Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
1.
Physiol Plant ; 176(3): e14311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715208

RESUMO

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Assuntos
Sistemas CRISPR-Cas , Chlamydomonas reinhardtii , Citocininas , Resistência à Doença , Nicotiana , Doenças das Plantas , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Citocininas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Mutação
2.
PLoS Genet ; 20(3): e1011038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498551

RESUMO

Motile cilia assembly utilizes over 800 structural and cytoplasmic proteins. Variants in approximately 58 genes cause primary ciliary dyskinesia (PCD) in humans, including the dynein arm (pre)assembly factor (DNAAF) gene DNAAF4. In humans, outer dynein arms (ODAs) and inner dynein arms (IDAs) fail to assemble motile cilia when DNAAF4 function is disrupted. In Chlamydomonas reinhardtii, a ciliated unicellular alga, the DNAAF4 ortholog is called PF23. The pf23-1 mutant assembles short cilia and lacks IDAs, but partially retains ODAs. The cilia of a new null allele (pf23-4) completely lack ODAs and IDAs and are even shorter than cilia from pf23-1. In addition, PF23 plays a role in the cytoplasmic modification of IC138, a protein of the two-headed IDA (I1/f). As most PCD variants in humans are recessive, we sought to test if heterozygosity at two genes affects ciliary function using a second-site non-complementation (SSNC) screening approach. We asked if phenotypes were observed in diploids with pairwise heterozygous combinations of 21 well-characterized ciliary mutant Chlamydomonas strains. Vegetative cultures of single and double heterozygous diploid cells did not show SSNC for motility phenotypes. When protein synthesis is inhibited, wild-type Chlamydomonas cells utilize the pool of cytoplasmic proteins to assemble half-length cilia. In this sensitized assay, 8 double heterozygous diploids with pf23 and other DNAAF mutations show SSNC; they assemble shorter cilia than wild-type. In contrast, double heterozygosity of the other 203 strains showed no effect on ciliary assembly. Immunoblots of diploids heterozygous for pf23 and wdr92 or oda8 show that PF23 is reduced by half in these strains, and that PF23 dosage affects phenotype severity. Reductions in PF23 and another DNAAF in diploids affect the ability to assemble ODAs and IDAs and impedes ciliary assembly. Thus, dosage of multiple DNAAFs is an important factor in cilia assembly and regeneration.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Humanos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cílios/genética , Cílios/metabolismo , Mutação , Dineínas/genética , Dineínas/metabolismo , Proteínas/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , Dosagem de Genes , Axonema/genética , Axonema/metabolismo
3.
Bioresour Technol ; 398: 130513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432540

RESUMO

Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium. In contrast, modified high-salt medium (HSM) supported prolonged cell survival, outdoor. However, their subsequent outdoor scale-up from 250 mL to 5 L in HSM was effective with 10 g/L bicarbonate supplementation. Pulse amplitude modulation fluorometry and metabolomic analysis further validated their improved photosynthesis and uncompromised metabolic fluxes towards the biomass and the products (natural carotenoids and engineered bisabolene). These strains could produce 906 mg/L bisabolene and 54 mg/L carotenoids, demonstrating the first successful outdoor photoautotrophic cultivation of engineeredC. reinhardtii,establishing it as a one-cell two-wells biorefinery.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Estudos Prospectivos , Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Carotenoides/metabolismo
4.
PLoS One ; 19(2): e0297014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330024

RESUMO

Recent advances in long-read sequencing technologies have enabled the complete assembly of eukaryotic genomes from telomere to telomere by allowing repeated regions to be fully sequenced and assembled, thus filling the gaps left by previous short-read sequencing methods. Furthermore, long-read sequencing can also help characterizing structural variants, with applications in the fields of genome evolution or cancer genomics. For many organisms, the main bottleneck to sequence long reads remains the lack of robust methods to obtain high-molecular-weight (HMW) DNA. For this purpose, we developed an optimized protocol to extract DNA suitable for long-read sequencing from the unicellular green alga Chlamydomonas reinhardtii, based on CTAB/phenol extraction followed by a size selection step for long DNA molecules. We provide validation results for the extraction protocol, as well as statistics obtained with Oxford Nanopore Technologies sequencing.


Assuntos
Chlamydomonas reinhardtii , Análise de Sequência de DNA/métodos , Chlamydomonas reinhardtii/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , Genômica/métodos
5.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391915

RESUMO

Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array of bioactive enzymes and peptide products. Peptidergic signals represent an ancient mode of intercellular communication, and in metazoans are involved in the maintenance of cellular homeostasis and various other physiological processes and responses. Numerous peptide receptors, subtilisin-like proteases, the peptide-amidating enzyme, and bioactive amidated peptide products have been localized to these organelles. In this review, we detail how cilia serve as specialized signaling organelles and act as a platform for the regulated processing and secretion of peptidergic signals. We especially focus on the processing and trafficking pathways by which a peptide precursor from the green alga Chlamydomonas reinhardtii is converted into an amidated bioactive product-a chemotactic modulator-and released from cilia in ectosomes. Biochemical dissection of this complex ciliary secretory pathway provides a paradigm for understanding cilia-based peptidergic signaling in mammals and other eukaryotes.


Assuntos
Chlamydomonas reinhardtii , Cílios , Animais , Cílios/metabolismo , Transdução de Sinais , Comunicação Celular , Chlamydomonas reinhardtii/metabolismo , Peptídeos/metabolismo , Mamíferos/metabolismo
6.
Sci Rep ; 14(1): 2764, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308017

RESUMO

Aquatic biota are threatened by climate warming as well as other anthropogenic stressors such as eutrophication by phosphates and nitrate. However, it remains unclear how nitrate exposure can alter the resilience of microalgae to climate warming, particularly heatwaves. To get a better understanding of these processes, we investigated the effect of elevated temperature and nitrate pollution on growth, metabolites (sugar and protein), oxidative damage (lipid peroxidation), and antioxidant accumulation (polyphenols, proline) in Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. The experiment involved a 3 × 3 factorial design, where microalgae were exposed to one of three nitrate levels (5, 50, or 200 mg L-1 NO3-l) at 20 °C for 2 weeks. Subsequently, two heatwave scenarios were imposed: a short and moderate heatwave at 24 °C for 2 weeks, and a long and intense heatwave with an additional 2 weeks at 26 °C. A positive synergistic effect of heatwaves and nitrate on growth and metabolites was observed, but this also led to increased oxidative stress. In the short and moderate heatwave, oxidative damage was controlled by increased antioxidant levels. The high growth, metabolites, and antioxidants combined with low oxidative stress during the short and moderate heatwaves in moderate nitrate (50 mg L-1) led to a sustainable increased food availability to grazers. On the other hand, long and intense heatwaves in high nitrate conditions caused unsustainable growth due to increased oxidative stress and relatively low antioxidant (proline) levels, increasing the risk for massive algal die-offs.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Antioxidantes/metabolismo , Nitratos/farmacologia , Microalgas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Prolina/farmacologia
7.
Chem Biodivers ; 21(1): e202301255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997005

RESUMO

Klotho is a human protein with versatile functions associated with longevity and well-being. α-Klotho (α-KL) deficiency in the circulatory system is associated with reduced life expectancy with numerous disorders such as chronic kidney disease, atherosclerosis, infertility, skin atrophy, emphysema, and osteoporosis. The antagonistic effects of Klotho protein against intractable cancers have also been well documented over the past two decades. In addition, recent findings have also illuminated the importance of soluble Klotho during cognitive development, oxidative stress, cellular apoptosis, and neurodegenerative disorders. The low-cost and sustainable production of alpha Klotho protein is extremely important for its widespread use against different diseases. Here, we report heterologous, functional, and extracellular production of mouse α-KL (mα-KL) protein in model microalga Chlamydomonas reinhardtii. The secretion of mα-KL into the extracellular environment facilitated downstream processes and warranted low-cost purification in high-titer. Furthermore, the anticarcinogenic efficiency of recombinant mα-KL was examined and validated on Rattus norvegicus AR42J pancreas tumors. Microalgae-based photosynthetic, low-cost, and scalable production of mα-KL could be used to develop a variety of cosmetics, pharmaceuticals, and wellness products, all aimed at serving health and well-being.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Camundongos , Humanos , Ratos , Animais , Glucuronidase/metabolismo , Chlamydomonas reinhardtii/metabolismo , Microalgas/metabolismo , Estresse Oxidativo
8.
Plant Physiol ; 194(4): 2263-2277, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38134324

RESUMO

Carbon fixation relies on Rubisco and 10 additional enzymes in the Calvin-Benson-Bassham cycle. Epimerization of xylulose-5-phosphate (Xu5P) into ribulose-5-phosphate (Ru5P) contributes to the regeneration of ribulose-1,5-bisphosphate, the substrate of Rubisco. Ribulose-5-phosphate-3-epimerase (RPE, EC 5.1.3.1) catalyzes the formation of Ru5P, but it can also operate in the pentose-phosphate pathway by catalyzing the reverse reaction. Here, we describe the structural and biochemical properties of the recombinant RPE isoform 1 from Chlamydomonas (Chlamydomonas reinhardtii) (CrRPE1). The enzyme is a homo-hexamer that contains a zinc ion in the active site and exposes a catalytic pocket on the top of an α8ß8 triose isomerase-type barrel as observed in structurally solved RPE isoforms from both plant and non-plant sources. By optimizing and developing enzyme assays to monitor the reversible epimerization of Ru5P to Xu5P and vice versa, we determined the catalytic parameters that differ from those of other plant paralogs. Despite being identified as a putative target of multiple thiol-based redox modifications, CrRPE1 activity is not affected by both reductive and oxidative treatments, indicating that enzyme catalysis is insensitive to possible redox alterations of cysteine residues. We mapped phosphorylation sites on the crystal structure, and the specific location at the entrance of the catalytic cleft supports a phosphorylation-based regulatory mechanism. This work provides an accurate description of the structural features of CrRPE1 and an in-depth examination of its catalytic and regulatory properties highlighting the physiological relevance of this enzyme in the context of photosynthetic carbon fixation.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Pentoses , Chlamydomonas reinhardtii/metabolismo , Microalgas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Modelos Moleculares , Cloroplastos/metabolismo , Racemases e Epimerases , Fosfatos
9.
Sci Total Environ ; 913: 169559, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159768

RESUMO

A naturally occurring multispecies bacterial community composed of Bacillus cereus and two novel bacteria (Microbacterium forte sp. nov. and Stenotrophomonas goyi sp. nov.) has been identified from a contaminated culture of the microalga Chlamydomonas reinhardtii. When incubated in mannitol- and yeast extract-containing medium, this bacterial community can promote and sustain algal hydrogen production up to 313 mL H2·L-1 for 17 days and 163.5 mL H2·L-1 for 25 days in high-cell (76.7 µg·mL-1 of initial chlorophyll) and low-cell density (10 µg·mL-1 of initial chlorophyll) algal cultures, respectively. In low-cell density algal cultures, hydrogen production was compatible with algal growth (reaching up to 60 µg·mL-1 of chlorophyll). Among the bacterial community, M. forte sp. nov. was the sole responsible for the improvement in hydrogen production. However, algal growth was not observed in the Chlamydomonas-M. forte sp. nov. consortium during hydrogen-producing conditions (hypoxia), suggesting that the presence of B. cereus and S. goyi sp. nov. could be crucial to support the algal growth during hypoxia. Still, under non­hydrogen producing conditions (aerobiosis) the Chlamydomonas-M. forte sp. nov. consortium allowed algal growth (up to 40 µg·mL-1 of chlorophyll) and long-term algal viability (>45 days). The genome sequence and growth tests of M. forte sp. nov. have revealed that this bacterium is auxotroph for biotin and thiamine and unable to use sulfate as sulfur source; it requires S-reduced forms such as cysteine and methionine. Cocultures of Chlamydomonas reinhardtii and M. forte sp. nov. established a mutualistic association: the alga complemented the nutrient deficiencies of the bacterium, while the bacterium released ammonium (0.19 mM·day-1) and acetic acid (0.15 mM·day-1) for the alga. This work offers a promising avenue for photohydrogen production concomitant with algal biomass generation using nutrients not suitable for mixotrophic algal growth.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Microbacterium , Clorofila , Ácido Acético , Bactérias , Hipóxia , Hidrogênio
10.
FEBS Lett ; 598(4): 457-476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38140814

RESUMO

Cilia are microtubule-based sensory organelles present in a number of eukaryotic cells. Mutations in the genes encoding ciliary proteins cause ciliopathies in humans. A-kinase anchoring proteins (AKAPs) tether ciliary signaling proteins such as protein kinase A (PKA). The dimerization and docking domain (D/D) on the RIIα subunit of PKA interacts with AKAPs. Here, we show that AKAP240 from the central-pair microtubules of Chlamydomonas reinhardtii cilia uses two C-terminal amphipathic helices to bind to its partner FAP174, an RIIα-like protein with a D/D domain at the N-terminus. Co-immunoprecipitation using anti-FAP174 antibody with an enriched central-pair microtubule fraction isolated seven interactors whose mass spectrometry analysis revealed proteins from the C2a (FAP65, FAP70, and FAP147) and C1b (CPC1, HSP70A, and FAP42) microtubule projections and FAP75, a protein whose sub-ciliary localization is unknown. Using RII D/D and FAP174 as baits, we identified two additional AKAPs (CPC1 and FAP297) in the central-pair microtubules.


Assuntos
Proteínas de Ancoragem à Quinase A , Chlamydomonas reinhardtii , Humanos , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/metabolismo , Cílios/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Sequência de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Microtúbulos/metabolismo
11.
F1000Res ; 12: 1373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021406

RESUMO

Background: A culture of the green algae Chlamydomonas reinhardtii was accidentally contaminated with three different bacteria in our laboratory facilities. This contaminated alga culture showed increased algal biohydrogen production. These three bacteria were independently isolated. Methods: The chromosomic DNA of one of the isolated bacteria was extracted and sequenced using PacBio technology. Tentative genome annotation (RAST server) and phylogenetic trees analysis (TYGS server) were conducted. Diverse growth tests were assayed for the bacterium and for the alga-bacterium consortium. Results: Phylogenetic analysis indicates that the bacterium is a novel member of the Stenotrophomonas genus that has been termed in this work as S. goyi sp. nov. A fully sequenced genome (4,487,389 base pairs) and its tentative annotation (4,147 genes) are provided. The genome information suggests that S. goyi sp. nov. is unable to use sulfate and nitrate as sulfur and nitrogen sources, respectively. Growth tests have confirmed the dependence on the sulfur-containing amino acids methionine and cysteine. S. goyi sp. nov. and Chlamydomonas reinhardtii can establish a mutualistic relationship when cocultured together. Conclusions: S. goyi sp. nov. could be of interest for the design of biotechnological approaches based on the use of artificial microalgae-bacteria multispecies consortia that take advantage of the complementary metabolic capacities of their different microorganisms.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Stenotrophomonas , Filogenia , Bactérias/genética , Enxofre/metabolismo
12.
Curr Biol ; 33(23): 5215-5224.e5, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37949064

RESUMO

Understanding how population-size homeostasis emerges from stochastic individual cell behaviors remains a challenge in biology.1,2,3,4,5,6,7 The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle, where a prolonged G1 phase is followed by n rounds of alternating division cycles (S/M) to produce 2n daughters. A "Commitment" sizer in mid-G1 phase ensures sufficient cell growth before completing the cell cycle. A mitotic sizer couples mother-cell size to division number (n) such that daughter size distributions are uniform regardless of mother size distributions. Although daughter size distributions were highly robust to altered growth conditions, ∼40% of daughter cells fell outside of the 2-fold range expected from a "perfect" multiple fission sizer.7,8 A simple intuitive power law model with stochastic noise failed to reproduce individual division behaviors of tracked single cells. Through additional iterative modeling, we identified an alternative modified threshold (MT) model, where cells need to cross a threshold greater than 2-fold their median starting size to become division-competent (i.e., Committed), after which their behaviors followed a power law model. The Commitment versus mitotic size threshold uncoupling in the MT model was likely a key pre-adaptation in the evolution of volvocine algal multicellularity. A similar experimental approach was used in size mutants mat3/rbr and dp1 that are, respectively, missing repressor or activator subunits of the retinoblastoma tumor suppressor complex (RBC). Both mutants showed altered relationships between Commitment and mitotic sizer, suggesting that RBC functions to decouple the two sizers.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/genética , Divisão Celular , Ciclo Celular , Proliferação de Células
13.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37882754

RESUMO

Mastigonemes are thread-like structures adorning the flagella of protists. In Chlamydomonas reinhardtii, filamentous mastigonemes find their roots in the flagella's distal region, associated with the channel protein PKD2, implying their potential contribution to external signal sensing and flagellar motility control. Here, we present the single-particle cryo-electron microscopy structure of the mastigoneme at 3.4 Å. The filament unit, MST1, consists of nine immunoglobulin-like domains and six Sushi domains, trailed by an elastic polyproline-II helix. Our structure demonstrates that MST1 subunits are periodically assembled to form a centrosymmetric, non-polar filament. Intriguingly, numerous clustered disulfide bonds within a ladder-like spiral configuration underscore structural resilience. While defects in the mastigoneme structure did not noticeably affect general attributes of cell swimming, they did impact specific swimming properties, particularly under varied environmental conditions such as redox shifts and heightened viscosity. Our findings illuminate the potential role of mastigonemes in flagellar motility and suggest their involvement in diverse environmental responses.


Assuntos
Chlamydomonas reinhardtii , Cílios , Movimento Celular , Cílios/ultraestrutura , Microscopia Crioeletrônica , Flagelos
14.
Plant J ; 116(6): 1582-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37824282

RESUMO

Chloroplast ATP synthase contains subunits of plastid and nuclear genetic origin. To investigate the coordinated biogenesis of this complex, we isolated novel ATP synthase mutants in the green alga Chlamydomonas reinhardtii by screening for high light sensitivity. We report here the characterization of mutants affecting the two peripheral stalk subunits b and b', encoded respectively by the atpF and ATPG genes, and of three independent mutants which identify the nuclear factor MDE1, required to stabilize the chloroplast-encoded atpE mRNA. Whole-genome sequencing revealed a transposon insertion in the 3'UTR of ATPG while mass spectrometry shows a small accumulation of functional ATP synthase in this knock-down ATPG mutant. In contrast, knock-out ATPG mutants, obtained by CRISPR-Cas9 gene editing, fully prevent ATP synthase function and accumulation, as also observed in an atpF frame-shift mutant. Crossing ATP synthase mutants with the ftsh1-1 mutant of the major thylakoid protease identifies AtpH as an FTSH substrate, and shows that FTSH significantly contributes to the concerted accumulation of ATP synthase subunits. In mde1 mutants, the absence of atpE transcript fully prevents ATP synthase biogenesis and photosynthesis. Using chimeric atpE genes to rescue atpE transcript accumulation, we demonstrate that MDE1, a novel octotricopeptide repeat (OPR) protein, genetically targets the atpE 5'UTR. In the perspective of the primary endosymbiosis (~1.5 Gy), the recruitment of MDE1 to its atpE target exemplifies a nucleus/chloroplast interplay that evolved rather recently, in the ancestor of the CS clade of Chlorophyceae, ~300 My ago.


Assuntos
Chlamydomonas reinhardtii , ATPases de Cloroplastos Translocadoras de Prótons , ATPases de Cloroplastos Translocadoras de Prótons/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Trifosfato de Adenosina/metabolismo
15.
Genetics ; 225(2)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595062

RESUMO

In plastids, conversion of light energy into ATP relies on cytochrome f, a key electron carrier with a heme covalently attached to a CXXCH motif. Covalent heme attachment requires reduction of the disulfide-bonded CXXCH by CCS5 and CCS4. CCS5 receives electrons from the oxidoreductase CCDA, while CCS4 is a protein of unknown function. In Chlamydomonas reinhardtii, loss of CCS4 or CCS5 yields a partial cytochrome f assembly defect. Here, we report that the ccs4ccs5 double mutant displays a synthetic photosynthetic defect characterized by a complete loss of holocytochrome f assembly. This defect is chemically corrected by reducing agents, confirming the placement of CCS4 and CCS5 in a reducing pathway. CCS4-like proteins occur in the green lineage, and we show that HCF153, a distant ortholog from Arabidopsis thaliana, can substitute for Chlamydomonas CCS4. Dominant suppressor mutations mapping to the CCS4 gene were identified in photosynthetic revertants of the ccs4ccs5 mutants. The suppressor mutations yield changes in the stroma-facing domain of CCS4 that restore holocytochrome f assembly above the residual levels detected in ccs5. Because the CCDA protein accumulation is decreased specifically in the ccs4 mutant, we hypothesize the suppressor mutations enhance the supply of reducing power through CCDA in the absence of CCS5. We discuss the operation of a CCS5-dependent and a CCS5-independent pathway controlling the redox status of the heme-binding cysteines of apocytochrome f.


Assuntos
Arabidopsis , Chlamydomonas reinhardtii , Citocromos f/genética , Citocromos f/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dissulfetos , Citocromos/química , Citocromos/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Oxirredução , Heme/genética , Heme/metabolismo , Arabidopsis/metabolismo
16.
Environ Sci Pollut Res Int ; 30(32): 78423-78437, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269507

RESUMO

As one of the most threatening challenges to the natural environment and human health, cadmium (Cd) pollution has seriously impacted natural organisms. Green algae, such as Chlamydomonas reinhardtii (C. reinhardtii), can provide a safer, lower cost, and more effective ecological approach to the treatment of heavy metal ions in wastewater due to their sorption properties. However, heavy metal ions affect C. reinhardtii when adsorbed. Melatonin is able to protect the plant body from damage when the plant is under biotic/abiotic stress. Therefore, we investigated the effects of melatonin on the cell morphology, chlorophyll content, chlorophyll fluorescence parameters, enzymatic activity of the antioxidant system, gene expression, and the ascorbic acid (AsA)-glutathione (GSH) cycle of C. reinhardtii under the stress of Cd (13 mg/L). Our results indicated that Cd significantly induced photoinhibition and overaccumulation of reactive oxygen species (ROS). By application with the concentration of 1.0 µM melatonin, the algal solute of C. reinhardtii under the Cd stress gradually regained its green color, the cell morphology became intact, and the photosynthetic electron transport function was retained. However, in the melatonin-silenced strain, there was a significant decrease in all of the above indicators. In addition, the use of exogenous melatonin or the expression of endogenous melatonin genes could enhance the intracellular enzyme activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). It also upregulated the expression of active enzyme genes such as SOD1, CAT1, FSD1, GSH1, GPX5, and GSHR1. These results indicate that the presence of melatonin effectively protects the activity of photosynthetic system II in C. reinhardtii, enhances antioxidant activity, upregulates gene expression in the AsA-GSH cycle, and reduces the level of ROS, thereby alleviating the damage caused by Cd toxicity.


Assuntos
Chlamydomonas reinhardtii , Melatonina , Metais Pesados , Humanos , Cádmio/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/farmacologia , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Metais Pesados/metabolismo , Clorofila/metabolismo , Íons/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia
17.
Environ Pollut ; 329: 121679, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088257

RESUMO

As the global human population increases, demand for protein will surpass our current production ability without an increase in land use or intensification. Microalgae cultivation offers a high yield of protein, and utilization of wastewater from municipal or agricultural sources in place of freshwater for microalgae aquaculture may increase the sustainability of this practice. However, wastewater from municipal and agricultural sources may contain contaminants, such as mercury (Hg), cadmium (Cd), selenium (Se), and arsenic (As). Association of these elements with algal biomass may present an exposure risk to product consumers, while volatilization may present an exposure hazard to industry workers. Thus, the partitioning of these elements should be evaluated before wastewater can be confidently used in an aquaculture setting. This study explored the potential for exposure associated with Arthrospira maxima and Chlamydomonas reinhardtii aquaculture in medium contaminated with 0.33 µg Hg L-1, 60 µg As L-1, 554 µg Se L-1, and 30 µg Cd L-1. Gaseous effluent from microalgae aquaculture was analyzed for Hg, As, Se, and Cd to quantify volatilization. A mass balance approach was used to describe the partitioning of elements between the biomass, medium, and gas phases at the end of exponential growth. Contaminants were recovered predominantly in medium and biomass, regardless of microalgae strain. In the case of Hg, 48 ± 2% was associated with A. maxima biomass and 55 ± 8% with C. reinhardtii when Hg was present as the only contaminant, but this increased to 85 ± 11% in C. reinhardtii biomass when As, Se, and Cd were also present. A small and highly variable abiotic volatilization of Hg was observed in the gas phase of both A. maxima and C. reinhardtii cultures. Evidence presented herein suggests that utilizing wastewater containing Hg, Cd, Se, and As for microalgae cultivation may present health hazards to consumers.


Assuntos
Arsênio , Chlamydomonas reinhardtii , Mercúrio , Microalgas , Selênio , Spirulina , Humanos , Cádmio/metabolismo , Mercúrio/metabolismo , Selênio/metabolismo , Arsênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Águas Residuárias , Gases , Microalgas/metabolismo , Biomassa
18.
J Hazard Mater ; 448: 130990, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860060

RESUMO

Cadmium (Cd) is one of the most toxic pollutants found in aquatic ecosystems. Although gene expression in algae exposed to Cd has been studied at the transcriptional level, little is known about Cd impacts at the translational level. Ribosome profiling is a novel translatomics method that can directly monitor RNA translation in vivo. Here, we analyzed the translatome of the green alga Chlamydomonas reinhardtii following treatment with Cd to identify the cellular and physiological responses to Cd stress. Interestingly, we found that the cell morphology and cell wall structure were altered, and starch and high-electron-density particles accumulated in the cytoplasm. Several ATP-binding cassette transporters that responded to Cd exposure were identified. Redox homeostasis was adjusted to adapt to Cd toxicity, and GDP-L-galactose phosphorylase (VTC2), glutathione peroxidase (GPX5), and ascorbate were found to play important roles in maintaining reactive oxygen species homeostasis. Moreover, we found that the key enzyme of flavonoid metabolism, i.e., hydroxyisoflavone reductase (IFR1), is also involved in the detoxification of Cd. Thus, in this study, translatome and physiological analyses provided a complete picture of the molecular mechanisms of green algae cell responses to Cd.


Assuntos
Cádmio , Chlamydomonas reinhardtii , Transportadores de Cassetes de Ligação de ATP , Cádmio/toxicidade , Chlamydomonas reinhardtii/efeitos dos fármacos , Ecossistema
19.
Methods Cell Biol ; 175: 163-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967139

RESUMO

Ciliary ectosomes are vesicles that bud from the ciliary membrane. Isolation and analysis of these structures can shed light on their bioactive cargoes and identify proteins and biomolecules involved in intercellular communication and various physiological processes. Most published methods to isolate ciliary ectosomes are based on their size (100nm to 1µm) to separate cilia-derived vesicles from isolated cilia and/or intact cells. However, it is often difficult to determine the origin of extracellular vesicles and to distinguish ciliary ectosomes from ectosomes budded from the plasma membrane or from exosomes that derive from multivesicular bodies. Here, we describe procedures to isolate and purify ciliary ectosomes from the unicellular green alga, Chlamydomonas reinhardtii, through differential and iodixanol density gradient ultracentrifugation; in this organism, the ciliary membrane is the only membrane directly exposed to the environment and thus ectosomes are of known origin. Ciliary ectosomes contain enzymes and α-amidated peptide products required to mediate peptidergic-signaling cascades; one identified amidated peptide acts as a chemotactic modulator for C. reinhardtii gametes. Classical methods used to assess chemotaxis do not provide quantitative measurements of the chemotactic gradient or the real-time effects on the migration of fast moving cells. Consequently, we developed a chemotaxis assay protocol using microfluidic channel slides that provides quantitative and qualitative measurements of the chemotactic gradient and cell migration. Here, we describe how to establish a stable gradient of a bioactive substance in microfluidic channel slides and perform quantitative assays to assess chemotaxis of both individual cells and populations of C. reinhardtii.


Assuntos
Micropartículas Derivadas de Células , Chlamydomonas reinhardtii , Chlamydomonas , Micropartículas Derivadas de Células/metabolismo , Chlamydomonas/metabolismo , Quimiotaxia , Transdução de Sinais/fisiologia , Peptídeos/metabolismo , Cílios/metabolismo , Chlamydomonas reinhardtii/metabolismo
20.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831220

RESUMO

The phenomenon of heat stress leading to ferroptosis-like cell death has recently been observed in bacteria as well as plant cells. Despite recent findings, the evidence of ferroptosis, an iron-dependent cell death remains unknown in microalgae. The present study aimed to investigate if heat shock could induce reactive oxygen species (ROS) and iron-dependent ferroptotic cell death in Chlamydomonas reinhardtii in comparison with RSL3-induced ferroptosis. After RSL3 and heat shock (50 °C) treatments with or without inhibitors, Chlamydomonas cells were evaluated for cell viability and the induction of ferroptotic biomarkers. Both the heat shock and RSL3 treatment were found to trigger ferroptotic cell death, with hallmarks of glutathione-ascorbic acid depletion, GPX5 downregulation, mitochondrial dysfunction, an increase in cytosolic calcium, ROS production, lipid peroxidation, and intracellular iron accumulation via heme oxygenase-1 activation (HO-1). Interestingly, the cells preincubated with ferroptosis inhibitors (ferrostatin-1 and ciclopirox) significantly reduced RSL3- and heat-induced cell death by preventing the accumulation of Fe2+ and lipid ROS. These findings reveal that ferroptotic cell death affects the iron homeostasis and lipid peroxidation metabolism of Chlamydomonas, indicating that cell death pathways are evolutionarily conserved among eukaryotes.


Assuntos
Chlamydomonas reinhardtii , Ferro , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Morte Celular , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA