Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(8): 309, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39206920

RESUMO

BACKGROUND: Articular cartilage has limited self-repair capacity, and current clinical treatment options for cartilage defects are inadequate. However, deer antler cartilage possesses unique regenerative properties, with the ability to rapidly repair itself. This rapid self-repair process is closely linked to the paracrine factors released by deer antler stem cells. These findings present potential for the development of cell-free therapies for cartilage defects in clinical settings. The aim of this study was to investigate a novel method for repairing cartilage. METHODS: A rat model with articular cartilage defects was established through surgery. Hydrogels loaded with exosomes (Exos) derived from antler stem cells (ASC-Exos) were implanted into the rat cartilage defects. The extent of cartilage damage repair was assessed using histological methods. The effects of ASC-Exos on chondrocytes and rat bone marrow mesenchymal stem cells (BMSCs) were evaluated using cell viability assays, proliferation assays, and scratch assays. Additionally, the maintenance of the chondrocyte phenotype by ASC-Exos was assessed using real-time fluorescence quantitative PCR (qPCR) and western blot analysis. The protein components contained of the Exos were identified using data-independent acquisition (DIA) mass spectrometry. RESULTS: ASC-Exos significantly promoted the repair of cartilage tissue damage. The level of cartilage repair in the experimental group (ASC-Exos) was higher than that in the positive control (human adipose-derived stem cells, hADSC-Exos) and negative control (dulbecco's modified eagle medium) groups (p < 0.05). In vitro experiments demonstrated that ASC-Exos significantly enhanced the proliferation abilities of chondrocytes and the proliferation abilities and the migration abilities of BMSCs (p < 0.05). ASC-Exos up-regulated the expression levels of Aggrecan, Collagen II (COLII), and Sox9 mRNA and proteins in chondrocytes. Analysis of ASC-Exos protein components revealed the presence of active components such as Serotransferrin (TF), S100A4, and Insulin-like growth factor-binding protein 1 (IGF1). CONCLUSIONS: ASC-Exos have a significant effect on cartilage damage repair, which may be attributed to their promotion of chondrocyte and BMSCs proliferation and migration, as well as the maintenance of chondrocyte phenotype. This effect may be mediated by the presence of TF, S100A4, and IGF1.


Assuntos
Chifres de Veado , Cartilagem Articular , Condrócitos , Cervos , Exossomos , Células-Tronco Mesenquimais , Células-Tronco , Animais , Chifres de Veado/metabolismo , Chifres de Veado/química , Exossomos/metabolismo , Exossomos/transplante , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/lesões , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ratos , Proliferação de Células , Masculino , Ratos Sprague-Dawley , Sobrevivência Celular
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542293

RESUMO

Lactobacillus curvatus HY7602 fermented antler (FA) ameliorates sarcopenia and improves exercise performance by increasing muscle mass, muscle fiber regeneration, and mitochondrial biogenesis; however, its anti-fatigue and antioxidant effects have not been studied. Therefore, this study aimed to investigate the anti-fatigue and antioxidant effects and mechanisms of FA. C2C12 and HepG2 cells were stimulated with 1 mM of hydrogen peroxide (H2O2) to induce oxidative stress, followed by treatment with FA. Additionally, 44-week-old C57BL/6J mice were orally administered FA for 4 weeks. FA treatment (5-100 µg/mL) significantly attenuated H2O2-induced cytotoxicity and reactive oxygen species (ROS) production in both cell lines in a dose-dependent manner. In vivo experiments showed that FA treatment significantly increased the mobility time of mice in the forced swimming test and significantly downregulated the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine kinase (CK), and lactate. Notably, FA treatment significantly upregulated the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione ratio (GSH/GSSG) and increased the mRNA expression of antioxidant genes (SOD1, SOD2, CAT, GPx1, GPx2, and GSR) in the liver. Conclusively, FA is a potentially useful functional food ingredient for improving fatigue through its antioxidant effects.


Assuntos
Chifres de Veado , Cervos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Chifres de Veado/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Fadiga/tratamento farmacológico , Fadiga/metabolismo
3.
J Stroke Cerebrovasc Dis ; 33(5): 107666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423152

RESUMO

OBJECTIVE: Velvet antler polypeptide (VAP) has been shown to play important roles in the immune and nervous systems. The purpose of this study was to investigate the protective effects of VAP on cerebral ischemic injury with the involvement of NF-κB signaling pathway in vitro. MATERIALS AND METHODS: PC-12 cells stimulated by oxygen-glucose deprivation/reperfusion (OGD/R) was used to mimic cerebral ischemic injury in vitro. The levels of ROS, SOD, and intracellular concentrations of Ca2+ were measured by the relevant kits. Meanwhile, the expressions of inflammatory cytokines (IL-6, IL-1ß, and TNF-α) were determined by ELISA kit assay. In addition, MTT, EdU, and flow cytometry assays were used to measure the cell proliferation and apoptosis. Besides which, the related proteins of NF-κB signaling pathway were measured by western blotting assay. RESULTS: VAP alleviated cerebral ischemic injury by reducing OGD/R-induced oxidative stress, inflammation, and apoptosis in PC-12 cells in a time dependent manner. Mechanistically, VAP inhibited the levels of p-p65 and p-IkB-α in a time dependent manner, which was induced by OGD/R operation. Moreover, NF-κB agonist diprovocim overturned the suppression effects of VAP on OGD/R-induced oxidative stress, inflammation, and apoptosis in PC-12 cells. CONCLUSIONS: The results demonstrate that VAP may alleviate cerebral ischemic injury by suppressing the activation of NF-κB signaling pathway.


Assuntos
Chifres de Veado , Traumatismo por Reperfusão , Humanos , Animais , NF-kappa B/metabolismo , Chifres de Veado/metabolismo , Transdução de Sinais , Oxigênio/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Apoptose , Glucose
4.
Cell Death Differ ; 30(12): 2452-2461, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37864097

RESUMO

Deer antlers are a bony organ solely able to acquired distinct unique attributes during evolution and all these attributes are against thus far known natural rules. One of them is as the fastest animal growing tissue (2 cm/day), they are remarkably cancer-free, despite high cell division rate. Although tumor-like nodules on the long-lived castrate antlers in some deer species do occur, but they are truly benign in nature. In this review, we tried to find the answer to this seemingly contradictory phenomenon based on the currently available information and give insights into possible clinic application. The antler growth center is located in its tip; the most intensive dividing cells are resident in the inner layer of reserve mesenchyme (RM), and these cells are more adopted to osteosarcoma rather than to normal bone tissues in gene expression profiles but acquire their energy mainly through aerobic oxidative phosphorylation pathway. To counteract propensity of neoplastic transformation, antlers evolved highly efficient apoptosis exactly in the RM, unparalleled by any known tissues; and annual wholesale cast to jettison the corps. Besides, some strong cancer suppressive genes including p53 cofactor genes and p53 regulator genes are highly positively selected by deer, which would have certainly contributed to curb tumorigenesis. Thus far, antler extracts and RM cells/exosomes have been tried on different cancer models either in vitro or in vivo, and all achieved positive results. These positive experimental results together with the anecdotal folklore that regular consumption of velvet antler is living with cancer-free would encourage us to test antlers in clinic settings.


Assuntos
Chifres de Veado , Cervos , Neoplasias , Animais , Cervos/genética , Chifres de Veado/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Osso e Ossos , Neoplasias/metabolismo
5.
Int J Biol Macromol ; 247: 125815, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37451382

RESUMO

AIM: We isolated a novel polypeptide PNP1 from velvet antler and investigated the role of PNP1 in ischemia reperfusion and its associated mechanism. METHODS: We built the ischemia reperfusion mouse model by the middle cerebral artery occlusion (MCAO) approach. Thereafter, PNP-1 was injected via the tail vein, and neurological function was scored. Meanwhile, the tissue injury level was detected through hematoxylin & eosin (HE) and immunohistochemical (IHC) staining, inflammatory factor levels were determined with enzyme-linked immunosorbent assay (ELISA), while protein levels through Western blotting. In addition, vascular endothelial cells were used to construct the oxygen-glucose deprivation (OGD) injury model in vitro, so as to detect the intervention effect of PNP1 on endothelial injury. Additionally, microglial cells were utilized to construct the inflammatory injury model to examine the impact of PNP1 on the polarization of microglial cells. RESULTS: PNP1 suppressed hypoxic cerebral injury in MCAO mice, decreased the tissue inflammatory factors, promoted tissue angiogenesis, and reduced the ischemic penumbra area. Experimental results in vitro demonstrated that, PNP1 suppressed vascular endothelial cell injury, and inhibited microglial M1 polarization as well as inflammatory response. CONCLUSION: Velvet antler polypeptide PNP1 isolated in this study has the anti-ischemic cerebral injury effect, and its mechanism is associated with suppressing vascular endothelial cell injury and microglial cell inflammatory response.


Assuntos
Chifres de Veado , Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Animais , Isquemia Encefálica/complicações , Chifres de Veado/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média , Traumatismo por Reperfusão/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446017

RESUMO

MicroRNAs (miRNAs) play a crucial role in maintaining the balance between the rapid growth and suppression of tumorigenesis during antler regeneration. This study investigated the role of a novel miRNA, PC-3p-2869 (miR-PC-2869), in antler growth and its therapeutic potential in human osteosarcoma and chondrosarcoma. Stem-loop RT-qPCR showed that miR-PC-2869 was expressed extensively in diverse layers of antler tissues. Overexpression of miR-PC-2869 suppressed the proliferation and migration of antler cartilage cells. Similarly, heterologous expression of miR-PC-2869 reduced the proliferation, colony formation, and migration of osteosarcoma cell line MG63 and U2OS and chondrosarcoma cell line SW1353. Moreover, 18 functional target genes of miR-PC-2869 in humans were identified based on the screening of the reporter library. Among them, 15 target genes, including CDK8, EEF1A1, and NTN1, possess conserved miR-PC-2869-binding sites between humans and red deer (Cervus elaphus). In line with this, miR-PC-2869 overexpression decreased the expression levels of CDK8, EEF1A1, and NTN1 in MG63, SW1353, and antler cartilage cells. As expected, the knockdown of CDK8, EEF1A1, or NTN1 inhibited the proliferation and migration of MG63, SW1353, and antler cartilage cells, demonstrating similar suppressive effects as miR-PC-2869 overexpression. Furthermore, we observed that CDK8, EEF1A1, and NTN1 mediated the regulation of c-myc and cyclin D1 by miR-PC-2869 in MG63, SW1353, and antler cartilage cells. Overall, our work uncovered the cellular functions and underlying molecular mechanism of antler-derived miR-PC-2869, highlighting its potential as a therapeutic candidate for bone cancer.


Assuntos
Chifres de Veado , Neoplasias Ósseas , Condrossarcoma , Cervos , MicroRNAs , Osteossarcoma , Humanos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Chifres de Veado/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Cervos/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Condrossarcoma/genética , Regulação Neoplásica da Expressão Gênica , Fator 1 de Elongação de Peptídeos/genética , Quinase 8 Dependente de Ciclina/genética
7.
Bioorg Chem ; 131: 106304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463590

RESUMO

Velvet antler is a traditional Chinese medicine with various pharmacological values, which is an important raw material for traditional Chinese medicinal wine. Nevertheless, the chemical compositions and bioactivities of velvet antler residue used for making medicinal wine are rarely reported, leading to a waste of resources. In this study, a velvet antler protein (VA-pro) was extracted from velvet antler residue by simulating the gastrointestinal digestion, and its composition, structural characteristics and in vivo anti-tumor activities were determined and investigated. VA-pro possessed high purity with a relatively low molecular weight as 22.589 kDa under HPLC, one- and two-dimensional electrophoresis, and it contained high contents of Pro, Gly, Glu and Ala. Besides, the secondary structure of VA-pro was dominated by ß-turn and ß-sheet, and VA-pro possessed similar protein sequence, isoelectric point and amino acid compositions to hypothetical protein G4228_020061. The in vivo results substantiated that VA-pro could improve the body weights and immune organ indices, increase the expressions of sera cytokines and regulate the distributions of T and B lymphocytes subsets in peripheral blood of S180 tumor-bearing mice. Furthermore, VA-pro could effectively inhibit solid S180 tumors growth by inducing S phase cell cycle arrest mediated through mitochondria. To summarize, our study provided theoretical support that VA-pro had the potential to be used as an immunopotentiator in immunocompromised or cancer-bearing hosts.


Assuntos
Chifres de Veado , Neoplasias , Camundongos , Animais , Chifres de Veado/química , Chifres de Veado/metabolismo , Peso Molecular , Proteínas/metabolismo , Aminoácidos/metabolismo , Neoplasias/metabolismo
8.
Am J Chin Med ; 50(6): 1617-1643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35850642

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint deformity and disability. Deer velvet antler (DA), a traditional Chinese medicine, has been used to treat various types of arthritis for several thousands of years, but the underlying mechanisms are unknown. Herein, we investigated the anti-arthritic and anti-inflammatory effects of DA in vitro and in vivo. The ethyl acetate layer of DA ethanol extract (DA-EE-EA) was used to treat tumor necrosis factor (TNF)-[Formula: see text]-stimulated fibroblast-like synoviocyte MH7A cells, collagen-induced arthritis DBA/1 mice, and SKG mice with zymosan-induced arthritis. DA-EE-EA reduced nitric oxide production, prostaglandin E2 levels, and levels of pro-inflammatory cytokines including interleukin (IL)-1[Formula: see text], IL-6, and IL-8 in MH7A cells. DA-EE-EA also downregulated the phosphorylation of mitogen-activated protein kinase p38 and c-Jun N-terminal kinase and the translocation of nuclear factor kappa B p65. Intraperitoneal injection of DA-EE-EA for 3 weeks substantially reduced clinical arthritis scores in vivo models. Pathohistological images of the hind paws showed that DA-EE-EA reduced immune cell infiltration, synovial hyperplasia, and cartilage damage. The levels of pro-inflammatory cytokines, such as tumor necrosis factor alpha, IL-1[Formula: see text], IL-6, IL-8, IL-17A, and interferon-gamma, decreased in the hind paw homogenates of DA-EE-EA-treated mice. We also identified several potential components, such as hexadecanamide, oleamide, erucamide, and lysophosphatidylcholines, that might contribute to the anti-inflammatory effects of DA-EE-EA. In conclusion, DA-EE-EA has the potential to treat RA by regulating inflammatory responses. However, the individual components of DA-EE-EA and the underlying anti-inflammatory mechanisms need further investigation in future studies.


Assuntos
Chifres de Veado , Artrite Experimental , Artrite Reumatoide , Cervos , Sinoviócitos , Animais , Anti-Inflamatórios/farmacologia , Chifres de Veado/metabolismo , Chifres de Veado/patologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Citocinas/metabolismo , Cervos/metabolismo , Fibroblastos/metabolismo , Humanos , Interleucina-6 , Interleucina-8 , Camundongos , Camundongos Endogâmicos DBA , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Necrose Tumoral alfa
9.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563622

RESUMO

Although peroxiredoxin 2 (PRDX2) plays a vital role in relieving oxidative stress, its physiological function in cartilage development remains almost unknown. In this study, we found that the expression of PRDX2 significantly increased in the chondrocytes compared with pre-chondrocytes. PRDX2 knockdown significantly decreased the expression of extracellular matrix (ECM) protein (Col2a and Aggrecan), which led to blocked cartilage formation. Moreover, PRDX2 knockdown also inhibited the expression of connective tissue growth factor (CTGF). CTGF is an important growth factor that regulates synthesis of ECM proteins. We explored the possible regulatory mechanism by which PRDX2 regulated the expression of CTGF. Our results demonstrated that PRDX2 knockdown downregulated the expression of CTGF by inhibiting Wnt5a/Yes-associated protein 1 (YAP1) pathway. In addition, PRDX2 knockdown promoted the expression of interleukin 6 (IL-6), indicating PRDX2 expression had an anti-inflammatory function during antler growth. Mechanistically, PRDX2 knockdown promoted cartilage matrix degradation by activating the IL-6-mediated Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) signaling pathway. These results reveal that PRDX2 is a potential regulator that promotes cartilage extracellular matrix synthesis.


Assuntos
Chifres de Veado , Cervos , Animais , Chifres de Veado/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Peroxirredoxinas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
10.
J Ethnopharmacol ; 269: 113705, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33346025

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hard antler extract (HAE) is a traditional Chinese medicine and has potent antitumor, antioxidative, anti-inflammatory, and immunomodulatory activities. Previous studies have demonstrated that HAE can inhibit human prostate cancer metastasis and murine breast cancer proliferation. However, the effect of HAE on human breast cancer cells has not been clarified. AIM OF THE STUDY: To investigate the effects and underlying mechanism of HAE on self-renewal of stem-like cells and spontaneous and transforming growth factor (TGF)-ß1-enhanced wound healing, invasion and epithelial-mesenchymal transition (EMT) in breast cancer cells. METHODS: HAE was prepared from sika deer by sequential enzymatic digestions and the active compounds were determined by HPLC. The effects of HAE on the viability, mammosphere formation, wound healing and invasion of MDA-MB-231 and SK-BR3 cells were determined. The impact of HAE treatment on spontaneous and TGF-ß1-promoted EMT and the nuclear factor (NF)-κB signaling in breast cancer cells was examined by quantitative RT-PCR and western blotting. RESULTS: Treatment with HAE at varying concentrations did not change the viability of breast cancer cells. However, HAE at 0.25 or 0.5 mg/mL significantly reduced the number and size of formed mammospheres, and inhibited spontaneous and TGF-ß1-enhanced wound healing, invasion and EMT in MDA-MB-231 and SK-BR3 cells in a dose-dependent manner. TGF-ß1 treatment significantly decreased IκBα expression and increased NF-kBp65 phosphorylation in breast cancer cells, indicating that TGF-ß1 enhanced NF-κB signaling. In contrast, HAE treatment attenuated the spontaneous and TGF-ß1-enhanced NF-κB signaling in breast cancer cells. CONCLUSION: Our data indicated that HAE inhibited the self-renewal of stem-like cells and spontaneous and TGF-ß1-enhanced wound healing, invasion and EMT in breast cancer cells by attenuating the NF-κB signaling in vitro.


Assuntos
Chifres de Veado/química , Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Extratos de Tecidos/química , Extratos de Tecidos/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Chifres de Veado/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cervos , Etnopsicologia , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Extratos de Tecidos/isolamento & purificação , Fator de Crescimento Transformador beta1/toxicidade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Cicatrização/efeitos dos fármacos
11.
J Cell Physiol ; 235(9): 6023-6031, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31960430

RESUMO

The desert hedgehog (Dhh) is crucial for spermatogenesis and Leydig cell differentiation, but little is known regarding its physiological function in cartilage. In this study, Dhh mRNA was abundant in antler chondrocytes, where it advanced cell proliferation concomitant with accelerated transition from the G1 to the S phase and induced elevation of the hypertrophic chondrocyte markers, Col X and Runx2. Silencing of Ptch1 resulted in appreciable Smo accumulation and enhanced rDhh stimulation of Smo, whose impediment by cyclopamine obscured the proliferative function of Dhh and alleviated its guidance of chondrocyte differentiation. Further analysis evidenced the noteworthy positive action of Smo in the bridging between Dhh and Gli transcription factors. Obstruction of Gli1 by GANT58 caused the failed stimulation of Col X and Runx2 by rDhh. Analogously, siRNA against Gli1-3 hindered chondrocyte differentiation in the context of rDhh. Simultaneously, Gli transcription factors mediated the regulation of Dhh on Foxa1, Foxa2, and Foxa3, whose knockdown impaired chondrocyte differentiation. Attenuation of Foxa antagonized the augmentation of Col X and Runx2 generated by rDhh. Collectively, Dhh signaling through its target Foxa appears to induce antler chondrocyte proliferation and differentiation.


Assuntos
Chifres de Veado/crescimento & desenvolvimento , Condrogênese/genética , Fatores de Transcrição Forkhead/genética , Espermatogênese/genética , Animais , Chifres de Veado/metabolismo , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Cervos/genética , Cervos/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/patologia , Masculino , Transdução de Sinais
12.
Chem Biodivers ; 17(2): e1900512, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31900973

RESUMO

Velvet antler (VA) is crucial and precious nourishment in China and some countries in Southeast Asia and has excellent anti-fatigue effect. The incidence of fatigue syndrome has increased gradually. VA can be a potential source of anti-fatigue products. Therefore, we investigated the anti-fatigue activity of different sections (upper, middle, and basal section) of VA from different species (red deer and sika deer) via loading swimming test in mice. Furthermore, nucleosides are one kind of active components in VA which could considerably reduce fatigue in mice. In order to explore whether the nucleosides are correlated with anti-fatigue effect, the contents of eight nucleosides (uracil, cytidine, hypoxanthine, xanthine, thymine, inosine, guanosine, and adenosine) were determined simultaneously using high-performance liquid chromatography. The results indicated that the swimming time in mice was increased from basal to upper section, which was consistent with the change trend of the total contents of eight nucleosides of VA. Therefore, we speculated that the contents of nucleosides in VA may affect its anti-fatigue effect. Furthermore, the contents of nucleosides were also used as a reference for evaluating the quality of different parts of VA obtained from red and sika deer.


Assuntos
Chifres de Veado/metabolismo , Fadiga/tratamento farmacológico , Nucleosídeos/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cervos , Masculino , Camundongos , Nucleosídeos/análise , Nucleosídeos/farmacologia , Condicionamento Físico Animal
13.
J Chromatogr A ; 1609: 460496, 2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31519406

RESUMO

Velvet antlers (VA) have been used as medicines and nutraceuticals for over 2000 years. Meanwhile, deer antlers are the only mammalian organs that can fully regenerate after annual shedding. The antler formation and regeneration rely on the stem cells resident in antlerogenic periosteum (AP), transplantation of which can induce ectopic antler formation. Here, a comprehensive quantitative proteomic analysis of antlerogenic periosteal cells (AP cells), compared with the adjacent facial periosteal cells (FP cells), was carried out, from both extracellular and intracellular perspectives. In this study, the stable isotope labeling by amino acids in cell culture (SILAC) was applied to ensure the precision of quantification. Then, the protein equalization strategy and reverse-phase liquid chromatography (RPLC) separation in high pH were utilized to improve the depth of proteome profiling. Proteomics analysis of the conditioned media (CM) from AP and FP cells showed that significantly over-expressed extracellular proteins in AP cells were involved in cell proliferation, angiogenesis and neurogenesis. Combining the extracellular and intracellular proteomes, we found several potential secreted proteins might regulate antler formation and regeneration, such as SFRP4 and LUM. These results provide new insight into the underlying mechanism of antler formation and regeneration.


Assuntos
Chifres de Veado/metabolismo , Cervos/metabolismo , Proteômica/métodos , Animais , Técnicas de Cultura de Células , Proliferação de Células , Ontologia Genética , Periósteo/citologia , Proteoma/metabolismo , Regeneração , Reprodutibilidade dos Testes
14.
Int J Biol Macromol ; 141: 961-987, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479670

RESUMO

Acetaminophen (APAP)-induced acute kidney injury (AKI) has turned into a typical reason for clinic obtained renal disappointment. In any case, the advancement of prophylaxis procedures and endorsed treatments for APAP-AKI is restricted. Sika deer antler protein (SDAPR) has a protective effect on drug-induced AKI. The reason for this investigation was to clarify the material premise and atomic instrument of the defensive impact of SDAPR on APAP-induced AKI. We conducted column chromatography on SDAPR extracted with Sephadex G-100 and obtained proteins of 2 different components named sika deer antler protein 1 (SDAP1) and sika deer antler protein 2 (SDAP2), respectively. MTT assay and xCELLigence Real-Time Cell Analysis showed that SDAPR, SDAP1 and SDAP2 had protective effects on APAP-induced cytotoxicity in Human kidney tubular epithelial (HK-2) cells. Therefore, we conducted proteomic analysis on SDAPR, SDAP1 and SDAP2. What's more, we inspected them viability of avoiding renal damage in APAP mice and HK-2 cells model. Contrasted and saline, SDAPR, SDAP1 and SDAP2 pretreatment portion conditionally fundamentally constricted heights in kidney damage Markers and the histological changes of renal cylindrical wounds, diminished the quantity of apoptosis-positive rounded cells, initiated NF-E2 p45-related factor 2 (Nrf2), inhibition Forkhead box O 1 transcription factors (FoxO1) and brought down the degrees of renal oxidative stress and apoptosis prompted by APAP. The above security of SDAPR, SDAP1 and SDAP2 was nullified by the Phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) in HK-2 cells. In this manner, our outcomes exhibit that, SDAPR, SDAP1 and SDAP2 against APAP-induced oxidative stress and apoptosis by initiating Nrf2 and restraint FoxO1 through PI3K/Akt signaling.


Assuntos
Acetaminofen/farmacologia , Chifres de Veado/química , Proteína Forkhead Box O1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Chifres de Veado/metabolismo , Linhagem Celular , Cervos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Espécies Reativas de Oxigênio
15.
Science ; 364(6446)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221830

RESUMO

Ruminants are the only extant mammalian group possessing bony (osseous) headgear. We obtained 221 transcriptomes from bovids and cervids and sequenced three genomes representing the only two pecoran lineages that convergently lack headgear. Comparative analyses reveal that bovid horns and cervid antlers share similar gene expression profiles and a common cellular basis developed from neural crest stem cells. The rapid regenerative properties of antler tissue involve exploitation of oncogenetic pathways, and at the same time some tumor suppressor genes are under strong selection in deer. These results provide insights into the evolutionary origin of ruminant headgear as well as mammalian organ regeneration and oncogenesis.


Assuntos
Chifres de Veado/fisiologia , Regeneração/genética , Ruminantes/genética , Ruminantes/fisiologia , Animais , Chifres de Veado/metabolismo , Evolução Biológica , Carcinogênese/genética , Genes Supressores de Tumor , Neoplasias/genética , Neoplasias/veterinária , Organogênese/genética , Seleção Genética , Transcriptoma
16.
Genes Genomics ; 41(9): 1007-1013, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31134592

RESUMO

BACKGROUD: Reindeer is the only deer species that both male and female produce antlers, which provides a particularly interesting case in studying the differences between antlers of the two sexes. Alpha 3(VI) Collagen Gene (COL6A3), forms a microfibrillar network associated with the structural integrity and biomechanical properties, has been found to be one of the differentially expressed genes in antler mesenchyme of female and male reindeer. OBJECTIVE AND METHODS: The promoter sequence of reindeer COL6A3 gene was obtained using the cloning technology and analyzed by the bioinformatics methods. Bisulfite sequencing PCR (BSP) was used to detect the methylation status of the COL6A3 promoter in reindeer antler mesenchyme. Real-time quantitative PCR was used to detect COL6A3 expression in the antler mesenchyme of female and male reindeer. RESULTS: Sequence analysis revealed that the reindeer COL6A3 partial promoter sequence was 983 bp including the possible promoter region at + 105 bp to + 155 bp. Homology and phylogenetic analysis indicated that the COL6A3 promoter of reindeer had the closest genetic distance with Bos taurus, Capra hircus and Ovis aries. BSP results indicated that the methylation level of COL6A3 promoter in the female reindeer antler mesenchyme was significantly higher than in the male. Correlating with increased methylation status, we also found that COL6A3 mRNA expression in female reindeer antler mesenchyme was significantly lower than in the male. CONCLUSION: The higher methylation level of the COL6A3 gene in female reindeer antler mesenchyme coincides with decreased COL6A3 mRNA expression, thereby affecting the transposon silencing mechanism and possibly contributing to apparent differences of antlers in female and male reindeer.


Assuntos
Chifres de Veado/metabolismo , Colágeno/genética , Metilação de DNA , Rena/genética , Animais , Chifres de Veado/citologia , Colágeno/metabolismo , Feminino , Masculino , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Nature ; 563(7732): S86-S88, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464288
18.
Stem Cell Res Ther ; 9(1): 292, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30376879

RESUMO

BACKGROUND: Deer antlers are bony structures that re-grow at very high rates, making them an attractive model for studying rapid bone regeneration. METHODS: To identify the genes that are involved in this fast pace of bone growth, an in vitro RNA-seq model that paralleled the sharp differences in bone growth between deer antlers and humans was established. Subsequently, RNA-seq (> 60 million reads per library) was used to compare transcriptomic profiles. Uniquely expressed deer antler proliferation as well as mineralization genes were identified via a combination of differential gene expression and subtraction analysis. Thereafter, the physiological relevance as well as contributions of these identified genes were determined by immunofluorescence, gene overexpression, and gene knockdown studies. RESULTS: Cell characterization studies showed that in vitro-cultured deer antler-derived reserve mesenchyme (RM) cells exhibited high osteogenic capabilities and cell surface markers similar to in vivo counterparts. Under identical culture conditions, deer antler RM cells proliferated faster (8.6-11.7-fold increase in cell numbers) and exhibited increased osteogenic differentiation (17.4-fold increase in calcium mineralization) compared to human mesenchymal stem cells (hMSCs), paralleling in vivo conditions. Comparative RNA-seq identified 40 and 91 previously unknown and uniquely expressed fallow deer (FD) proliferation and mineralization genes, respectively, including uhrf1 and s100a10. Immunofluorescence studies showed that uhrf1 and s100a10 were expressed in regenerating deer antlers while gene overexpression and gene knockdown studies demonstrated the proliferation contributions of uhrf1 and mineralization capabilities of s100a10. CONCLUSION: Using a simple, in vitro comparative RNA-seq approach, novel genes pertinent to fast bony antler regeneration were identified and their proliferative/osteogenic function was verified via gene overexpression, knockdown, and immunostaining. This combinatorial approach may be applicable to discover unique gene contributions between any two organisms for a given phenomenon-of-interest.


Assuntos
Chifres de Veado/citologia , Chifres de Veado/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Calcificação Fisiológica/genética , Cervos/anatomia & histologia , Proteínas S100/genética , Análise de Sequência de RNA/métodos , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Osteogênese/genética , Reprodutibilidade dos Testes , Proteínas S100/metabolismo
19.
Cell Physiol Biochem ; 50(3): 841-850, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355934

RESUMO

BACKGROUND/AIMS: Sika deer (Cervus nippon Temminck) antler is traditional animal medicine of renal protection in East Asia. This study measured the effect of sika deer antler protein (SDAPR) on gentamicin (GM)-induced cytotoxicity in HEK293 cells, and investigated the effect of SDAPR against GM-induced nephrotoxicity in mice. METHODS: HEK293 cells viability and oxidative stress were measured in HEK293 cells while flow cytometry was used for apoptosis analysis. The acute kidney injury biomarkers, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and cystatin c (Cys-C), were repeatedly measured by ELISA assay. ICR male mice were randomly assigned six groups: Control, GM with vehicle, single SDAPR, GM with SDAPR at three concentrations 50, 100, 200 mg/kg/d, p.o., 10 d. GM was injected for 8 consecutive days (100 mg/kg/d, i.p.). Renal function, oxidative stress and levels of inflammatory factors were measured in vivo. Renal tissues were stained with H&E to observe pathological changes. RESULTS: Pretreatment with SDAPR (0.5-4.0 mg/mL) significantly improved cell viability. Treatment with SDAPR could reduce KIM-1, NGAL and Cys-C activity. SDAPR could improve antioxidant defense and attenuated apoptosis on HEK293 cells. SDAPR also ameliorated GM-induced histopathologic changes, and decreased blood urea nitrogen (BUN) and serum creatinine (Cr). Additionally, SDAPR significantly regulated oxidative stress marker and interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) inflammatory cytokines. CONCLUSION: These results show that SDAPR could be an effective dietary supplement to relieve GM-induced nephrotoxicity by improved antioxidase activity, suppressed inflammation, and inhibited apoptosis in vitro and vivo.


Assuntos
Chifres de Veado/metabolismo , Apoptose/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Antioxidantes/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Cervos , Gentamicinas/farmacologia , Células HEK293 , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Interleucina-6/metabolismo , Rim/metabolismo , Rim/patologia , Lipocalina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/metabolismo , Substâncias Protetoras/uso terapêutico
20.
J Food Drug Anal ; 26(4): 1275-1282, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30249326

RESUMO

Velvet antler (VA), the unossified antler from members of the family Cervidae, has been used in traditional Chinese medicines and health foods for over 2000 years in enhancement of kidney function and treatment or prevention of cardiovascular, immunological and gynaecological disease. The aim of this study was to investigate the anti-inflammatory effect of velvet antler water extracts from Formosan sambar deer (Rusa unicolor swinhoei, SVAE) and red deer (Cervus elaphus, RVAE). Results indicated that both SVAE and RVAE significantly reduced the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) productions in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells at concentrations above 200 µg mL-1. SVAE seems to demonstrate a better anti-inflammatory effect than that of RVAE in vitro. Both SVAE and RAVE also enhanced the anti-inflammatory cytokine IL-10 production in LPS-stimulated RAW 264.7 cells. The results of MTT assay indicated that SVAE and RVAE did not exhibit any cytotoxicity in LPS-stimulated RAW 264.7 cells. Two-dimensional (2D) gel electrophoresis analysis revealed that the levels of 6 specific proteins were different between these two velvet antlers samples. Furthermore, the storage period was the major factor affecting the anti-inflammatory activity of SAVE. In this study, we demonstrated the difference of anti-inflammatory effect and the protein profile between SVAE and RVAE. SVAE showed better anti-inflammatory potential than RVAE. In the future, the anti-inflammatory active components and their related mechanisms should be further investigated.


Assuntos
Anti-Inflamatórios/farmacologia , Chifres de Veado/química , Cervos/classificação , Proteínas/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Chifres de Veado/metabolismo , Eletroforese em Gel Bidimensional , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Medicina Tradicional Chinesa , Camundongos , Proteínas/isolamento & purificação , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA