Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
FEBS J ; 289(15): 4470-4496, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34089560

RESUMO

Our understanding of the ways in which peptides are used for communication in the nervous and endocrine systems began with the identification of oxytocin, vasopressin, and insulin, each of which is stored in electron-dense granules, ready for release in response to an appropriate stimulus. For each of these peptides, entry of its newly synthesized precursor into the ER lumen is followed by transport through the secretory pathway, exposing the precursor to a sequence of environments and enzymes that produce the bioactive products stored in mature granules. A final step in the biosynthesis of many peptides is C-terminal amidation by peptidylglycine α-amidating monooxygenase (PAM), an ascorbate- and copper-dependent membrane enzyme that enters secretory granules along with its soluble substrates. Biochemical and cell biological studies elucidated the highly conserved mechanism for amidated peptide production and raised many questions about PAM trafficking and the effects of PAM on cytoskeletal organization and gene expression. Phylogenetic studies and the discovery of active PAM in the ciliary membranes of Chlamydomonas reinhardtii, a green alga lacking secretory granules, suggested that a PAM-like enzyme was present in the last eukaryotic common ancestor. While the catalytic features of human and C. reinhardtii PAM are strikingly similar, the trafficking of PAM in C. reinhardtii and neuroendocrine cells and secretion of its amidated products differ. A comparison of PAM function in neuroendocrine cells, atrial myocytes, and C. reinhardtii reveals multiple ways in which altered trafficking allows PAM to accomplish different tasks in different species and cell types.


Assuntos
Chlamydomonas reinhardtii , Oxigenases de Função Mista , Complexos Multienzimáticos , Miócitos Cardíacos , Células Neuroendócrinas , Chlamydomonas reinhardtii/enzimologia , Humanos , Oxigenases de Função Mista/fisiologia , Complexos Multienzimáticos/fisiologia , Miócitos Cardíacos/enzimologia , Células Neuroendócrinas/enzimologia , Peptídeos , Filogenia
2.
FEBS Lett ; 595(17): 2237-2247, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34318487

RESUMO

Plant metacaspases type I (MCA-Is), the closest structural homologs of caspases, are key proteases in stress-induced regulated cell death processes in plants. However, no plant MCA-Is have been characterized in vitro to date. Here, we show that only plant MCA-Is contain a highly hydrophobic loop within the C terminus of their p10 domain. When removed, soluble and proteolytically active plant MCA-Is can be designed and recombinantly produced. We show that the activity of MCA-I depends on calcium ions and that removal of the hydrophobic loop does not affect cleavage and covalent binding to its inhibitor SERPIN. This novel approach will finally allow the development of tools to detect and manipulate the activity of these cysteine proteases in vivo and in planta.


Assuntos
Caspases/química , Caspases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Cálcio/metabolismo , Caspases/genética , Chlamydomonas reinhardtii/enzimologia , Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serpinas/metabolismo
3.
Science ; 363(6422)2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30606819

RESUMO

Photorespiration is required in C3 plants to metabolize toxic glycolate formed when ribulose-1,5-bisphosphate carboxylase-oxygenase oxygenates rather than carboxylates ribulose-1,5-bisphosphate. Depending on growing temperatures, photorespiration can reduce yields by 20 to 50% in C3 crops. Inspired by earlier work, we installed into tobacco chloroplasts synthetic glycolate metabolic pathways that are thought to be more efficient than the native pathway. Flux through the synthetic pathways was maximized by inhibiting glycolate export from the chloroplast. The synthetic pathways tested improved photosynthetic quantum yield by 20%. Numerous homozygous transgenic lines increased biomass productivity by >40% in replicated field trials. These results show that engineering alternative glycolate metabolic pathways into crop chloroplasts while inhibiting glycolate export into the native pathway can drive increases in C3 crop yield under agricultural field conditions.


Assuntos
Cloroplastos/metabolismo , Glicolatos/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Cucurbita/enzimologia , Escherichia coli/enzimologia , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Redes e Vias Metabólicas/genética , Fotossíntese , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Ribulosefosfatos/metabolismo , Estresse Fisiológico , Biologia Sintética , Temperatura
4.
J Am Chem Soc ; 141(1): 472-481, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30545220

RESUMO

[FeFe] hydrogenases interconvert H2 into protons and electrons reversibly and efficiently. The active site H-cluster is composed of two sites: a unique [2Fe] subcluster ([2Fe]H) covalently linked via cysteine to a canonical [4Fe-4S] cluster ([4Fe-4S]H). Both sites are redox active and electron transfer is proton-coupled, such that the potential of the H-cluster lies very close to the H2 thermodynamic potential, which confers the enzyme with the ability to operate quickly in both directions without energy losses. Here, one of the cysteines coordinating [4Fe-4S]H (Cys362) in the [FeFe] hydrogenase from the green algae Chlamydomonas reinhardtii ( CrHydA1) was exchanged with histidine and the resulting C362H variant was shown to contain a [4Fe-4S] cluster with a more positive redox potential than the wild-type. The change in the [4Fe-4S] cluster potential resulted in a shift of the catalytic bias, diminishing the H2 production activity but giving significantly higher H2 oxidation activity, albeit with a 200 mV overpotential requirement. These results highlight the importance of the [4Fe-4S] cluster as an electron injection site, modulating the redox potential and the catalytic properties of the H-cluster.


Assuntos
Biocatálise , Hidrogenase/química , Hidrogenase/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia , Hidrogenase/genética , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução
5.
Sci Rep ; 8(1): 13750, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30214061

RESUMO

Chlamydomonas reinhardtii is a single celled alga that undergoes apoptosis in response to UV-C irradiation. UVI31+, a novel UV-inducible DNA endonuclease in C. reinhardtii, which normally localizes near cell wall and pyrenoid regions, gets redistributed into punctate foci within the whole chloroplast, away from the pyrenoid, upon UV-stress. Solution NMR structure of the first putative UV inducible endonuclease UVI31+ revealed an α1-ß1-ß2-α2-α3-ß3 fold similar to BolA and type II KH-domain ubiquitous protein families. Three α-helices of UVI31+ constitute one side of the protein surface, which are packed to the other side, made of three-stranded ß-sheet, with intervening hydrophobic residues. A twenty-three residues long polypeptide stretch (D54-H76) connecting ß1 and ß2 strands is found to be highly flexible. Interestingly, UVI31+ recognizes the DNA primarily through its ß-sheet. We propose that the catalytic triad residues involving Ser114, His95 and Thr116 facilitate DNA endonuclease activity of UVI31+. Further, decreased endonuclease activity of the S114A mutant is consistent with the direct participation of Ser114 in the catalysis. This study provides the first structural description of a plant chloroplast endonuclease that is regulated by UV-stress response.


Assuntos
Parede Celular/enzimologia , Cloroplastos/genética , Endonucleases/química , Proteínas de Plantas/química , Sequência de Aminoácidos/genética , Parede Celular/química , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/enzimologia , Cloroplastos/química , Cloroplastos/enzimologia , Endonucleases/genética , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/genética , Domínios Proteicos/genética
6.
Photosynth Res ; 137(2): 251-262, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29525874

RESUMO

Oxidation of the cysteines from ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) leads to inactivation and promotes structural changes that increase the proteolytic sensitivity and membrane association propensity related to its catabolism. To uncover the individual role of the different cysteines, the sequential order of modification under increasing oxidative conditions was determined using chemical labeling and mass spectrometry. Besides, site-directed RubisCO mutants were obtained in Chlamydomonas reinhardtii replacing single conserved cysteines (Cys84, Cys172, Cys192, Cys247, Cys284, Cys427, Cys459 from the large and sCys41, sCys83 from the small subunit) and the redox properties of the mutant enzymes were determined. All mutants retained significant carboxylase activity and grew photoautotrophically, indicating that these conserved cysteines are not essential for catalysis. Cys84 played a noticeable structural role, its replacement producing a structurally altered enzyme. While Cys247, Cys284, and sCys83 were not affected by the redox environment, all other residues were oxidized using a disulfide/thiol ratio of around two, except for Cys172 whose oxidation was distinctly delayed. Remarkably, Cys192 and Cys427 were apparently protective, their absence leading to a premature oxidation of critical residues (Cys172 and Cys459). These cysteines integrate a regulatory network that modulates RubisCO activity and conformation in response to oxidative conditions.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Cisteína/química , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Sequência Conservada , Cisteína/metabolismo , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Mutação , Conformação Proteica , Ribulose-Bifosfato Carboxilase/genética
7.
Physiol Plant ; 162(1): 35-48, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28950038

RESUMO

The role of glutathione reductase (GR; EC 1.6.4.2) in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to high-intensity light stress (HL, 1400 µmol m-2 s-1 ) was examined. Cells survived under high light (HL) stress, although their growth was inhibited after long-term treatment (9-24 h). GR activity increased 1 h after HL treatment. The contents of total glutathione, reduced glutathione (GSH) and glutathione disulfide (GSSG) increased 1-3 h after HL treatment and then decreased after 24 h, while the GSH:GSSG ratio (glutathione redox potential) decreased after 3-9 h and recovered after 24 h. The transcript abundance of GR, CrGR1 (Cre06.g262100) and CrGR2 (Cre09.g396252) as well as glutathione synthesis-related genes, CrGSH1 (Cre02g077100.t1.1) and CrGSH2 (Cre17.g70800.t1.1), increased with a peak near 1 h after HL treatment. Except for enhanced glutathione synthesis, the GR-mediated glutathione redox machinery is also critical for the tolerance of C. reinhardtii cells to HL stress. Therefore, GR was downregulated or upregulated to investigate the importance of GR in HL tolerance. The CrGR1 knockdown amiRNA line exhibited low GR transcript abundance, GR activity and GSH:GSSG ratio and could not survive under HL conditions. Over-expression of CrGR1 or CrGR2 driven by a HSP70A:RBCS2 fusion promoter resulted in a higher GR transcript abundance, GR activity and GSH:GSSG ratio and led to cell survival when exposed to high-intensity illumination, i.e. 1800 µmol m-2 s-1 . In conclusion, GR-mediated modulation of the glutathione redox potential plays a role in the tolerance of Chlamydomonas cells to photo-oxidative stress.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/efeitos da radiação , Glutationa Redutase/metabolismo , Glutationa/metabolismo , Luz , Estresse Oxidativo/efeitos da radiação , Proliferação de Células/efeitos da radiação , Chlamydomonas reinhardtii/enzimologia , Regulação para Baixo/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos da radiação , Transformação Genética
8.
Phys Chem Chem Phys ; 20(5): 3128-3140, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28884175

RESUMO

The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN-) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN- vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN- infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Biocatálise , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia , Coenzimas/química , Coenzimas/metabolismo , Cianetos/química , Cianetos/metabolismo , Transporte de Elétrons , Hidrogênio/química , Concentração de Íons de Hidrogênio , Hidrogenase/química , Hidrogenase/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Ligantes , Oxirredução , Ligação Proteica , Prótons , Teoria Quântica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Biochim Biophys Acta Bioenerg ; 1859(1): 28-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28919500

RESUMO

[FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN-) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3- complex with the net spin on Fed whereas Hox-CO shows an apical CN- at Fed in a [4Fe4S-2Fe(CO)]3- complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3- complex with an apical superoxide (O2-) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3- complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2- protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Oxigênio/química , Proteínas de Plantas/química , Domínio Catalítico
10.
J Am Chem Soc ; 139(46): 16894-16902, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29054130

RESUMO

[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Ferro/metabolismo , Teoria Quântica , Biocatálise , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia , Desulfovibrio desulfuricans/enzimologia , Modelos Moleculares , Análise Espectral , Vibração
11.
Biochim Biophys Acta Bioenerg ; 1858(12): 966-974, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28890176

RESUMO

The chloroplast F1Fo-ATP synthase (CF1Fo) drives ATP synthesis and the reverse reaction of ATP hydrolysis. The enzyme evolved in a cellular environment where electron transfer processes and molecular oxygen are abundant, and thiol modulation in the γ-subunit via thioredoxin is important for its ATPase activity regulation. Especially under high light, oxygen can be reduced and forms reactive oxygen species (ROS) which can oxidize CF1Fo among various other biomolecules. Mutation of the conserved ROS targets resulted in a tolerant enzyme, suggesting that ROS might play a regulatory role. The mutations had several side effects in vitro, including disturbance of the ATPase redox regulation [F. Buchert et al., Biochim. Biophys. Acta, 1817 (2012) 2038-2048]. This would prevent disentanglement of thiol- and ROS-specific modes of regulation. Here, we used the F1 catalytic core in vitro to identify a point mutant with a functional ATPase redox regulation and increased H2O2 tolerance. In the next step, the mutation was introduced into Chlamydomonas reinhardtii CF1Fo, thereby allowing us to study the physiological role of ROS regulation of the enzyme in vivo. We demonstrated in high light experiments that CF1Fo ROS targets were involved in the significant inhibition of ATP synthesis rates. Molecular events upon modification of CF1Fo by ROS will be considered.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Cloroplastos/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Translocadoras de Prótons/genética , ATPases de Cloroplastos Translocadoras de Prótons/química , ATPases de Cloroplastos Translocadoras de Prótons/genética , Peróxido de Hidrogênio/química , ATPases Mitocondriais Próton-Translocadoras/química , Oxirredução , Mutação Puntual/genética , ATPases Translocadoras de Prótons/química , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/genética
12.
Plant Physiol ; 173(4): 2110-2120, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28250069

RESUMO

Ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme in plants and is responsible for CO2 fixation during photosynthesis. This enzyme is assembled from eight large subunits (RbcL) encoded by a single chloroplast gene and eight small subunits (RbcS) encoded by a nuclear gene family. Rubisco is primarily found in the chloroplasts of mesophyll (C3 plants), bundle-sheath (C4 plants), and guard cells. In certain species, photosynthesis also takes place in the secretory cells of glandular trichomes, which are epidermal outgrowths (hairs) involved in the secretion of specialized metabolites. However, photosynthesis and, in particular, Rubisco have not been characterized in trichomes. Here, we show that tobacco (Nicotiana tabacum) trichomes contain a specific Rubisco small subunit, NtRbcS-T, which belongs to an uncharacterized phylogenetic cluster (T). This cluster contains RbcS from at least 33 species, including monocots, many of which are known to possess glandular trichomes. Cluster T is distinct from the cluster M, which includes the abundant, functionally characterized RbcS isoforms expressed in mesophyll or bundle-sheath cells. Expression of NtRbcS-T in Chlamydomonas reinhardtii and purification of the full Rubisco complex showed that this isoform conferred higher Vmax and Km values as well as higher acidic pH-dependent activity than NtRbcS-M, an isoform expressed in the mesophyll. This observation was confirmed with trichome extracts. These data show that an ancient divergence allowed for the emergence of a so-far-uncharacterized RbcS cluster. We propose that secretory trichomes have a particular Rubisco uniquely adapted to secretory cells where CO2 is released by the active specialized metabolism.


Assuntos
Fotossíntese , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Tricomas/enzimologia , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/metabolismo , Tricomas/genética , Tricomas/metabolismo
13.
Aquat Toxicol ; 186: 50-66, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28249228

RESUMO

The present study was aimed at investigating the role of intracellular free calcium, [Ca2+]c, in the early cellular response of the green alga Chlamydomonas reinhardtii to the emergent pollutant Triclosan (13.8µM; 24h of exposure). There is a growing concern about the persistence and toxicity of this antimicrobial in aquatic environments, where non-target organisms such as C. reinhardtii, a primary producer of ecological relevance, might be severely impacted. A mechanistic study was undertaken which combined flow cytometry protocols, physiological as well as gene expression analysis. As an early response, Triclosan strongly altered [Ca2+]c homeostasis which could be prevented by prechelation with the intracellular calcium chelator BAPTA-AM. Triclosan induced ROS overproduction which ultimately leads to oxidative stress with loss of membrane integrity, membrane depolarization, photosynthesis inhibition and mitochondrial membrane depolarization; within this context, Triclosan also induced an increase in caspase 3/7 activity and altered the expression of metacaspase genes which are indicative of apoptosis. All these adverse outcomes were dependent on [Ca2+]c. Interestingly, an interconnection between [Ca2+]c alterations and increased ROS formation by Triclosan was found. Taken altogether these results shed light on the mechanisms behind Triclosan toxicity in the green alga Chlamydomonas reinhardtii and demonstrate the role of [Ca2+]c in mediating the observed toxicity.


Assuntos
Cálcio/farmacologia , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Caspases/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/enzimologia , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Superóxidos/metabolismo
14.
J Am Chem Soc ; 139(4): 1440-1443, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28075576

RESUMO

The active site of [FeFe] hydrogenases, the H-cluster, consists of a [4Fe-4S] cluster connected via a bridging cysteine to a [2Fe] complex carrying CO and CN- ligands as well as a bridging aza-dithiolate ligand (ADT) of which the amine moiety serves as a proton shuttle between the protein and the H-cluster. During the catalytic cycle, the two subclusters change oxidation states: [4Fe-4S]H2+ ⇔ [4Fe-4S]H+ and [Fe(I)Fe(II)]H ⇔ [Fe(I)Fe(I)]H thereby enabling the storage of the two electrons needed for the catalyzed reaction 2H+ + 2e- ⇄ H2. Using FTIR spectro-electrochemistry on the [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1) at different pH values, we resolve the redox and protonation events in the catalytic cycle and determine their intrinsic thermodynamic parameters. We show that the singly reduced state Hred of the H-cluster actually consists of two species: Hred = [4Fe-4S]H+ - [Fe(I)Fe(II)]H and HredH+ = [4Fe-4S]H2+ - [Fe(I)Fe(I)]H (H+) related by proton coupled electronic rearrangement. The two redox events in the catalytic cycle occur on the [4Fe-4S]H subcluster at similar midpoint-potentials (-375 vs -418 mV); the protonation event (Hred/HredH+) has a pKa ≈ 7.2.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Prótons , Biocatálise , Chlamydomonas reinhardtii/enzimologia , Elétrons , Hidrogênio/química , Concentração de Íons de Hidrogênio , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Conformação Molecular , Oxirredução
15.
J Am Chem Soc ; 139(1): 83-86, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27973768

RESUMO

Hydrogenases couple electrochemical potential to the reversible chemical transformation of H2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (Hhyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S]H) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe]H) with CO and CN- ligands. Mössbauer analysis and density functional theory (DFT) calculations show that Hhyd consists of a reduced [4Fe-4S]H+ coupled to a diferrous [2Fe]H with a terminally bound Fe-hydride. The existence of the Fe-hydride in Hhyd was demonstrated by an unusually low Mössbauer isomer shift of the distal Fe of the [2Fe]H subcluster. A DFT model of Hhyd shows that the Fe-hydride is part of a H-bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover.


Assuntos
Biocatálise , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Chlamydomonas reinhardtii/enzimologia , Hidrogenase/química , Ferro/química , Proteínas Ferro-Enxofre/química , Cinética , Prótons , Teoria Quântica , Termodinâmica
16.
Biochemistry ; 56(1): 219-227, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28001367

RESUMO

Collagen prolyl 4-hydroxylases (CP4Hs) catalyze a prevalent posttranslational modification, the hydroxylation of (2S)-proline residues in protocollagen strands. The ensuing (2S,4R)-4-hydroxyproline residues are necessary for the conformational stability of the collagen triple helix. Prolyl peptide bonds isomerize between cis and trans isomers, and the preference of the enzyme is unknown. We synthesized alkene isosteres of the cis and trans isomers to probe the conformational preferences of human CP4H1. We discovered that the presence of a prolyl peptide bond is necessary for catalysis. The cis isostere is, however, an inhibitor with a potency greater than that of the trans isostere, suggesting that the cis conformation of a prolyl peptide bond is recognized preferentially. Comparative studies with a Chlamydomonas reinhardtii P4H, which has a similar catalytic domain but lacks an N-terminal substrate-binding domain, showed a similar preference for the cis isostere. These findings support the hypothesis that the catalytic domain of CP4Hs recognizes the cis conformation of the prolyl peptide bond and inform the use of alkenes as isosteres for peptide bonds.


Assuntos
Alcenos/química , Hidroxiprolina/química , Peptídeos/química , Pró-Colágeno-Prolina Dioxigenase/química , Prolina/química , Prolil Hidroxilases/química , Alcenos/metabolismo , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia , Humanos , Hidroxilação , Hidroxiprolina/metabolismo , Isomerismo , Cinética , Modelos Químicos , Estrutura Molecular , Peptídeos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolina/metabolismo , Prolil Hidroxilases/metabolismo , Ligação Proteica , Especificidade da Espécie , Especificidade por Substrato
17.
J Am Chem Soc ; 138(46): 15227-15233, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27776209

RESUMO

Protein film electrochemistry (PFE) has been used to study the assembly of the complex 6Fe active site of [FeFe]-hydrogenases (known as the H-cluster) from its precursors-the [4Fe-4S] domain that is already coordinated within the host, and the 2Fe domain that is presented as a synthetic water-soluble complex stabilized by an additional CO. Not only does PFE allow control of redox states via the electrode potential but also the immobilized state of the enzyme facilitates control of extremely low concentrations of the 2Fe complex. Results for two enzymes, CrHydA1 from Chlamydomonas reinhardtii and CpI from Clostridium pasteurianum, are very similar, despite large differences in size and structure. Assembly begins with very tight binding of the 34-valence electron 2Fe complex to the apo-[4Fe-4S] enzyme, well before the rate-determining step. The precursor is trapped under highly reducing conditions (<-0.5 V vs SHE) that prevent fusion of the [4Fe-4S] and 2Fe domains (via cysteine-S) since the immediate product would be too electron-rich. Relaxing this condition allows conversion to the active H-cluster. The intramolecular steps are relevant to the final stage of biological H-cluster maturation.


Assuntos
Técnicas Eletroquímicas , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia
18.
Molecules ; 21(8)2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27472309

RESUMO

Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3-5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50-60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Chlamydomonas reinhardtii/enzimologia , Clorofila/química , Compostos Férricos/química , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Biocatálise , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Fenômenos Eletromagnéticos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Nanopartículas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
Plant Cell Physiol ; 57(10): 2104-2121, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27440549

RESUMO

The role of ascorbate (AsA) recycling via dehydroascorbate reductase (DHAR) in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress was examined. The activity of DHAR and the abundance of the CrDHAR1 (Cre10.g456750) transcript increased after moderate light (ML; 750 µmol m-2 s-1) or high light (HL; 1,800 µmol m-2 s-1) illumination, accompanied by dehydroascorbate (DHA) accumulation, decreased AsA redox state, photo-inhibition, lipid peroxidation, H2O2 overaccumulation, growth inhibition and cell death. It suggests that DHAR and AsA recycling is limiting under high-intensity light stress. The CrDHAR1 gene was cloned and its recombinant CrDHAR1 protein was a monomer (25 kDa) detected by Western blot that exhibits an enzymatic activity of 965 µmol min-1 mg-1 protein. CrDHAR1 was overexpressed driven by a HSP70A:RBCS2 fusion promoter or down-regulated by artificial microRNA (amiRNA) to examine whether DHAR-mediated AsA recycling is critical for the tolerance of C. reinahartii cells to photo-oxidative stress. The overexpression of CrDHAR1 increased DHAR protein abundance and enzyme activity, AsA pool size, AsA:DHA ratio and the tolerance to ML-, HL-, methyl viologen- or H2O2-induced oxidative stress. The CrDHAR1-knockdown amiRNA lines that have lower DHAR expression and AsA recycling ability were sensitive to high-intensity illumination and oxidative stress. The glutathione pool size, glutathione:oxidized glutathione ratio and glutathione reductase and ascorbate peroxidase activities were increased in CrDHAR1-overexpressing cells and showed a further increase after high-intensity illumination but decreased in wild-type cells after light stress. The present results suggest that increasing AsA regeneration via enhanced DHAR activity modulates the ascorbate-glutathione cycle activity in C. reinhardtii against photo-oxidative stress.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Ácido Ascórbico/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Estresse Oxidativo/efeitos da radiação , Oxirredutases/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Bases , Clorofila/metabolismo , Clorofila A , Regulação para Baixo/genética , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glutationa/metabolismo , Peróxido de Hidrogênio/toxicidade , Paraquat/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transformação Genética/efeitos dos fármacos , Transformação Genética/efeitos da radiação
20.
FEBS J ; 283(18): 3389-407, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27419381

RESUMO

UNLABELLED: Adenylate kinases (ADK) are key enzymes that maintain the energetic balance in cellular compartments by catalyzing the reaction: AMP + ATP↔2 ADP. Here, we analyzed the chloroplast ADK 3 from the green alga, Chlamydomonas reinhardtii for the first time. This enzyme bears a C-terminal extension that is highly similar to the C-terminal end of the intrinsically disordered protein CP12 that plays a major role in the redox regulation of key enzymes of the Calvin-Benson cycle like glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase. The only other known example of a CP12-like extension is found in the GapB isoform of GAPDH, where it is responsible for the autonomous redox regulation of the higher plant A2 B2 GAPDH. In this study, we show that the CP12-like tail is not involved in the redox regulation of ADK 3, but contributes greatly to its stability, and is essential for the post-translational modification of the Cys221 residue by glutathione. This report highlights the fact that the C-terminal part of the CP12 protein can act as a moonlighting, intrinsically disordered module conferring additional capabilities to the proteins to which it is added. ENZYMES: Adenylate kinase (ADK, EC 2.7.4.3) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.13).


Assuntos
Adenilato Quinase/química , Adenilato Quinase/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Adenilato Quinase/genética , Proteínas de Algas/genética , Sequência de Aminoácidos , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Dicroísmo Circular , Cisteína/química , Estabilidade Enzimática , Glutationa/química , Glutationa/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA