Field studies on oil-degrading bacteria + N. succinea may provide new insights on the rehabilitation and restoration of sediments contaminated by TPHs.


Our study attempted to investigate the stimulatory effect of a promising phytoremediation strategy consisting of Suaeda heteroptera (S. heteroptera), Nereis succinea (N. succinea), and oil-degrading bacteria for cleaning up TPH in spiked sediment. Planting S. heteroptera can greatly increase sediment TPH removal, and its removal was enhanced greater after inoculation with oil-degrading bacteria and/or N. succinea. Moreover, the promising phytoremediation strategy developed in the current work can serve as an efficient, novel approach to removal TPH in sediment/soil. In our opinions, these findings provide insights into the assessment of their ecological risks in the environments that are of interest to broad readership of International Journal of Phytoremediation.


Assuntos
Chenopodiaceae , Heterópteros , Petróleo , Poliquetos , Poluentes do Solo , Animais , Bactérias , Biodegradação Ambiental , Hidrocarbonetos , Plantas , Solo , Microbiologia do Solo , Poluentes do Solo/análise
12.
Food Chem ; 405(Pt B): 134968, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36442239

RESUMO

Suaeda salsa L. (Chenopodiaceae) is a wild vegetable distributed along the northern coast of China. Searching for potential agents with health benefits from S. salsa L. led to the identification of 14 flavonoids (1-14), eight phenolic acids (15-22), one coumarin (23), one benzoquinone (24), two sesquiterpenes (25, 26), and three lignins (27-29) from an aqueous ethanol (EtOH) extract of the above-ground whole plant using various column chromatographic methods. High-resolution electrospray ionization mass spectrometry (HRESIMS) analyses and nuclear magnetic resonance (1H and 13C NMR) spectroscopy were adopted to examine the structural properties of the compounds. To date, our study is the first to identify 20 compounds from this genus. Some compounds exhibited significant health benefits in zebrafish models. Compounds 2, 4, 23, and 28 significantly improved oxidative damage, while compounds 1-5, 7, 11, 13, 18, 19, and 23 significantly improved zebrafish lateral line neuromast inflammation. Additionally, compounds 1, 4, 8, 13, and 16 significantly promoted zebrafish angiogenesis, while compounds 3-5 and 18 significantly improved zebrafish arrhythmia. Furthermore, a flavonoid-targeted metabolomics study revealed that flavanone was the precursor of all of the flavonoids and had its highest accumulation in August, while the others showed their highest accumulation in September. Thus, the best time to harvest most of the bioactive polyphenols is during September. The present study revealed that the wild vegetable S. salsa L. might be developed as a potential cardioprotective functional food.


Assuntos
Chenopodiaceae , Polifenóis , Animais , Polifenóis/farmacologia , Verduras , Peixe-Zebra , Flavonoides/farmacologia
13.
Molecules ; 29(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38202803

RESUMO

Polyphenols from residual non-food grade Salicornia ramosissima have health-promoting effects in feed, food, or nutraceutical applications. Therefore, the isolation of polyphenols is of interest from a series of environmentally friendly isolation methods with recyclable solvents. The isolation of polyphenols from non-food grade S. ramosissima was investigated using sequential membrane filtration with and without acid pretreatment, liquid-liquid extraction, resin adsorption, and centrifugal partition chromatography (CPC); analyzed by the Folin-Ciocalteu assay for total polyphenols; and finally analyzed using UPLC-TQMS in negative ion-spray mode for detection of 14 polyphenols. Sequential membrane filtration and acid hydrolysis indicated the polyphenols forming complexes with other compounds, retaining the polyphenols in the retentate fraction of large molecular weight cut-off membrane sizes. Conventional liquid-liquid extraction using sequential ethyl acetate and n-butanol showed most polyphenols were extracted, apart from chlorogenic acids, indicating a low isolation efficiency of higher polarity polyphenols. Analysis of the extract after resin adsorption by Amberlite XAD-4 resin showed high efficiency for separation, with 100% of polyphenols adsorbed to the resin after 13 bed volumes and 96.7% eluted from the resin using ethanol. CPC fractionations were performed to fractionate the concentrated extract after resin adsorption. CPC fractionations of the 14 polyphenols were performed using an organic or aqueous phase as a mobile phase. Depending on the mobile phase, different compounds were isolated in a high concentration. Using these easily scalable methods, it was possible to comprehensively study the polyphenols of interest from S. ramosissima and their isolation mechanics. This study will potentially lead the way for the large-scale isolation of polyphenols from S. ramosissima and other complex halophytes. The compounds of the highest concentration after CPC fractionation were isoquercitrin and hyperoside (155.27 mg/g), chlorogenic acid (85.54 mg/g), cryptochlorogenic acid (101.50 mg/g), and protocatechuic acid (398.67 mg/g), and further isolation using CPC could potentially yield novel polyphenol nutraceuticals.


Assuntos
Chenopodiaceae , Polifenóis , Plantas Tolerantes a Sal , Ácido Clorogênico , Solventes
14.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432054

RESUMO

Nowadays, there has been considerable attention paid toward the recovery of waste plant matrices as possible sources of functional compounds with healthy properties. In this regard, we focus our attention on Salicornia, a halophyte plant that grows abundantly on the coasts of the Mediterranean area. Salicornia is used not only as a seasoned vegetable but also in traditional medicine for its beneficial effects in protecting against diseases such as obesity, diabetes, and cancer. In numerous research studies, Salicornia consumption has been highly suggested due to its high level of bioactive molecules, among which, polyphenols are prevalent. The antioxidant and antiradical activity of polyphenols makes Salicornia a functional food candidate with potential beneficial activities for human health. Therefore, this review provides specific and compiled information for optimizing and developing new extraction processes for the recovery of bioactive compounds from Salicornia; focusing particular attention on polyphenols and their health benefits.


Assuntos
Chenopodiaceae , Polifenóis , Humanos , Antioxidantes/farmacologia , Obesidade , Verduras
15.
Planta ; 256(6): 105, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315282

RESUMO

MAIN CONCLUSION: HaNAC3 is a transcriptional activator located in the nucleus that may be involved in the response to high temperature, high salt and drought stresses as well as phytohormone IAA and ABA treatments. Our study demonstrated that HaNAC3 increased the tolerance of transgenic tobacco to abiotic stress and was involved in the regulation of a range of downstream genes and metabolic pathways. This also indicates the potential application of HaNAC3 as a plant tolerance gene. NAC transcription factors play a key role in plant growth and development and plant responses to biotic and abiotic stresses. However, the biological functions of NAC transcription factors in the desert plant Haloxylon ammodendron are still poorly understood. In this study, the NAC transcription factor HaNAC3 was isolated and cloned from a typical desert plant H. ammodendron, and its possible biological functions were investigated. Bioinformatics analysis showed that HaNAC3 has the unique N-terminal NAC structural domain of NAC transcription factor. Quantitative real-time fluorescence analysis showed that HaNAC3 was able to participate in the response to simulated drought, high temperature, high salt, and phytohormone IAA and ABA treatments, and was very sensitive to simulated high temperature and phytohormone ABA treatments. Subcellular localization analysis showed that the GFP-HaNAC3 fusion protein was localized in the nucleus of tobacco epidermal cells. The transcriptional self-activation assay showed that HaNAC3 had transcriptional self-activation activity, and the truncation assay confirmed that the transcriptional activation activity was located at the C-terminus. HaNAC3 gene was expressed exogenously in wild-type Nicotiana benthamiana, and the physiological function of HaNAC3 was verified by simulating drought and other abiotic stresses. The results indicated that transgenic tobacco had better resistance to abiotic stresses than wild-type B. fuminata. Further transcriptome analysis showed that HaNAC3 was involved in the regulation of a range of downstream resistance genes, wax biosynthesis and other metabolic pathways. These results suggest that HaNAC3 may have a stress resistance role in H. ammodendron and has potential applications in plant molecular breeding.


Assuntos
Chenopodiaceae , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Expressão Ectópica do Gene , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Chenopodiaceae/genética , Secas , Cloreto de Sódio/metabolismo
16.
J Proteomics ; 269: 104703, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084920

RESUMO

Halogeton glomeratus (H. glomeratus) is categorized as a halophyte, it can potentially endure not only salt but also heavy metals. The aim of this work was to study the molecular mechanisms underlying the Cd2+ tolerance of halophyte H. glomeratus seedlings. For that we used a combination of physiological characteristics and data-independent acquisition-based proteomic approaches. The results revealed that the significant changes of physiological characteristics of H. glomeratus occurred under approximately 0.4 mM Cd2+ condition and that Cd2+ accumulated in Cd2+-treated seedling roots, stems and leaves. At the early stage of Cd2+ stress, numerous differentially abundant proteins related to "phosphoenolpyruvate carboxylase", "transmembrane transporters", and "vacuolar protein sorting-associated protein" took important roles in the response of H. glomeratus to Cd2+ stress. At the later stage of Cd2+ stress, some differentially abundant proteins involved in "alcohol-forming fatty acyl-CoA reductase", "glutathione transferase", and "abscisic acid receptor" were considered to regulate the adaptation of H. glomeratus exposed to Cd2+ stress. Finally, we found various detoxification-related differentially abundant proteins related to Cd2+ stress. These biological processes and regulators synergistically regulated the Cd2+ tolerance of H. glomeratus. SIGNIFICANCE: The halophyte, H.glomeratus, has a strong tolerance to salinity, also survives in the heavy metal stress. At present, there are few reports on the comprehensive characterization and identification of Cd2+ response and adaption related regulators in H.glomeratus. This research focuses on the molecular mechanisms of H. glomeratus tolerance to Cd2+ stress at proteome levels to uncover the novel insight of the Cd2+-related biological processes and potential candidates involved in the response and adaption mechanism. The results will help elucidate the genetic basis of this species' tolerance to Cd2+ stress and develop application prospect of wild genetic resources to heavy metal phytoremediation.


Assuntos
Chenopodiaceae , Plantas Tolerantes a Sal , Ácido Abscísico , Cádmio/toxicidade , Chenopodiaceae/genética , Glutationa/metabolismo , Fosfoenolpiruvato/metabolismo , Folhas de Planta/metabolismo , Proteoma/metabolismo , Proteômica , Plântula/metabolismo , Transferases/metabolismo
17.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684352

RESUMO

The aim of this study was to determine the compositions of carbohydrates, phenolic compounds, fatty acids (FAs), and amino acids (AAs) of four Rea Sea halophytes: Anabasis ehrenbergii, Suaeda aegyptiaca, Suaeda monoica, and Zygophyllum album. The results showed that S. aegyptiaca and S. monoica were rich in gallic acid with 41.72 and 47.48 mg/g, respectively, while A. ehrenbergii was rich in naringenin with 11.88 mg/g. The polysaccharides of the four species were mainly composed of galactose (54.74%) in A. ehrenbergii, mannose (44.15%) in S. aegyptiaca, glucose and ribose (33 and 26%, respectively) in S. monoica, and arabinose and glucose (36.67 and 31.52%, respectively) in Z. album. Glutamic acid and aspartic acid were the major AAs in all halophyte species with 50-63% and 10-22% of the total AAs, respectively. The proportion of unsaturated fatty acids (UFA) of the four species was 42.18-55.33%, comprised mainly of linolenic acid (15.54-28.63%) and oleic acid (5.68-22.05%), while palmitic acid (23.94-49.49%) was the most abundant saturated fatty acid (SFA). Phytol and 9,19-cyclolanost-24-en-3ß-ol represented the major unsaponifiable matter (USM) constituents of S. monoica and A. ehrenbergii with proportions 42.44 and 44.11%, respectively. The phenolic fraction of S. aegyptiaca and S. monoica demonstrated noteworthy antioxidant activity with IC50 values of 9.0 and 8.0 µg/mL, respectively, while the FAs fraction of Z. album exhibited potent cytotoxic activity against Huh-7, A-549, and Caco-2 cancer cell lines with IC50 values of 7.4, 10.8, and 11.8 µg/mL, respectively. Our results indicate that these plants may be considered a source of naturally occurring compounds with antioxidant and anticancer effects that could be suitable for future applications.


Assuntos
Antioxidantes , Chenopodiaceae , Antioxidantes/análise , Antioxidantes/farmacologia , Células CACO-2 , Ácidos Graxos , Glucose , Humanos , Oceano Índico , Fenóis/análise , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Tolerantes a Sal
18.
J Med Food ; 25(5): 503-512, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35561274

RESUMO

Salicornia herbacea L. (Chenopodiaceae), an edible salt marsh plant with anti-inflammatory effects, was examined in macrophages and trophoblasts whether it modulates NLRP3 inflammasome activity. Pretreatment and delayed treatment of S. herbacea extract (SHE) in bone marrow-derived macrophages (BMDMs) reduced the activity of NLRP3 inflammasome induced by lipopolysaccharide (LPS) and adenosine triphosphate stimulation and downregulated interleukin (IL)-1ß production. SHE also inhibited pyroptotic cell death, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), oligomerization, and speck by NLRP3 inflammasome activity in BMDM. Similarly, SHE decreased the mRNA expression of NLRP3, ASC, IL-1ß, and IL-6 in the LPS-stimulated human trophoblast cell line, Swan 71 cells. In addition, SHE inhibited the production of IL-6 and IL-1ß and decreased the expression of cyclooxygenase-2 and prostaglandin E2 in stimulated Swan 71 cells. Finally, 3,5-dicaffeoylquinic acid (3,5-DCQA), one of the components of S. herbacea, inhibited IL-1ß produced by NLRP3 inflammasome activity. In conclusion, SHE downregulated the activity of the NLRP3 inflammasome in macrophages and trophoblasts.


Assuntos
Chenopodiaceae , Inflamassomos , Caspase 1/metabolismo , Caspase 1/farmacologia , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trofoblastos/metabolismo
19.
Nat Prod Res ; 36(23): 6111-6115, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35356845

RESUMO

The constituents of Ceratocarpus arenarius L., as a traditional anticancer medicine of Kazakh, were firstly profiled with UHPLC-QTOF-MS/MS. The potential compounds against EGFR-TK were virtually screened. As a result, forty-four compounds were analyzed, including 18 flavonoids, 8 steroids, 4 phenolic acids, 9 fatty acids, 1 coumarin and 4 other compounds. Among them, 9 flavonoids, N-trans-Feruloyltyramine (5), stigmasterol (11) and carthamone (38) were recognized as potential key anti-tumor constituents of C. arenarius through docking to active site of EGFR-TK. It indicated that the compounds formed moderate to strong interactions with EGFR-TK contributing to the antitumor activity through a synergetic actions. Besides, the anticancer effects of C. arenarius was verified with in-vitro anti-tumor activity investigation against A549. Our results firstly reveals the active constituents basis of C. arenarius against cancer and provides novel insights into the further application of effective constituents and mechanism of C. arenarius.


Assuntos
Chenopodiaceae , Neoplasias , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/química , Inibidores de Proteínas Quinases , Receptores ErbB
20.
Plant Biol (Stuttg) ; 24(1): 41-51, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748692

RESUMO

Many saline-alkali soils around the world are polluted by the heavy metal Cd, restricting the development of agriculture and ecology in those regions. The halophyte Salicornia europaea L. is capable of growing healthily in Cd-contaminated saline-alkali soil, suggesting that the species is tolerant to stress caused by both salt and heavy metals. In this study, the mechanism of Cd tolerance in this species was explored under 200 mM NaCl. Flame spectrophotometric assays for ions content and spectrophotometric for organic soluble substances, antioxidant enzyme activity, phytochelatins (PCs) content and phytochelatin synthase (PCS) activity, the photosynthetic parameters by portable photosynthesis measurement system, genes expression by qRT-PCR analysis were carried out. Cd treatment significantly decreased the dry weight, photosynthetic rate, K+ , Zn2+ , and Fe2+/3+ content, while significantly increasing Na+ and Cd+ , soluble organic matter, and reactive oxygen species (ROS) levels. Compared with Cd treatment at 0 mM NaCl, Cd treatment at 200 mM NaCl significantly increased dry weight and photosynthetic rate while significantly decreasing ROS content through increased antioxidant enzyme activity. When exposed to Cd stress, treatment with 200 mM NaCl significantly increased PCs content and PCS activity and up-regulated the expression of the phytochelatin synthase genes CDA1 and PCS1 were, thereby increasing resistance to Cd. NaCl treatment increases the tolerance of S. europaea to the heavy metal Cd by growing rapidly, reducing the quantity of Cd2+ from entering the plant shoots, increasing the levels of PCs that chelate Cd2+ , thereby reducing its toxicity.


Assuntos
Cádmio , Chenopodiaceae , Cádmio/toxicidade , Fitoquelatinas , Raízes de Plantas , Brotos de Planta , Plantas Tolerantes a Sal , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA